
ARCHRUBY: CONFORMIDADE ARQUITETURAL

EM LINGUAGENS DINAMICAMENTE TIPADAS

SÉRGIO HENRIQUE MIRANDA JÚNIOR

ARCHRUBY: CONFORMIDADE ARQUITETURAL

EM LINGUAGENS DINAMICAMENTE TIPADAS

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Universi-
dade Federal de Minas Gerais como requisito
parcial para a obtenção do grau de Mestre
em Ciência da Computação.

Orientador: Marco Túlio de Oliveira Valente
Coorientador: Ricardo Terra Nunes Bueno Villela

Belo Horizonte

Março de 2017

SÉRGIO HENRIQUE MIRANDA JÚNIOR

ARCHRUBY: ARCHITECTURE CONFORMANCE

CHECKING IN DYNAMICALLY TYPED

LANGUAGES

Dissertation presented to the Graduate Pro-
gram in Computer Science of the Univer-
sidade Federal de Minas Gerais – Departa-
mento de Ciência da Computação in partial
fulfillment of the requirements for the degree
of Master in Computer Science.

Advisor: Marco Túlio de Oliveira Valente
Co-Advisor: Ricardo Terra Nunes Bueno Villela

Belo Horizonte

March 2017

c© 2017, Sérgio Henrique Miranda Júnior.
Todos os direitos reservados.

Miranda Júnior, Sérgio Henrique

M672a ArchRuby: Architecture Conformance Checking in
Dynamically Typed Languages / Sérgio Henrique
Miranda Júnior. — Belo Horizonte, 2017

xxi, 89 f. : il. ; 29cm

Dissertação (mestrado) — Universidade Federal de
Minas Gerais – Departamento de Ciência da
Computação

Orientador: Marco Túlio de Oliveira Valente
Coorientador: Ricardo Terra Nunes Bueno Villela

1. Computação – Teses. 2. Engenharia de software.
3. Linguagem dinamicamente tipada. 4. Erosão
arquitetural. 5. Architecture conformance checking.
I. Orientador. II. Coorientador. III. Título.

CDU 519.6*32(043)

Agradecimentos

Agradeço imensamente a minha família. Especialmente, agradeço meus pais pelo
exemplo de garra e determinação para se alcançar o que deseja, vocês foram um espelho
para mim durante toda a caminhada. Agradeço também ao meu irmão, pelo ser humano
incrível que é e pela força de vontade que tem. Vocês são o meu alicerce.

Agradeço a minha namorada, amiga, e companheira de vida Débora, que sempre
está ao meu lado, me incentivando e me apoiando em todos os momentos. Com você ao
meu lado a vida é mais bela.

Agradeço ao meu orientador Marco Túlio, por todo ensinamento. Foi um grande
aprendizado trabalhar ao lado desse excelente professor. Seu conhecimento, energia e
profissionalismo foram essenciais para este trabalho.

Agradeço ao meu coorientador Ricardo Terra, que foi muito mais do que coorien-
tador neste trabalho. Sua energia, conhecimento e vontade de fazer o melhor tiveram
uma imensa contribuição para este trabalho. Mais do que isso, deixo registrado aqui a
minha gratidão por toda nossa caminhada juntos, aprendi e aprendo muito com você.

Agradeço aos amigos e familiares por entenderem minha ausência em vários
momentos. Mais do que isso, agradeço o incentivo dado por todos também.

Agradeço aos amigos do grupo de pesquisa ASERG pela convivência e troca de
conhecimento.

Por fim, agradeço ao Programa de Pós-Graduação em Ciência da Com-
putação (PPGCC) pelo excelente curso e toda atenção prestada durante a construção
deste trabalho.

ix

Resumo

Erosão arquitetural é um problema recorrente na evolução de software. Esse problema
se agrava em sistemas desenvolvidos em linguagens dinamicamente tipadas devido (i) a
certos recursos providos por tais linguagens tornarem os desenvolvedores mais propícios
a quebrar a arquitetura planejada, e (ii) a comunidade de desenvolvedores sofrer da
falta de ferramentas para análise de arquiteturas. Assim, esta dissertação de mestrado
propõe uma solução de conformidade e visualização arquitetural baseada em técnicas
de análise estática de código e em uma heurística de inferência de tipos para linguagens
dinamicamente tipadas. A ideia central é prover à comunidade de desenvolvedores
formas de controlar o processo de erosão arquitetural através da detecção de violações
arquiteturais e da visualização de um modelo de alto nível da arquitetura implementada,
na forma de modelos de reflexão e DSMs. Nesse sentido, foi projetada uma ferramenta,
chamada ArchRuby, que implementa a solução proposta. Para avaliar tal solução, foram
realizadas quatro avaliações. Primeiro, a solução proposta foi avaliada em três sistemas
reais, sendo capaz de identificar 48 violações arquiteturais das quais os arquitetos não
tinham conhecimento. Segundo, foi avaliada a acurácia da heurística de inferência
de tipos, concluindo-se que (i) a quantidade de tipos analisados aumenta em 5% na
média e (ii) certas violações só foram identificadas devido a essa heurística. Terceiro,
realizou-se um estudo para comparar a heurística de inferência de tipos proposta com
técnicas de análise dinâmica de código, concluindo-se que (i) a heurística de inferência
de tipos proposta provê uma revocação média de 44% e (ii) sete melhorias podem ser
incorporadas em técnicas de análise estática de código para aumentar a quantidade de
tipos inferidos. Quinto e último, realizou-se um estudo com um sistema real adaptando a
ferramenta ArchRuby para utilizar informações geradas por técnicas de análise dinâmica
de código, a fim de aumentar o número de dependências a serem analisadas.

Palavras-chave: Conformidade arquitetural; Erosão arquitetural; modelos arquitetu-
rais de alto nível; linguagens dinamicamente tipadas.

xi

Abstract

Architectural erosion is a recurrent problem faced by software architects, which might
be even more severe in systems implemented in dynamically typed languages. The
reasons are twofold: (i) some features provided by such languages make developers more
prone to break the planned architecture (e.g., dynamic invocations and buildings), and
(ii) the developers community lacks tool support for monitoring the implemented archi-
tecture. To address these shortcomings, we propose an architectural conformance and
visualization approach based on static code analysis techniques and on a type inference
heuristic to address the particularities of dynamically typed languages. The central idea
is to provide the developers community with means to control the architectural erosion
process by reporting architectural violations and visualizing them in high-level archi-
tectural models, such as reflexion models and DSMs. We also describe a tool—called
ArchRuby—that implements our approach. To evaluate the proposed approach we
conducted four evaluations. First, we evaluate our solution in three real-world systems
identifying 48 architectural violations of which the developers had no prior knowledge.
Second, we measure the effectiveness of our type inference heuristic reporting that
(i) the number of analyzed types raises 5% on average and (ii) certain violations are only
detected due to this heuristic. Third, we conducted a study to compare the proposed
type inference algorithm with dynamic techniques showing that (i) the proposed type
inference algorithm provides an average recall of 44% and (ii) seven improvements can
be implemented by static techniques to raise the number of inferred types. Fourth
and last, we conduct a study with a real-world system adapting ArchRuby to use
information generated by dynamic analysis in order to raise the number of analyzed
dependencies.

Palavras-chave: Architecture conformance checking; architectural erosion; high-level
architectural models; dynamically typed languages.

xiii

List of Figures

1.1 The proposed approach . 3

2.1 Reflexion model example . 10
2.2 Reflexion model . 11
2.3 DSM example . 12

3.1 The proposed approach . 28
3.2 ArchRuby architecture . 29
3.3 Textual report of an architectural violation 32
3.4 Reflexion model automatically computed by ArchRuby 33
3.5 DSM automatically computed by ArchRuby 35

4.1 Fragment of the reflexion model of Dito Social 44
4.2 Fragment of the reflexion model of Tim Beta 46
4.3 Fragment of the reflexion model of PLC . 49

B.1 RM automatically computed by ArchRuby for Dito Social 82

C.1 RM automatically computed by ArchRuby for Tim Beta 86

D.1 RM automatically computed by ArchRuby for PLC Attorneys 89

xv

List of Tables

1.1 Top 5 Ruby systems with more stars on GitHub 3

4.1 Target systems . 40
4.2 Architectural violations detected in Dito Social 42
4.3 Architectural violations detected in Tim Beta 45
4.4 Architectural violations detected in PLC Attorneys 48

5.1 Number of types inferred by the proposed type propagation heuristic . . . 53
5.2 Number of inferred types by the proposed type inference heuristic 54
5.3 Evaluated systems . 58
5.4 Results comparing static and dynamic techniques 59
5.5 Impact of proposed improvements in the Recall1 results 62

A.1 Evaluated open-source systems . 76

xvii

Contents

Agradecimentos ix

Resumo xi

Abstract xiii

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Motivation . 1
1.2 An Overview of the Proposed Approach 2
1.3 Outline of the Dissertation . 4
1.4 Publications . 5

2 Background 7
2.1 Architectural Conformance . 7
2.2 Architectural Conformance Techniques 9
2.3 Dynamic Languages . 16
2.4 Ruby . 20
2.5 Type Inference . 23
2.6 Final Remarks . 26

3 Proposed Approach 27
3.1 Overview . 27
3.2 Running Example . 28
3.3 Architectural Rules Specification . 28
3.4 Architectural Conformance . 32
3.5 Architectural Visualization . 32

xix

3.5.1 Reflexion Model . 33
3.5.2 Dependency Structure Matrix 34

3.6 The Proposed Type Inference Heuristic 35
3.7 The ArchRuby Tool . 36
3.8 Final Remarks . 38

4 Proposed Approach Evaluation 39
4.1 Target Systems . 39
4.2 Methodology . 40
4.3 Dito Social . 41

4.3.1 Discussion . 43
4.4 Tim Beta . 44

4.4.1 Discussion . 46
4.5 PLC Attorneys . 46

4.5.1 Discussion . 48
4.6 General Discussion . 49
4.7 Threats to Validity . 50
4.8 Final Remarks . 50

5 Type Inference Evaluation 51
5.1 Effectiveness of the Type Inference Heuristic 51

5.1.1 Research Questions . 52
5.1.2 Dataset . 52
5.1.3 Results and Discussion . 52

5.2 Comparison with Dynamic Techniques 57
5.2.1 Research Questions . 57
5.2.2 Methodology . 57
5.2.3 Results and Discussion . 59

5.3 Measuring the Impact of Dynamic Analysis 62
5.3.1 Research Questions . 63
5.3.2 Results and Discussion . 63

5.4 Final Remarks . 65

6 Conclusion 67
6.1 Contributions . 68
6.2 Limitations . 69
6.3 Future Work . 69

xx

Bibliography 71

Appendix A Open-source Dataset 75

Appendix B Dito Social 77
B.1 Architectural Rules . 77
B.2 Reflexion Model . 82

Appendix C Tim Beta 83
C.1 Architectural Rules . 83
C.2 Reflexion Model . 86

Appendix D PLC Attorneys 87
D.1 Architectural Rules . 87
D.2 Reflexion Model . 89

xxi

Chapter 1

Introduction

In this chapter, we outline the problem we investigate in this master dissertation.
Section 1.1 presents the motivation of this work. Next, Section 1.2 presents an overview
of our approach. Section 1.3 shows the structure of this master dissertation, including
the organization of its chapters. Finally, Section 1.4 presents our publications.

1.1 Motivation

Software systems should be planned before they get implemented. For this reason,
architectural design is a crucial software development activity. Software architects,
during the architectural design phase, are concerned with defining how a system is
organized and also designing the overall structure of the system [Sommerville, 2010].
For this reason, architectural design is one of the first tasks performed in the software
development process [Sommerville, 2010]. Moreover, this design can directly affect
software performance, robustness, portability, maintainability, since it comprises a set
of key decisions and best practices that enable software evolution [Passos et al., 2010;
Murphy et al., 1995].

In this context, after the implementation of a software system, there are two
architectures: the concrete architecture (i.e., the architecture followed by source code)
and the planned one. Additionally, the concrete architecture usually deviates from
the planned one, nullifying the benefits provided by an architectural design [Passos
et al., 2010]. In other words, the concrete and the planned architectures are not always
aligned. This phenomenon is known as software architecture erosion and it is considered
a challenging research problem in software architecture [Knodel et al., 2008a; Terra
et al., 2015; Sarkar et al., 2009; Borchers, 2011; Bosch, 2004].

1

2 Chapter 1. Introduction

To tackle this problem, several techniques have been proposed [Murphy et al.,
1995; Sullivan et al., 2001; Terra and Valente, 2009; Maffort et al., 2013]. Basically, in
all these techniques, the software architect needs to define the planned architecture
that is used to compare with the concrete one. Moreover, most existing tools that
support such techniques rely on static analysis to map the source code to a high-level
architectural model [Knodel et al., 2006; Terra and Valente, 2009; Sullivan et al., 2001].
Usually, such techniques and tools depend on information that can be easily extracted
from the source code of programs implemented in statically typed languages since these
languages enforce developers to declare the types they use in the program. This explicit
declaration of types facilitate the identification of the dependencies that are established
in the software, which is a key information to any architectural conformance process.

Currently, dynamically typed languages are steadily growing in importance and
usage [TIOBE index, 2017]. In that sense, developers that use these languages should
also benefit from architectural conformance techniques. Nevertheless, none of the
existing techniques and tools to this purpose addresses the particularities of dynamically
typed languages. For example, dynamically typed languages only type check the program
at run time, which is different from static languages that enforce type constraints at
compile type, i.e., without executing the program [Agesen et al., 1995; Agesen and
Holzle, 1995a]. Therefore, to extract type information with static analysis techniques
from dynamically typed languages, it is necessary type inference algorithms.

1.2 An Overview of the Proposed Approach

As described in the previous section, the concrete and the planned architectures of
a software system are not always aligned. Several techniques have been proposed to
reveal software architecture violations, but none of them addresses the particularities
of dynamically typed languages. Moreover, developers that use dynamically typed
languages also need to control the architectural erosion problem. For example, Table 1.1
reports size information about the Top-5 Ruby systems with more stars on GitHub.1

We claim that due to their large size (i.e., three out of five systems have more than 100
KLOC) and the high number of contributors (i.e., legacy-homebrew has more than five
thousand contributors), these systems are also likely to suffer from the architectural
erosion problem. To tackle this problem, we describe in this master dissertation an
approach to perform architectural conformance and to better visualize the architecture

1 http://github.com/search?l=ruby&p=1&q=stars%3A%3E1&s=stars&type=Repositories,
as available on January 2017.

https://github.com/search?l=ruby&p=1&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?l=ruby&p=1&q=stars%3A%3E1&s=stars&type=Repositories

1.2. An Overview of the Proposed Approach 3

Table 1.1: Top 5 Ruby systems with more stars on GitHub

System LOC # of contributors
Rails (v5.0.1) 212,239 3,223
legacy-homebrew (5a9e19f) 16,656 5,636
Jekyll (v3.4.0) 13,127 675
Discourse (v1.8.0.beta4) 124,487 559
Gitlabhq (v8.16.3) 198,771 1,189

of systems implemented in dynamically typed languages. Specifically, our approach
targets systems implemented in Ruby.

As illustrated in Figure 1.1, the proposed approach receives as input the archi-
tectural rules (in1) and the source code (in2) of a target system implemented in Ruby.
After parsing the architectural rules file (t1) and the source code (t2), the proposed
approach triggers the architectural conformance process (t3) in order to detect design
decisions that do not respect the intended architecture. To this purpose, the proposed
approach uses a type inference algorithm to raise the number of dependencies to be
analyzed in the conformance process.

ArchRuby

Architectural
Rules

Source Code

Architectural
Conformance

Report of Violations

High-Level Architectural
Model

Rules
Parsing

Source Code
Parsing

in1

in2

t1

t2 t3

out1

out2

Figure 1.1: The proposed approach

As result, our solution outputs a textual report (out1), which details the detected
violations (source code location, violated rule, etc.), and two high-level architectural
models to better visualize the identified violations (out2). In these models, we distinguish
the dependencies that represent violations. It is important to mention that we have also
designed a Domain Specific Language (DSL) to specify architectural rules. For example,
assume we have a system where a module called fetcher is allowed to communicate with
a module twitter_api. The following code illustrates the specification of architectural
constraints for fetcher:

1 fetcher:
2 files: ’lib/fetcher.rb’
3 allowed: ’twitter_api’

4 Chapter 1. Introduction

In line 1, we define the module name; in line 2, we define the files that compose
the module; and, in line 3, we define that fetcher is allowed to depend only on
module twitter_api.

To evaluate our approach, we designed a prototype tool, called ArchRuby, which
is a command-line tool that implements the approach proposed in this dissertation.
Our evaluation relies on three real-world systems—namely Dito Social, Tim Beta, and
PLC Attorneys—and, ArchRuby could find 48 architectural violations developers had
no prior knowledge. Moreover, the proposed solution also provides developers with two
high-level views of the software architecture that help them to reason about the system
organization.

We also measure the effectiveness of the proposed type inference heuristic reporting
that (i) the number of analyzed types raises 5% on average and (ii) certain violations
are only detected due to this heuristic. Moreover, we conducted a study to compare
the proposed type inference algorithm against dynamic techniques showing that (i) the
proposed algorithm provides an average recall of 44% and (ii) seven improvements
could be implemented in the proposed algorithm to raise the number of inferred types.
Finally, we conducted another study with a real-world system reporting that information
generated by dynamic techniques could be used by ArchRuby to raise the number of
analyzed dependencies.

1.3 Outline of the Dissertation

We organized this master dissertation as follows:

• Chapter 2 discusses background work related to this dissertation. It covers an
introduction about architectural conformance and a discussion about architectural
conformance techniques. We also discuss about dynamic languages, introducing
some historical arguments and key features. In this context, we also provide an
overview of Ruby features. Finally, we discourse about the type inference problem.

• Chapter 3 presents the proposed architectural conformance approach, including a
running example that illustrates its operation. This chapter also presents the rules
used to define the system architecture and details about architectural conformance
process. It shows two high-level models proposed to better visualize the system
architecture and describes the proposed type inference heuristic. Finally, we
described a tool, called ArchRuby, that implements the proposed approach.

1.4. Publications 5

• Chapter 4 evaluates our approach in three systems—named Dito Social,
Tim Beta, and PLC Attorneys. In this evaluation, we first asked the architects to
define the architectural rule specification of each system. Second, the architects
performed our architectural conformance process. Third and last, they analyzed
the reported architectural violations and the high-level architectural visualizations
generated by ArchRuby. More important, quantitative and qualitative discussions
are conducted for each system.

• Chapter 5 presents a study conducted to evaluate the proposed type inference
heuristic. We analyzed the following aspects regarding the proposed heuristic:
number of inferred types, number of detected violations, accuracy when compared
with dynamic techniques, and improvements that can be implemented to raise
the number of inferred types. Furthermore, we also study the impact of adding
type information as generated by dynamic techniques to ArchRuby.

• Chapter 6 presents the final considerations of this master dissertation, including
the contributions, limitations, and future work.

1.4 Publications

This dissertation generated the following publications and therefore contais material
from them:

• Miranda, S., Valente, M. T., and Terra, R. (2015b). Conformidade e visualização
arquitetural em linguagens dinâmicas. In XVIII Ibero-American Conference on
Software Engineering (CIbSE), Software Engineering Technologies (SET) Track,
pages 137–150. (Best paper award)
• Miranda, S., Valente, M. T., and Terra, R. (2015a). ArchRuby: Conformidade e
visualização arquitetural em linguagens dinâmicas. In VI Brazilian Conference
on Software: Theory and Practice (CBSoft), Tools Session, pages 17–24. (Third
best tool award)
• Miranda, S., Rodrigues, E., Valente, M. T., and Terra, R. (2016a). Architec-
ture conformance checking in dynamically typed languages. Journal of Object
Technology, 15(3):1–34.
• Miranda, S., Valente, M. T., and Terra, R. (2016b). Inferência de tipos em ruby:

Uma comparação entre técnicas de análise estática e dinâmica. In IV Workshop
on Software Visualization, Evolution and Maintenance (VEM), pages 105–112.
(Best paper award)

Chapter 2

Background

In this chapter, we discuss background work related to this master dissertation. Sec-
tion 2.1 describes what is software architecture conformance. Section 2.2 introduces
basic concepts about architecture conformance techniques, which are essential to the
understanding of our work. Section 2.3 presents an overview on dynamically typed
languages. Section 2.4 describes some Ruby features since our approach is implemented
in Ruby. Section 2.5 discusses type inference because it can help to improve the archi-
tectural conformance process when performed in dynamically typed languages. Finally,
Section 2.6 concludes with a general discussion.

2.1 Architectural Conformance

Architecture design is a crucial software development activity. It is concerned with
defining how a system should be organized and designing the overall structure of that
system [Sommerville, 2010]. For this reason, it is one of the first tasks performed in the
software design process [Sommerville, 2010]. In this context, it is also a critical link
between software description and software design. Moreover, the architecture design can
directly affect software performance, robustness, portability, maintainability, since it
comprises a set of standards and best practices that enable the software evolution [Passos
et al., 2010; Murphy et al., 1995]. The expected output of this process is an architectural
model that describes how the system should be organized.

However, as the project evolves—due to lack of knowledge, short deadlines, etc.—
the defined architectural patterns tend to deteriorate and therefore nullify the benefits
provided by an architectural design [Passos et al., 2010]. This phenomenon is known
as software architecture erosion and it is considered a challenging research problem
in software architecture [Knodel et al., 2008a; Terra et al., 2015; Sarkar et al., 2009;

7

8 Chapter 2. Background

Borchers, 2011; Bosch, 2004]. To tackle this problem, many architectural conformance
techniques have been proposed.

Basically, architectural conformance is the process that checks to which degree
the concrete architecture (e.g., the source code implementation) is consistent with the
planned architecture of a system [Knodel et al., 2008b]. Architectural conformance
can be performed statically (i.e., without executing the target system) or dynamically
(i.e., executing the target system). On one hand, static architectural conformance
techniques are non-invasive and depend only on the source code. Hence, they do
not impact the developer programming activities or the system execution. On the
other hand, techniques based on dynamic analysis are performed during the system
execution. Therefore, they work best with systems whose behavior may change at run
time, such as the ones that make heavy use of dependency injection, reflexion, and
meta-programming.

To illustrate the architectural conformance process and its terms we use a hypo-
thetical system that contains the following classes: Professor, Student, and Course.
Moreover, suppose that these classes are implemented in files professor.rb, student.rb,
and course.rb, respectively. Also, suppose that the architect defines the following mod-
ules: professor (composed by professor.rb file), student (composed by student.rb

file), and course (composed by course.rb file). Listing 2.1 presents the code fragment
of the classes mentioned earlier.

1 class Professor class Student class Course

2

3 def add_to_dis(cor) def add_to_dis(cor) def add_prof(prof)

4 cor.add_prof(self) cor.add_student(self) @prof.push(prof)

5 end end end

6

7 end end def add_student(stud)

8 @students.push(stud)

9 end

10 ...

11 end

Listing 2.1: Piece of code to illustrate the architectural conformance process

In order to check architectural conformance, the architect has to define the planned
architecture of the system. Suppose that the planned architecture is defined as follows:
module professor must depend on module employee, module course must depend on
modules professor and student, modules professor and student must not depend

2.2. Architectural Conformance Techniques 9

on module course. After that, it is possible to check if the source code implementation
respects the rules defined by the planned architecture.

In this scenario two divergencies—dependencies that exist in the source code
but that are not prescribed by the planned architecture [Passos et al., 2010]—are
detected by the architectural conformance process. The planned architecture prescribed
that modules professor and student must not depend on module course, but, the
Professor and Student classes receive an instance of Course class (refer to Listing 2.1,
line 4). Moreover, an absence—dependencies that do not exist in the source code but
that are required by the planned architecture [Passos et al., 2010]—are reported in
the professor module. The planned architecture prescribed that this module should
depend on module employee, but such dependency does not exist in the source code
(refer to Listing 2.1, class Professor).

2.2 Architectural Conformance Techniques

To avoid the software architecture erosion phenomenon, several techniques have
been proposed. Since our approach works on architecture violations detected by a
static architecture conformance process, an overview on architecture conformance
techniques is relevant. Specifically, this section provides an overview of the following
state-of-the-art techniques:

Reflexion Models (RMs): As proposed by Murphy et al. [Murphy et al., 1995],
Reflexion Models compare two models. One representing a high-level model of the system
(e.g., specified by the developer) and another representing the low-level model (e.g.,
produced either by statically analyzing the system source or by collecting information
during the system execution). Specifically, the architect must define a high-level model
that characterizes the planned architecture. Next, a tool is used to extract structural
information from the concrete implementation. This extraction can be a call graph,
event interactions, etc. Finally, the architect defines a mapping between these two
models. Once concluded this last task, the technique computes a software reflexion
model that matches the high-level and the low-level models. Additionally, the software
architect can modify the high-level or the low-level models to iteratively refine the
reflexion models.

The reflexion model highlights divergences and absences, regarding the compared
models. Divergences indicate source code interactions that are not expected by the
planned architecture and absences indicate interactions that are expected but that are

10 Chapter 2. Background

not found. The outcome of the evaluation is summarized and documented in a separated
report, which is presented as a graph or text. The former connects the system modules
and reports the detected divergences and absences. More specifically, the solid lines in
the graph, called convergences, indicate source code interactions that are expected by
the planned architecture. On the other hand, divergences are illustrated with dashed
lines and absences with dotted lines.

To illustrate the reflexion model technique, we assume a hypothetical system called
TweetList following a MVC architecture with modules model, view, controller (as
expected in this type of architecture), and another module fetcher, which is responsible
to communicate with the Twitter API. Hence, in this architecture, module view is
allowed to establish dependency only with module controller. Figure 2.1 illustrates the
steps that the architect must follow and the output computed by the Reflexion Model
technique for the TweetList system.

(a) High-level model (b) Source code model

(c) Mapping

Figure 2.1: Reflexion model example

The architect needs to specify the high-level model, to extract the source code
model, and to provide a mapping between them (Figures 2.1a, 2.1b, and 2.1c, respec-
tively). The technique then computes the reflexion model that matches the high and
low-level models, as illustrated in Figure 2.2.

2.2. Architectural Conformance Techniques 11

There are many tools that automate the Reflexion Model technique. In this
example, we use the SAVE tool [Knodel et al., 2006]. Assume again the aforementioned
MVC architecture. SAVE provides automatic extraction of the implemented source
code, i.e., the concrete architecture of the target system. Next, the architect must
define a declarative mapping between the concrete architecture and the high-level
model. Finally, SAVE computes the reflexion model by comparing the high-level model
and the concrete architecture.

Figure 2.2: Reflexion model

Dependency Structure Matrices (DSMs): The concept of DSM was first proposed
by Baldwin and Clark to show the importance of modular design in the hardware
industry [Baldwin and Clark, 1999]. Thereafter, Sullivan et al. claimed that DSM could
also be used in software industry [Sullivan et al., 2001]. A DSM is a square matrix where
the rows and columns represent the modules of the system. Traditionally, DSM uses a
“X” to indicate a dependency between two modules. However, Sangal et al. in the LDM
tool represent in the cells the number of references between two modules [Sangal et al.,
2005]. Hence, it is simple to reason about dependencies established between modules
since the number of references is explicit written in the cells. In LDM tool, it is possible
to distinguish the violations using design rules, which have two forms: A can−use B

and A cannot−use B, indicating that module A can (or cannot) depend on module B.
Therefore, design rules can be used to specify architectural patterns such as layering,
componentization, external library usage, and other dependency patterns between
subsystems. Finally, DSM has a more scalable output than the output generated by
reflexion models, since matrices scale better than graphs.

In this illustrative example, we rely on DSM as computed by LDM tool.
We assume again the MVC architecture defined in Figure 2.1a. Figure 2.3a il-
lustrates the DSM that is automatically extracted from the source code. Ba-
sically, package tweetlist.view.list depends on packages tweetlist.view.rend

12 Chapter 2. Background

and tweetlist.controller, package tweetlist.view.rend depends on pack-
age tweetlist.controller, and package tweetlist.controller depends on
tweetlist.view.list, tweetlist.model, and tweetlist.fetcher. It is also possible
to group and rename the packages to improve the visualization. Figure 2.3b illustrates
the DSM after grouping packages tweetlist.view.rend and tweetlist.view.list

into a module named view. Additionally, packages tweetlist.controller and
tweetlist.model are grouped into modules controller and model, respectively.

(a) Extracted DSM (b) Grouped DSM

(c) Design rules (d) Checked DSM

Figure 2.3: DSM example

In order to check the architectural conformance, architects should define design
rules as mentioned before. For instance, Figure 2.3c shows a design rule that allows
only controller to depend on model (lines 1-2). First, this rule specifies that $root,
which denotes all types of the system, cannot access services provided by model (line 1).
Next, an exception to the previous rule is defined, specifying that classes in controller

are allowed to use services of model and fetcher (lines 2-3). After computing the DSM,
LDM highlights the existing dependency from view to model as potential violation
(Figure 2.3d), since module view is not explicitly allowed to access model according to
the proposed design rules. It is important to notice, however, that the LDM tool does
not provide means to detect absences.

2.2. Architectural Conformance Techniques 13

Constraint languages: The main objective of constraint languages is to provide a
method to specify structural dependencies. DCL (Dependency Constraint Language) is
a domain specific language that supports the definition of structural constraints between
modules [Terra and Valente, 2009]. DCL provides constraints to capture divergences and
absences. First, to capture divergences, architects specify only can, can only or cannot
rules for specified modules. Last, to capture absences, architects specify dependencies
that must be present in the source code. Moreover, DCL provides software architects
with a fine-grained model for the specification of structural dependencies in object-
oriented systems, which can be generic (depend) or more specific (e.g., access, declare,
create, extend, etc.). ArchRuby—the architecture conformance checking technique
proposed in this dissertation—is directly inspired on DCL constraints.

In order to check architectural conformance, the architect has to follow three
steps. First, it is necessary to specify the system modules. Second, he maps the source
code elements to the previous defined modules. Basically, the architect specifies which
module represents each part of the source code. Lastly, he defines the constraints
among modules, which are continuously enforced by the dclcheck tool. Assuming
again the aforementioned MVC architecture (Figure 2.1a), the architect should specify
the following constraints:

1 module model: tweetlist.model.*
2 module controller: tweetlist.controller.*
3 module view: tweetlist.view.*
4 module fetcher: tweetlist.fetcher.*
5

6 only controller can-depend model
7 view must-depend controller

First, he defines the modules. Modules model, controller, view, and fetcher in-
clude, respectively, all classes from packages tweetlist.model, tweetlist.controller,
tweetlist.view, and tweetlist.fetcher (lines 1-4). On one hand, to capture
divergences, a constraint states that only controller can establish dependencies with
model (line 6). On the other hand, to capture absences, another constraint requires
that classes from view must depend on controller (line 7).

Source Code Query Languages (SCQLs): De More et al. describe a general
purpose Source Code Query Language (SQCL), called .QL. By general purpose, we
mean that is possible to search bugs, detect refactoring opportunities, compute software
metrics, and search for code conventions. Moreover, the .QL language has a syntax
similar to Structured Query Language (SQL), which facilitate its adoption by the

14 Chapter 2. Background

developers. In the context of architectural conformance, it is possible to use .QL to
detect source code that does not follow the planned architecture of the system. For
example, De Schutter successfully used .QL to perform architectural conformance checks
in Certipost—a Belgian electronic communication company [De Schutter, 2012].

As an example, we use again the TweetList system to describe a .QL query that
checks if a module different than controller is using the fetcher module:

1 from RefType type_x, RefType fetcher
2 where
3 type_x.fromSource()
4 and not (type_x.getPackage().getName()
5 .matches("tweetlist.controller"))
6 and fetcher.getPackage().getName()
7 .matches("tweetlist.fetcher")
8 and depends (type_x, fetcher)
9 select type_x as Type,

10 "Architectural violation :" + type_x.getQualifiedName()
11 "uses" + fetcher.getQualifiedName() as Violation

In .QL, RefType represents the types that exist in the system. RefType also
provides functions that can be used such as fromSource (that checks if a type is part
of the current source code) and getPackage (that returns the package name where the
type is defined). Therefore, the query checks whether there is a type defined in the
system that is not part of the controller module (lines 3-5) and that depends on
a type of module fetcher (lines 6-8). The query outputs the type that is accessing
the fetcher module with a description indicating the architectural violation (lines 9-11).

Design Test: Brunet et al. [Brunet et al., 2011] proposed an architecture conformance
approach using automated tests. Basically, the design tests are test-like programs
that—similar to automated software tests—checks if the implementation respects the
architectural rules. Moreover, architectural rules are implemented in the same target
programming language of the system as a test. Brunet et al. [Brunet et al., 2011]
also argue that developers do not need to learn a new programming language or a
new technique to perform architectural conformance, which brings more advantages in
adopting design tests.

The authors developed a tool, called Design Wizard, that analyzes the structure
of the code and uses jUnit to check assertions. Listing 2.2 illustrates an example of a
design test in the TweetList system.

2.2. Architectural Conformance Techniques 15

1 public class FetcherTest extends TestCase {

2 public void testFetcherCall() {

3 DesignWizard dw = new DesignWizard("tweetlist.jar");

4 PackageNode ctr = dw.getPackage("tweetlist.controller");

5 PackageNode fet = dw.getPackage("tweetlist.fetcher");

6 Set<ClassNode> callers = null;

7 for (ClassNode clazz : fet.getAllClasses()) {

8 callers = clazz.getCallers();

9 for (ClassNode caller : callers) {

10 assertTrue(caller.getPackage().equals(ctr) ||

11 caller.getPackage().equals(fet));

12 }

13 }

14 }

15 }

Listing 2.2: Design test example

This test verifies if classes that are depending on classes from module fetcher belongs
to module fetcher or controller. Lines 4-5 get the controller and fetcher

packages, respectively. The loop on lines 7-13 iterates over all classes and then on all
callers of the fetcher package and checks whether they belong to the controller or
fetcher modules (lines 10-11).

ArchLint: This approach is an architectural conformance process based on static and
historical source code analysis [Maffort et al., 2013, 2016]. Basically, ArchLint requires
two inputs: (i) a high-level specification of the system and (ii) the history of revisions. In
ArchLint, classes are statically organized in packages (in systems implemented in Java)
and packages are logically grouped into components. In this way, components include
information on their names and a mapping to source code, using regular expressions.
The history of revisions is used to mine dependencies that will be later classified whether
they are violations or not based on heuristics.

The authors conducted a study where it was possible to detect absences and
divergences with a precision greater than 50%. Moreover, another positive argument
that the authors provide is that the technique does not require a very detailed definition
of the system architecture, which reduces the dependency on system architects.

16 Chapter 2. Background

2.3 Dynamic Languages

Basically, at its simplest level, the definition of dynamic languages is related to when
the compiler type checks the program. Dynamic languages only type checks the
program during run time. Differently, static languages enforce type constraints during
compile type, i.e., without executing the program [Agesen et al., 1995; Agesen and
Holzle, 1995a]. It is worth noting that this definition is different than being typeless.
Both statically and dynamically typed languages are typed, although the major
difference is when types are enforced. We separate the discussion about dynamically
typed languages in two categories. First, we talk about their history and some features
bring by the language designers during time. Second, we focus on their features and
show some code examples.

History: Lisp is the first dynamically typed language. It is also considered the
second-oldest high-level programming language. Lisp syntax is very simple, based on
parenthesized prefix notation [McCarthy, 1960]. In this context, Lisp was also pioneer
in trying to solve performance issues in its implementation [Gabriel, 1986]. The concept
of garbage collector [Jones and Lins, 1996], where the interpreter must handle the
allocation and deallocation of memory automatically, was first implemented in Lisp.

The dynamically typed languages have continuously been growing in functionality.
Scheme was the first dynamic language to introduce closures, a way to share lexical
scoping with function calls [Sussman and Guy L. Steele, 1998]. Basically, functions are
treated as first class citizens and can be returned as a value of a function invocation.
Thereby, it is possible to define an enclosing function that has access to the lexical
scope of the outer function. This functionality helps and simplifies the implementation
of many programming tasks, such as those related with Graphical User Interface
(GUI) programming.

Smalltalk is another dynamic language that implements object-oriented program-
ming techniques. In Smalltalk, everything is an object, even basic types such as integer
and strings. Smalltalk has also extensive meta-programming abilities, which means that
is easy to write programs that modify or write other programs [Goldberg and Robson,
1989]. This brings great flexibility to the programmer but, on the other hand, can
introduce bugs that are complex to find.

Continuing the evolution of dynamically typed languages, Erlang has emerged
to solve problems related to distributed systems. By avoiding static types, Erlang can
focus and offer high-level features such as continuous operation [Virding et al., 1996].
Such feature allows code to be replaced in a running system, while the old code is being

2.3. Dynamic Languages 17

running during the same time. For instance, telephone exchanges, and air traffic control
systems benefit from this functionality [Virding et al., 1996]. Moreover, the language
also includes features to detect run-time errors to guarantee robustness.

Perl was originally proposed as a general purpose scripting language to be used as
a glue for Unix. The language facilitates the work with files, text-processing, database
manipulation, network management, etc. [Schwartz, 2011]. To this purpose, Perl does
not impose arbitrary limitations on program data. For example, strings and arrays
can grow as large as they need to (as long as the system has available memory for it).
Perl also supports closures, class-based method dispatch (i.e., polymorphic operations),
lexical scoped variables, etc. The Perl interpreter also makes legal type conversions
automatically, for example, conversions from number to string [Schwartz, 2011].

With the evolution of the World Wide Web (WWW), PHP emerges to fill the
gap between server-side scripting and Hypertext Markup Language (HTML) [Converse,
2002]. PHP is an interpreted language that offers reflexion features to the programmers.
For example, it is possible to inspect programs at run time and even execute arbitrary
PHP code with the eval function call. This flexibility helps in the creation of frameworks
that facilitate the development for programmers. For instance, Laravel is a framework
that uses reflexion to automatically inject the dependencies required by a software
system [Bean, 2015].

JavaScript is another dynamically typed language whose primary focus is on
client-side web development. The language does not force type constraints, therefore
situations where the interpreter converts values from one type to another are usual.
For instance, if a programmer tries to sum a number with a string, the interpreter will
convert automatically the number to string and concatenate them [Flanagan, 2006].
Moreover, it is possible to use JavaScript in the server-side through Node.js, which
provides bindings to low-level Unix APIs for working with processes, files, network
sockets, etc.

Nowadays, Ruby and Python are popular dynamic languages among develop-
ers [TIOBE index, 2017]. As they are interpreted, they can be easily ported to different
platforms [Thomas et al., 2004]. Ruby and Python also provide extensive standard
library bundled with too many features, which contributes to the spread of these
languages. Moreover, they are largely used in the web development context due to
popular frameworks such as Ruby on Rails (for Ruby) and Django (for Python).

Features: The flexibility offered by dynamically typed languages helps in the devel-
opment effort needed to develop software systems [Palsberg and Schwartzbach, 1991].
For example, dynamically typed languages allow developers to change the program

18 Chapter 2. Background

structure at run time. In other words, developers have freedom to modify or add classes,
methods, and modules at run time. In this context, next we briefly introduce some key
features offered by dynamically typed languages.

First, dynamically typed languages provide a richer set of data types than statically
ones [Thomas et al., 2004; Ascher and Lutz, 1999]. Lists (arrays that can grow as long
as the system has enough memory) and strings (that can also grow arbitrarily) are
the two most common among them. Furthermore, dynamically typed languages also
provide support for associative arrays or hash tables (a fast key/value lookup structure),
and sets. The syntax varies from language to language but they are frequently used in
libraries and frameworks [Greenfeld and Greenfeld, 2015; Hartl, 2012]. The following
code illustrates an example of hash in Python:

1 hash = {}

2 hash["first_key"] = "first string"
3 hash["second_key"] = "second string"
4 hash

5 > {"first_key": "first string",
6 "second_key": "second string"}

In line 1, we define a variable called hash and assign an empty hash to it. In
lines 2-3, we create two keys with two strings as values. Finally, in line 4 we ask the
interpreter to evaluate the hash variable and the result is presented in lines 5-6. We
can keep creating hash keys as long as we have enough memory for them.

Metaprogramming is another feature that is common in dynamically typed lan-
guages. It came from Lisp (and Smalltak) [Perrotta, 2010] and refers to the ability of a
program to query, manipulate, or create a program by itself. Basically, it means that a
program can read, generate, analyze, or transform itself at run time [Czarnecki and
Eisenecker, 2000]. For example, Ruby can perform deep querying in objects to discover
information about types, how many parameters are expected by a method, or even
create methods or modify existing ones [Perrotta, 2010]. The following code shows an
example of Ruby code that uses this technique:

1 def add_attribute(klas, attribute)
2 klas.class_eval do
3 define_method "#{attribute}=" do |value|
4 instance_variable_set("@#{attribute}", value)
5 end
6 end
7 end
8 add_attribute(Professor, :name)

2.3. Dynamic Languages 19

Line 1 defines a method called add_attribute that receives two arguments.
Lines 2-6 define a new method, using as name the value of the attribute parameter.
This new method sets a new instance variable to the class received through the klas
parameter. Lastly, line 8 calls the add_attribute method to add the name method in
the Professor class.

Eval feature is the ability to evaluate arbitrary code expressions represented
as strings [Perrotta, 2010]. For example, it is possible to read a file or create a
string containing valid code, and execute that code at run time. When carefully used,
this feature can help developers with configuration that is needed to perform in the
system [Black, 2009]. For example, it is possible to execute code provided by users of
the system. However, eval has its downsides too. The main one are related to security.
A malicious user can craft a program to perform unauthorized tasks, as illustrated in
the following example:

1 params = "exec(’cat /etc/passwd’)"
2 eval("#{params}")

In line 1, we define a string containing a valid Ruby code (suppose this string
came from an user input, for example) and, in line 2, we use eval to evaluate that string
at run time. In that case, if the Ruby process has permission to read the passwd file,
the content of this file will be shown.

Closure is the ability offered by dynamically typed languages to retain access
to variables from the scope that a function is defined [Perrotta, 2010]. For example,
closure is a defining feature of JavaScript [Resig and Bibeault, 2013]. More specifically,
as defined by Resig and Bibeault [Resig and Bibeault, 2013], closure is the scope created
when a function is declared, and such scope allows the function to access and manipulate
variables that are external to it. The following JavaScript code illustrates the use of
closures:

1 var functionReference;
2 function test(){
3 var aVariable = "inside test function";
4 function insideTest(){
5 console.log(aVariable);
6 }
7 functionReference = insideTest;
8 }
9 test();

10 functionReference();

20 Chapter 2. Background

Basically, in line 1, we define a variable called functionReference. Then, we
define a function called test (lines 2-8) that declares a local variable named aVariable

(line 3), a new function called insideTest that outputs the value of aVariable

on the console (line 5), and assigns a reference to function insideTest to variable
functionReference (line 7). In line 9, we invoke test, which causes the declaration
of the insideTest function and assign its reference to variable functionReference.
Finally, in line 10, we invoke insideTest through the functionReference variable,
which causes the value of "inside test function" to be printed on the console.

The flexibility offered by dynamically typed languages, previously discussed in this
section, tends to be useful during development, once the programmers are not constrained
by rules imposed by type systems. On the other hand, it impacts performance and
postpones type checking to runtime [Agesen et al., 1995]. Performance is affected due
to run-time checking and look-up processes that are extensively used by dynamically
typed languages.

2.4 Ruby

Since our approach focuses on systems implemented in Ruby, an overview of this language
is relevant. Ruby is a dynamically typed language, which is interpreted and is purely
object oriented. Even true and false are objects, i.e., they are instances of TrueClass
and FalseClass, respectively [Black, 2009]. This brings a great expressiveness for the
language since it is natural to read messages sent to objects. For example, consider
the problem of converting a string to integer. To perform that in Java we need to do
something like the following code:

1 int foo = Integer.parseInt("1234");

However, in Ruby a string "knows" how to convert itself into an integer. In other
words, the ability to convert a string into an integer is built into the String class of the
language. Therefore, to accomplish the conversion we just need to send the message
to_i to a string, as in the following code:

1 int_value = "1234".to_i

Ruby syntax aims to make programs easy to read. For example, there is no need to
end statements with semicolons as long as each one is located in separated lines. More-
over, it is also possible to omit parentheses when defining or calling methods [Thomas
et al., 2004], which removes extra characters. Suppose we have an object that responds

2.4. Ruby 21

to a name method and it is stored in a variable called person. The following code
exemplifies that:

1 name = person.name

Identifiers in Ruby can be variables, constants, keywords, and method names. First,
variables can be split into local, instance, class, and global variables. Local variables
start with a lowercase letter or an underscore, and can be completed with letters,
underscores, and/or digits. For instance, _x, user_name, className, __userData__
are all valid local variable names. It is important to notice that the Ruby community
has a convention to use underscores rather than CamelCase when composing local
variable names with more than one word. Instance variables start with an @ sign and
are used to store information for individual objects. Class variables start with two @
signs and store information per class hierarchy. Global variables starts with a $ sign
and can be accessed anywhere in the program [Black, 2009].

Constants begin with an upper case letter. For example, String is an valid con-
stant name in Ruby. On the other hand, keywords are mostly composed by lowercase
letters and single-words. There are, approximately, 40 reserved words in Ruby. For
instance, def (for method definitions), class (for class definitions), if (conditional exe-
cution), and while (repetition) are reserved words in Ruby. For method names, the same
rules and conventions of local variables are applicable and they can use the symbols ?, !,
or = to end their names to make their meaning more expressive [Thomas et al., 2004].

Arrays and hashes are indexed collections in Ruby and they can grow as needed to
handle new elements as long as the system has memory [Thomas et al., 2004]. Regarding
the keys, arrays are indexed by integers and hashes support any object as key. Moreover,
as being a dynamically typed language, any array or hash can hold different types of
objects [Thomas et al., 2004].

In Ruby, all data structures and values are treated as objects, as expected in a
purely object-oriented language. Therefore, every object is capable of understanding
a set of messages, which are defined by the object class. Methods can be called from
the class they are defined, from other classes, or from the enclosing classes (depending
on accessibility rules) [Black, 2009]. Messages are sent by using the dot operator: the
receiver is located on the left and the message on the right.

Furthermore, Ruby is a dynamic language with several powerful abstractions [Black,
2009]. For example, it is possible to re-open a class, evaluate a valid Ruby code inside
some context (eval), re-define methods, and call methods passing their name as strings.
Metaprogramming is used to manipulate these language abstractions to modify the
code during system execution [Perrotta, 2010]. However, it is necessary to be careful

22 Chapter 2. Background

when modifying the language core since the changes are global and will take place as
long as the program starts to run [Black, 2009].

Although Ruby has single inheritance, it is possible to include modules in one
class. A module implements methods and constants, but unlike a class, it is not possible
to instantiate a module [Thomas et al., 2004]. Therefore, a module is a way to collect
and encapsulate behavior that can be shared among objects. Developers need to be
careful about the modules that are included into a class. For example, if two different
modules define methods with the same name the Ruby interpreter executes the first
that is returned during the method lookup process [Black, 2009].

As an example, Listing 2.3 illustrates the usage of the aforementioned features.
In line 1, the code defines class RbClass and a module Test. In line 2, on the right,
we define a method called salute that receives an argument named language. Also in
the salute method, we define a hash with two keys (line 3). In line 2, on the left, class
RbClass includes module Test; therefore method salute is now part of this class. In
line 8, we instantiate an object of RbClass and call method say_hi with the parameter
:en (line 9). In line 11, we re-open class RbClass and define a new method called
say_bye (lines 12-14). In lines 17-19, we define an add method only for the object o,
which is invoked in line 21.

1 class RbClass module Test
2 include Test def salute(language)
3 terms = {:pt_br => "Ola",:en => "Hi"}
4 def say_hi puts terms[language]
5 salute end
6 end end
7 end
8 o = RbClass.new
9 o.say_hi(:en)

10

11 class RbClass
12 def say_bye
13 puts "bye"
14 end
15 end
16

17 def o.add(x,y)
18 x.send "+", y
19 end
20

21 o.add(5,9)

Listing 2.3: Ruby source code example

2.5. Type Inference 23

2.5 Type Inference

As explained in Section 2.3, dynamically typed languages do not check types during
compile time. However, type checking has many benefits, such as providing more legible
and documented code, facilitating the implementation of code analysis tools, more
reliable refactoring activity, promoting the construction of better IDEs (i.e., with auto-
complete support), and achieving earlier error detection [Palsberg and Schwartzbach,
1991]. Therefore, a type inference algorithm can be used together with dynamically
typed language to provide the benefits associated with type checking.

Before discussing type inference algorithms, is important to define what is a
type. Type generally refers to several distinct concepts, such as abstract types in
Java (interfaces), concrete type (implementations), or set of classes [Agesen and Holzle,
1995a]. In this dissertation, we use type as a synonym for class, which is the structure
used in the object-oriented paradigm to describe the implementation of object instances.
Therefore, the type of a variable is the set of possible classes that can be assigned to it.

In order to explain the problems that dynamic typing can bring to developers, we
use the following Ruby code:

1 class Professor
2 def assign_to_class(class)
3 class_name = class.name
4 classes.add(class_name)
5 end
6 end

The Professor class has a method named assign_to_class that receives one
argument (line 2). However, by just reading the code a developer cannot infer what
is the type expected to be received in the assign_to_class and cannot tell what is
the type of classes variable (line 4). This small snippet of code can go wrong during
the system execution. For example, suppose that an instance of Professor receives
a method call that is mapped to assign_to_class method, passing an object as
parameter that does not define a name method. Moreover, suppose that nothing was
assigned to the classes variable previously. These problems can only be discovered at
run time.

The goal of type inference is to discover the types a variable can assume [Palsberg
and Schwartzbach, 1991; Agesen et al., 1995; Agesen and Holzle, 1995a]. This process
can be done statically (i.e., without executing the system) or dynamically (i.e., executing
the system and analyzing it at run time). When performed statically, type inference

24 Chapter 2. Background

relies on heuristics to discover the types an expression can produce during system
execution.

The following code illustrates a snippet of code, from an open-source system called
Vagrant, which is complex to infer types with a static algorithm:

1 def self.server_url(config_server_url=nil)
2 result = ENV["VAGRANT_SERVER_URL"]
3 result = config_server_url if result=="" or result==nil
4 result || DEFAULT_SERVER_URL
5 end

First, the local variable result receives the value stored in the ENV hash (line 2).
Then, the value of result can change to the return value of the config_server_url
method if the result variable contains an empty string or a nil value (line 3). To
infer correctly the type of the result a static algorithm should know the values stored
in all keys of the ENV hash. Moreover, it should know how to analyze the conditional
structure (line 3) since an if expression can change the value stored in result.

However, there are simple cases when a static algorithm can easily infer the type
of a variable. The following snippet of code illustrates one of such cases:

1 class Professor
2 def name
3 "John Doe"
4 end
5 end
6 p = Professor.new

In lines 1-5, a Professor class is defined with one method called name (lines 2-4).
In line 6, an instance of Professor is assigned to the p variable. Therefore, the type of
this variable is Professor. A static algorithm can easily infer this by just analyzing
the Abstract Syntax Tree generated for the program.

On the other hand, due to complexity of dynamically typed languages, static
algorithm for type inference is complex to be developed. Johnson [Johnson, 1986]
suggested some algorithms to Smalltalk systems. They implemented an example where
local variables are considered to have the same type in the entire method. Specifically for
Ruby, Furr et al. [Furr et al., 2009] proposed an approach that requires type annotations
when it cannot infer types automatically.

To help static approaches, we can use dynamic ones [Agesen and Holzle, 1995a;
Johnson, 1986]. In this case, the system is analyzed at run time. Obviously, the program

2.5. Type Inference 25

needs to run with a profiler that collects data generated during its execution [Agesen
and Holzle, 1995a]. The following code, developed in Ruby, illustrates a situation where
a dynamic approach can successfully infer a variable type.

1 eval("
2 class Options
3 def values_for_operation
4 PermittedValues.new(["exp", "def", "mod"])
5 end
6 ")
7

8 opt = Options.new
9 permitted_values = opt.values_for_operation

First, the program uses the eval function to evaluate a valid Ruby code during
the system execution (lines 1-6). Specifically, the code passed to eval creates a class
named Options (line 2) with a method named values_for_operation (line 3) that
returns a new instance of a PermittedValues class (line 4). Next, in line 8, an instance
of class Options is instantiated and assigned to the opt variable. In line 9, variable
permitted_values receives the value returned by method values_for_operation.

In the previous example, it is important to notice that the type of
permitted_values is hard to obtain with a static type inference algorithm. In this
case, a static approach needs to know how to evaluate strings passed as an argument
for the eval function. On the other hand, a dynamic algorithm that profiles the system
during execution has an advantage to access information that is generated by the
language virtual machine itself.

As a consequence of type inference, both security in messages sent to objects and
run-time performance can be increased in dynamically typed languages [Palsberg and
Schwartzbach, 1991]. For security, wrong method invocation tends to not occur since
type inference may discover which type an expression can have. For example, suppose
class A does not implement method foo and variable b is an instance of A. In this
sense, it is not possible to call method foo from variable b. This verification is possible
because the information about the type permit to verify if the receiver of the message
implements a method to handle the message [Palsberg and Schwartzbach, 1991].

Additionally, for performance, the interpreter can use the inferred type infor-
mation to inline message calls at run-time, eliminating the need of searching for the
receiver [Agesen and Holzle, 1995b]. For example, if the interpreter knows that a
particular receiver is of type Professor and that the message sent is defined in the

26 Chapter 2. Background

Professor class, it can inline this message. This removes the need of searching for
the receiver and for the particular fragment that implements the code to execute the
message.

2.6 Final Remarks

This chapter provided necessary background to understand the architectural confor-
mance solution proposed in this dissertation. In Section 2.1, we introduce the idea of
architectural conformance and outlined some concepts related to it. We also described
the importance of architecture to the software evolution.

In Section 2.2, we presented different architectural conformance approaches, which
are related to our work in terms of violation detection and architectural visualization.
Moreover, our approach is directly inspired by DCL, Reflexion Models, and DSM.

In Section 2.3, we described some dynamically typed languages, once our approach
for architectural conformance aims to support developers that use these language. We
also described some central features of these languages. To complement, in Section 2.4,
we detailed some features related to Ruby, which is the language we chose to implement
our approach.

Finally, in Section 2.5, we detailed what is type inference since we focus on
dynamically typed languages that check type at run time. Therefore, type inference
algorithms help static architectural conformance techniques performed in dynamically
typed languages. In this context, we presented advantages that type inference algorithms
bring to dynamically typed languages. Moreover, we illustrated with code examples the
difficulty imposed by dynamically typed languages on the type inference process when
performed with static techniques.

In the next chapter, we present our architectural conformance and visualization
approach, including a running example with full details about how to specify architec-
tural rules, how to perform architectural conformance, and how to produce high-level
visualizations of the concrete architecture. We also detail our heuristic to perform type
inference.

Chapter 3

Proposed Approach

Chapter 2 provided the background necessary to understand this master dissertation.
In this chapter, we describe the approach proposed in this master dissertation: an
architectural conformance technique based on static code analysis and on a lightweight
type inference heuristic targeting systems implemented in dynamically typed languages.
Additionally, we also propose two high-level architectural models to better visualize
architectural violations.

This chapter is organized as follows. Section 3.1 provides an overview of the
proposed approach. Section 3.2 presents the running system. Section 3.3 details the
specification of architectural rules and Section 3.4 describes the proposed architectural
conformance process. Section 3.5 presents the high-level architectural models our
approach relies on to better visualize the identified architectural violations. Section 3.6
presents the type inference heuristic used in our work. Section 3.7 presents a prototype
tool that implements our approach. Finally, Section 3.8 concludes with a general
discussion.

3.1 Overview

As described in Chapter 2, several architectural conformance techniques have already
been proposed to detect architectural violations. However, none of them addresses
the particularities imposed by dynamically typed languages. Therefore, our central
goal in this master dissertation is to provide developers with means to control the
architectural erosion process in systems implemented in dynamically typed languages,
by reporting architectural violations (architectural conformance) and by providing high-
level architectural models to better visualize the identified violations (visualization).

27

28 Chapter 3. Proposed Approach

Figure 3.1 retakes an overview of the proposed approach. Our solution receives
as input the architectural rules (in1) and the source code of the target system (in2).
After parsing the architectural rules file (t1) and the source code (t2), it triggers
the architectural conformance process (t3) in order to detect design decisions that
do not respect the intended architecture. As result, our solution outputs a textual
report (out1), which details the detected violations (source code location, violated
rule, etc.), and two high-level architectural models to better visualize the identified
violations (out2). In these models, we distinguish the dependencies—edges in reflexion
models and cells in DSMs—that represent violations (refer to Chapter 2).

ArchRuby

Architectural
Rules

Source Code

Architectural
Conformance

Report of Violations

High-Level Architectural
Model

Rules
Parsing

Source Code
Parsing

in1

in2

t1

t2 t3

out1

out2

Figure 3.1: The proposed approach

3.2 Running Example

We rely on the architecture of ArchRuby1 itself and its implementation to illustrate
the architectural conformance and visualization processes provided by our approach.
The tool is implemented in Ruby and relies on five Gems:2 RubyParser to parse the
source code, SexpProcessor to perform tree traversals, Yaml to parse the architectural
rules specification file, GraphViz to produce reflexion models, and IMGKit to produce
DSMs. Figure 3.2 shows the diagram of the core classes of the system. A more detailed
description on the ArchRuby implementation can be found in Section 3.7.

3.3 Architectural Rules Specification

Architectural rules are specified in a domain-specific language in YAML format, which
is a format widely used in the Ruby ecosystem. Thereupon, even non-experienced

1The source code is publicly available at http://github.com/sergiotp/archruby.
2Gem represents a reusable package or application written in Ruby language.

http://github.com/sergiotp/archruby

3.3. Architectural Rules Specification 29

Figure 3.2: ArchRuby architecture

developers can easily define rules. Specifically, each module of the system under
evaluation must be formalized as follows:3

1 <module_id>:
2 (files | gems): ‘<pattern_desc> {,<pattern_desc>}’
3 [(allowed | forbidden): ‘<module_id> {,<module_id>}’]
4 [(required): ‘<module_id> {,<module_id>}’]

where <module_id> is the name of the module (line 1). Modules can be composed by
files (files) or Gems (gems) that must be defined by at least one <pattern_desc>,
delimited by commas (line 2). It is not possible to (i) combine files and Gems in the
same module definition, and (ii) define constraints to module composed strictly by
Gems, since they are external libraries that are not part of the target system being
analyzed. When specifying files, the pattern matching is based on shell glob4 (a default
Ruby file library) to map multiple files at once using wildcards, e.g., ∗ and ∗∗.

To detect divergences—dependencies that exist in the source code but are not
prescribed by the planned architecture [Passos et al., 2010]—for each module we define

3Formalization based on the Extended Backus-Naur Form (EBNF).
4A detailed explanation of shell glob in Ruby (specifically, class Dir) can be found at:

http : //ruby−doc.org/core−2.2.0/Dir.html#method−c−glob

http://ruby-doc.org/core-2.2.0/Dir.html#method-c-glob

30 Chapter 3. Proposed Approach

the ones that it is allowed to depend (allowed) or not (forbidden), which are defined
by at least one <module_id>, delimited by commas (line 3). Here, we consider as a
dependency from a type A to a type B when (i) A accesses a field of type B, (ii) A invokes
a method of type B, (iii) A instantiates an object of type B, (iv) A declares a variable
or formal parameter of type B, (v) A raises an exception of type B, and (vi) A inherits
from, extends, or includes B.5 Likewise, to detect absences—dependencies that do not
exist in the source code but are required by the planned architecture [Passos et al.,
2010]—for each module we define the ones that it must depend (required), which are
defined as aforementioned (line 4). It is worth noting that a definition for a particular
module can combine required with allowed or forbidden. However, it cannot have
allowed and forbidden in a same module definition. When a module does not define
clauses allowed and forbidden, our language considers that such module is allowed to
depend on any module.

In order to illustrate an YAML definition, Listing 3.1 presents the definition of ar-
chitectural rules to the ArchRuby tool. For example, module module_definition
(lines 1-4) contains file module_definition.rb and can depend on classes from
module config_definition, ruby_parser, dependency, constraint_break, and
file_extractor. On the other hand, module multiple_constraints_validator
(lines 6-8) contains file archruby.rb and cannot depend on classes from module
architecture. Moreover, shell glob allows to use ∗ to reference all files in the di-
rectory and ∗∗ to reference directories in a recursive manner. For example, module
presenters (line 15) is composed by all rb files listed in directories inside presenters.
It is worth noting that we do not define architectural rules for modules strictly com-
posed by Gems (e.g., parser_ruby, sexp_processor, yaml_parser, and graphviz)
because they are not internal components of the target system. Nevertheless, Gems
must be defined by their namespace (main module). For example, module parser_ruby
is composed by Gem ruby_parser whose namespace is RubyParser (lines 41–42).

5The code of a lambda is verified only in the method where it is defined, not in its call sites. For
instance, assume that a method return_lambda in module M3 returns a lambda f . Assume also that
a module M2 defines a method search_lambda that calls M3::return_lambda. Assume, lastly, that a
method in module M1 calls M2::search_lambda. In such scenario, (i) only module M3 depends on
the types lambda f establishes dependency with, (ii) module M1 depends only on module M2, and
(iii) module M2 depends only on module M3.

3.3. Architectural Rules Specification 31

1 module_definition:
2 files: ’lib/archruby/architecture/module_definition.rb’
3 allowed: ’config_definition, ruby_parser, dependency,
4 constraint_break, file_extractor’
5
6 multiple_constraints_validator:
7 files: ’lib/archruby.rb’
8 forbidden: ’architecture’
9

10 architecture_parser:
11 files: ’lib/archruby/architecture/parser.rb’
12 allowed: ’config_definition, module_definition,
13 type_propagation, yaml_parser’
14
15 presenters:
16 files: ’lib/archruby/presenters/∗∗/∗.rb’
17 allowed: ’architecture, graphviz, imgkit’
18
19 ruby_parser:
20 files: ’lib/archruby/ruby/parser.rb’
21 allowed: ’dependency’
22 required: ’parser_ruby, sexp_processor’
23
24 config_definition:
25 files: ’lib/archruby/architecture/config_definition.rb’
26
27 architecture:
28 files: ’lib/archruby/architecture/architecture.rb’
29 forbidden: ’type_propagation’
30
31 constraint_break:
32 files: ’lib/archruby/architecture/constraint_break.rb’
33
34 dependency:
35 files: ’lib/archruby/architecture/dependency.rb’
36
37 type_propagation:
38 files: ’lib/archruby/architecture/type_propagation_checker.rb’
39
40 file_extractor:
41 files: ’lib/archruby/architecture/file_content.rb’
42
43 parser_ruby:
44 gems: ’RubyParser’
45
46 sexp_processor:
47 gems: ’SexpInterpreter’
48
49 yaml_parser:
50 gems: ’YAML’
51
52 graphviz:
53 gems: ’GraphViz’
54
55 imgkit:
56 gems: ’IMGKit’

Listing 3.1: ArchRuby architectural specification file

32 Chapter 3. Proposed Approach

3.4 Architectural Conformance

The architectural conformance process is performed from the architectural rules specifi-
cation and the source code of the target system. This process (i) extracts the modules
and rules from the architectural rules specification file; (ii) extracts the dependency
graph of the entire system; (iii) includes type information in the dependency graph
using a type inference heuristic (it is described in Section 3.6); and (iv) checks whether
the dependencies obtained in steps ii and iii respect the rules defined in step i.

The conformance process outputs a file reporting the detected architectural viola-
tions (divergences and absences). For example, consider the rules defined for ArchRuby
(Listing 3.1). In such specification, module module_definition is not explicitly al-
lowed to depend on module type_propagation (lines 3-4). However, we intentionally
made a class from module_definition to access a class from type_propagation.
Such dependency represents a violation and is reported to developers in the textual
output file as illustrated in Figure 3.3.6 For each detected violation, the report indicates
the violation type (line 1), information from the origin class (lines 2–4) and from the
target class (lines 5–6), and the rule that forbids such dependency (line 7). Besides
the textual report file, ArchRuby also provides two graphical report files in order to
provide complementary ways to visualize the detected violations, as explained next in
Section 3.5.

1 divergence:
2 origin_module: module_definition
3 origin_class: Archruby::Architecture::ModuleDefinition
4 origin_line: 29
5 target_module: type_propagation
6 target_class: Archruby::Architecture::TypePropagationChecker
7 constraint: ’module_definition’ cannot depend on module ’type_propagation’

Figure 3.3: Textual report of an architectural violation

3.5 Architectural Visualization

Although we focus on architecture conformance checking process, we complement our
textual report of violations by providing two high-level architectural models to better
visualize the identified violations: (i) Reflexion Model in a subtle adaptation of the
one originally proposed by Murphy et al. [Murphy et al., 1995] and (ii) Dependency
Structure Matrix (DSM) in a subtle adaptation of the one proposed by Sangal et
al. [Sangal et al., 2005].

6The report is also in YAML format to facilitate reuse.

3.5. Architectural Visualization 33

3.5.1 Reflexion Model

The reflexion model is a directed dependency graph whose vertices represent the
modules defined in the architectural rules specification and edges represent dependencies
established between the modules, which are differentiated when refer to architectural
violations (refer to Section 2.1).

Figure 3.4 illustrates the reflexion model of ArchRuby. The light gray rectangles
represent internal modules (e.g., module_definition) and the gray trapezes represent
external modules (e.g., parser_ruby). The edges are shown as follows (assume an edge
from A to B):

Figure 3.4: Reflexion model automatically computed by ArchRuby

() Black edge: indicates an allowed dependency from module A to B. For instance,
ruby_parser establishes one (#1) dependency with module dependency (see
line 19, Listing 3.1).

(!) Dashed orange edge with an “!” mark: indicates a divergence, i.e., there is a
class from module A depending on module B, even though it is (i) forbidden
or (ii) not explicitly allowed. For example, architecture depends on module
type_propagation, but it is forbidden (case i; see line 27, Listing 3.1). As
another example, module_definition depends on module type_propagation,
but it is not explicitly allowed (case ii; see line 3, Listing 3.1).

34 Chapter 3. Proposed Approach

(x) Dotted red edge with an “X” mark: indicates an absence, i.e., there is no class from
module A depending on module B, even though it is required. For instance, a class
from ruby_parser does not depend on parser_ruby (see line 20, Listing 3.1).

() Gray edge: indicates a warning, i.e., there is no class from module A depending
on module B, even though it is prescribed as allowed. For instance, we defined
that architecture_parser is allowed to depend on module type_propagation
(see line 11, Listing 3.1), but there is no dependency from the former to the latter.

3.5.2 Dependency Structure Matrix

Reflexion models have a well-known scalability problem since it is a graph-based model.
As the number of modules and dependencies grows, the model becomes unreadable.
In this sense, ArchRuby also provides a high-level architectural model based on DSMs,
which is a weighted square matrix where the rows and columns are numbered and
represent the modules of the system, and the cells represent the dependencies between
them (refer to Section 2.1).

Figure 3.5 illustrates the DSM of ArchRuby. The cells represent the number of
references between two modules. The cells are shown as follows:

() Gray cell: indicates an allowed dependency. For instance, the number 7 in row 1

and column 3 denotes that module architecture_parser establishes seven
allowed dependencies with module module_definition.

() Orange cell: indicates a divergence. For example, the number 1 in row 10

and column 7 represents that module architecture establishes a forbidden
dependency with module parser_ruby. As another example, the number 1 in
row 10 and column 1 represents that module module_definition establishes a
forbidden dependency with module type_propagation.

() Red cell: indicates an absence. For instance, the number 1 in row 12 and column 5

represents that module ruby_parser does not depend on module parser_ruby,
even though it is required.

(?) Question cell: indicates a warning. For instance, the symbol “?” in row 10 and
column 3 represents that module architecture_parser does not establish an
expected dependency with module type_propagation.

3.6. The Proposed Type Inference Heuristic 35

Figure 3.5: DSM automatically computed by ArchRuby

3.6 The Proposed Type Inference Heuristic

In this section, we describe a type inference heuristic—more specifically, a simplification
of the one formalized by Furr et al. [Furr et al., 2009]—which aims to build a set TYPES
whose elements are triples [method, var_name, type], where type is one of the possible
types inferred for a variable or a formal parameter var_name defined in method method.
We build this set based on the following recursive definition:

i) Base: For each direct inference (e.g., instantiation) of a type T assigned to a
variable x in a method f, then [f, x, T] ∈ TYPES.

ii) Recursive step: If [f, x, T] ∈ TYPES and there is a call g(x) in f, then [g, y, T] ∈
TYPES, where y is the name of the formal parameter in g. This step is applied until
a fixpoint is reached, i.e., no new triples are added to set TYPES.

Listing 3.2 illustrates the proposed heuristic. When executing the base step
of the algorithm, it initializes TYPES with [A::f, x, Foo], [A::f, b, B], [A::f, self, A],
[B::g, c, C], and [C::h, d, D] since they can be directly inferred. On the first application
of the recursive step, the triples [B::g, x, Foo] and [B::g, z, A] are included in TYPES,
since the type of the variables x and self are known in the call of g. On the
second application of the recursive step, the triples [C::h, y, Foo] and [C::h, y, A]

are included in TYPES, since the type of variables x and z are known in the
call of h. On the third application of the recursive step, the triples [D::m, k, Foo]

36 Chapter 3. Proposed Approach

and [D::m, k, A] are included in TYPES (where k is the name of the parameter in
D::m), since the type of the variable y is known in the call of m. The forth appli-
cation of the recursive step reaches the fixpoint since no new triple is added to set TYPES.

1 class A class B class C

2 def f def g(x z) def h(y)

3 x = Foo.new c = C.new d = D.new

4 b = B.new c.h(x) d.m(y)

5 b.g(x,self) c.h(z) end

6 end end end

7 end end

Listing 3.2: Piece of code to illustrate the proposed type propagation heuristic

In this example, it is worth noting that the formal parameter y of method C::h can
be either of type A or Foo. It indicates that: (i) the type propagation mechanism has
to consider all potential types of a variable or formal parameter when propagating the
type; and (ii) the architectural conformance process has also to consider all potential
types (A and Foo, in this scenario) when searching for violations.

3.7 The ArchRuby Tool

ArchRuby is a Gem for Ruby that implements our proposed approach [Miranda et al.,
2015a]. The tool is executed from the command line. We decided for such User
Interface (UI) because, in such way, any organization—regardless of its software
environment—can adopt ArchRuby in its development process. The following example
illustrates a usage scenario:

archruby --arch_def_file=/fmot/arch_def.yml --app_root_path=/fmot

The executable archruby requires as input the path of the architectural rules file
(--arch_def_file) and the path of the system (--app_root_path), and provides as
output the architecture violation report (archruby_report.yml) and two high-level
architectural models to better visualize the identified violations (archruby_rm.png and
archruby_dsm.png), as previously illustrated in Figure 3.1.

As also previously illustrated in Figure 3.2, the ArchRuby implementation follows
an architecture divided in the following modules:

3.7. The ArchRuby Tool 37

1. Rules parser: Responsible for extracting and storing the content of the architectural
rules file (e.g., /fmot/arch_def.yml) in an internal data structure. It also warns
the user when he/she specifies invalid constraints, e.g., allowed and forbidden

together. We rely on the standard Ruby Yaml Gem to parse the YAML file.

2. Source code parser: Responsible for extracting and storing all system dependencies
(e.g., from /fmot) in an internal data structure. We rely on Gem ruby_parser
to parse the source code of each class. It produces s-expressions, which are
data structures in form of tree. Basically, during the tree traversal, this module
stores the type of variables and formal parameters, besides the calls involving them.

3. Type propagation heuristic: Responsible for inferring types of variables, according
to the heuristic previously described in Section 3.6. It complements the internal
data structure obtained by the Source code parser module.

4. Conformance process: Responsible for verifying whether the implemented
architecture (as represented by the source code) follows the planned architecture
(as represented by the architectural rules), as previously described in Section 3.4.
This module detects the dependencies that do not respect the specified
architectural rules and stores detailed information regarding them. It relies on
the data structures initially built by the Rules parser and Source code parser
modules to detect the dependencies that do not respect the architectural rules.
In other words, this module analyzes the internal data structure built in the
previous steps to search for potential violations. When a violation is detected, it
stores detailed information—namely dependency type, name of the source and
target modules, line number, and name of the source and target classes (see
Figure 3.2, class ConstraintBreak)—for further reference.

5. Violation reporting: Responsible for structuring the detected architectural
violations in a YAML file (archruby_report.yml).

6. High-level models: Responsible for generating the high-level architectural models
of the target system as previously described in Section 3.5. It relies on the
data structure initially built by the Source code parser module and on the set of
violations detected in the Conformance process module to highlight the identified
violations in the generated visualization models. This module relies on Gem

38 Chapter 3. Proposed Approach

GraphViz to produce reflexion models as annotated directed dependency graphs
and on Gem IMGKit to produce DSMs as HTML tables with CSS style.

Although each of the aforementioned modules has a well-defined responsibility,
it may contain more than one single class in order to have a greater control over the
parts of the system. In such way, it is easier to maintain the existing features and add
new ones. Furthermore, we have implemented several unit tests that are automatically
performed during regression testing to ensure that changes do not break the expected
behavior of the tool. It is worth noting that the dependencies that are not part of the
Ruby standard library (e.g., ruby_parser and GraphViz) are automatically installed
when the user installs ArchRuby.

3.8 Final Remarks

Software systems evolve to respond to users demands. As a consequence—due to lack
of knowledge, short deadlines, etc.—the architectural patterns tend to deteriorate and
hence nullifying the benefits provided by an architectural design, such as maintainability,
scalability, portability, etc. Due to its relevance, several techniques have been proposed
to tackle this problem. However, none of them addresses the particularities that
dynamically typed languages require to verify the system architecture.

Therefore, in this chapter, we proposed an approach that provides ways to
specify the system architecture, to perform architectural conformance process, and to
verify architectural violations through a textual report or by means of two high-level
visualization models. Moreover, we proposed a type inference heuristic that increases
the number of dependencies analyzed during conformance process. Finally, we designed
a prototype tool, called ArchRuby, that implements our approach.

In the next chapter, we conduct an evaluation of our approach in real contexts
of software development. We rely on the architects of three real-world systems to
specify the system architecture and to validate the architectural conformance processes
performed by our approach.

Chapter 4

Proposed Approach Evaluation

This chapter evaluates the applicability of our proposed approach. We chose three real-
world systems—Dito Social, Tim Beta, and PLC Attorneys—to apply our architecture
conformance checking process. For each system, we report the results into each step:
(i) architectural rules specification, (ii) architectural conformance, and (iii) architectural
visualization. More important, a qualitative discussion is conducted for each evaluated
system.

We organized this chapter as follows. Section 4.1 describes the target systems.
Section 4.2 details the methodology we used to conduct the evaluation. Sections 4.3, 4.4,
and 4.5 report the results for Dito Social, Tim Beta, and PLC Attorneys, respectively.
Section 4.6 presents a general discussion of our results. Section 4.7 describes threats to
validity. Finally, Section 4.8 concludes this chapter.

4.1 Target Systems

We evaluate our solution in three real-world systems: Dito Social1, a social platform
provided by an IT company to its final customers; Tim Beta2, a telecommunication com-
pany communication channel with mostly target young groups; and PLC Attorneys3, a
project task management software system used by a law firm. Table 4.1 reports the
main information of the systems.

1http://www.dito.com.br
2http://www.timbeta.com.br
3http://metodo.plcadvogados.com.br

39

http://www.dito.com.br
http://www.timbeta.com.br
http://metodo.plcadvogados.com.br

40 Chapter 4. Proposed Approach Evaluation

Table 4.1: Target systems

System LOC # classes /
gems

Technologies

Dito Social 13,304 142 / 34 Ruby on Rails, Resque, Rspec, RSA, Twitter, Google
Plus, Koala, Suspot Rails, Mysql2

Tim Beta 17,817 141 / 50 Ruby On Rails, Resque, Twitter, YoutubeIt, Google
Plus, Instagram, Devise, Foursquare2

PLC Attorneys 2,034 52/35 Ruby on Rails, Devise, CanCanCan, PaperClip, Mysql2,
Select2Rails, CoffeeRails

4.2 Methodology

For each subject system with the support of its chief architect who designed the
architecture to be evaluated, we performed the following major steps:

(i) Architectural rules specification: The software architect defines the planned
architecture of the system, soon after be instructed on how to specify modules
and rules using our architectural description language (Section 3.3). To ensure
the correct understanding by the architects, we ask them to practice the
specification in an illustrative project. During the practice, they must specify
a few rules and they can ask for clarifications. By concluding the practice, we
argue that the architects are fully qualified to specify the architectural rules.

(ii) Architectural conformance: After a brief tutorial about our tool—its inputs and
outputs—the software architect executes ArchRuby and validates the detected
violations. Occasionally, the software architect can refine the architectural
rules—which have been specified in step (i)—to avoid false positives. Specifically,
we ask the architects to analyze each violation and double check in the source
code whether the violation is indeed a true positive. We repeat this process until
the architects are confident that the architectural rules indeed represent the
system architecture.

(iii) Architectural visualization: The software architect evaluates the resulting reflexion
model (one of the high-level architectural models provided by ArchRuby) to better
visualize the identified violations. We ask the architects to express an opinion
on the readability and representativeness of the reflexion model. Occasionally,
to provide a more solid feedback, the architects can share the model with other
team members.

4.3. Dito Social 41

4.3 Dito Social

Architectural rules specification: The software architect specified 62 modules
and 43 architectural rules. A relevant subset of the specification is reported in
Listing 4.1 (the complete architectural definition is available in Appendix B). The
dashboard_controller module is responsible for presenting information to the
customers and hence can access several data providers’ modules (lines 3–7). The
facebook_info_retriever module is responsible for retrieving data from Facebook
and hence can access only modules facebook and airbrake (line 11). The post_model
is responsible for data persistence and hence must implement classes from module
activerecord (line 15) and can access modules that provide underlying services
(lines 16–18), e.g., post_workers. The report_model module is responsible for
generating reports about posts and interactions, and hence can access modules that
provide data and e-mail delivery functionality (e.g., post_model, interaction_model,
mail, aws, etc.) (lines 22-23).

1 dashboard_controller:
2 files: ’app/controllers/dashboard/∗∗/∗.rb’
3 allowed: ’dashboard_finder, stats_model, network_model,
4 action_model, app_model, interaction_model, post_model,
5 social_helper, user_network_model, stats_model,
6 controller_base, referral_model, origin_model, http_party,
7 user_agent_model, user_model, airbrake’
8
9 facebook_info_retriever:

10 files: ’lib/facebook_info_retriever.rb’
11 allowed: ’facebook, airbrake’
12
13 post_model:
14 files: ’app/models/post.rb’
15 required: ’activerecord’
16 allowed: ’resque, post_workers, post_logger, facebook_info_retriever,
17 social_helper, interaction_model, question_option_model,
18 logger, activerecord, rails’
19
20 report_model:
21 files: ’app/models/report/∗∗/∗.rb’
22 allowed: ’post_model, social_helper, interaction_model, rails,
23 mail, aws, http_party’

Listing 4.1: Subset of the architectural specification of Dito Social

Architectural conformance: ArchRuby could detect 24 violations in Dito Social,
as reported in Table 4.2. Two of these violations are discussed next.

Example of violation #1: The service of user notification (e.g., e-mail) was moved
to another system and hence it is no longer part of Dito Social. Nonetheless, as

42 Chapter 4. Proposed Approach Evaluation

Table 4.2: Architectural violations detected in Dito Social

Module Rules # Violations

dashboard_controller allowed: ’dashboard_finder, ...’ 16
dashboard_finder allowed: ’stats_model, ...’ 3
report_model allowed: ’post_model, ...’ 2
event_model allowed: ’action_model’ 1
user_model allowed: ’user_infos, ...’ 1
facebook_info_retriever allowed: ’facebook, airbrake’ 1

shown in Listing 4.2, ArchRuby detected five dependencies (lines 2, 3, 5, and 7) in
class EmailsController—which belongs to module dashboard_controller—to
class Email, which is not explicitly allowed according to the architectural rules
(lines 3–7 of Listing 4.1). More specifically, class Email does not belong to any defined
module; in this case, we include such kind of classes in a module called unknown.

1 def create #from Module dashboard_controller
2 email = Email.new params[’email’]
3 email.save!
4 send_template_to_mandrill
5 if email.action
6 redis_action_id=SocialHelper::RedisData.get_action_id_by_name
7 email.action.name, email.app_id
8 end
9 end

Listing 4.2: Example #1 – Divergence detected in Dito Social

Example of violation #2: Module post_model is allowed to access module
facebook_info_retriever, but not the opposite. Nevertheless, as shown in
Listing 4.3, ArchRuby detected two dependencies (lines 15 and 18) in class
FacebookInfoRetriever—which belongs to module facebook_info_retriever—to
class Post from module post_model, which is not allowed according to the archi-
tectural rules (line 11 of Listing 4.1). It is worth noting that our approach could
only detect such violation due to our type propagation heuristic, since the type
was first inferred in class Post (line 5), but it was propagated by the method call
to get_first_likes_comments_and_people (lines 8-9).

4.3. Dito Social 43

1 class Post # from Module post_model
2 def first_update_complete_info_from_facebook(post_info, update_freq,
3 limit = 50, is_customer = false)
4 ...
5 vpost = Post.new(fb_id: fb_id, likes_count: post_info[’likes’],
6 updated_info: true, premium: premium, international: international)
7 facebook = FacebookInfoRetriever.new
8 facebook.get_first_likes_comments_and_people(vpost, limit,
9 special_token.present?) do |info|

10 ...
11 end
12 end
13
14 class FacebookInfoRetriever # from Module facebook_info_retriever
15 def get_first_likes_comments_and_people post, limit = 25,
16 special_token = false, &block
17 ...
18 likes_count = post[’likes’]
19 ...
20 end
21 end

Listing 4.3: Example #2 – Divergence detected in Dito Social by type propagation

Architectural visualization: Figure 4.1 illustrates a fragment of the reflexion model
(the complete reflexion model is available in Appendix B). We can note divergences
(orange edges) from modules dashboard_controller (as described in Example #1),
event_model, user_model, report_model, and dashboard_finder to classes that
do not belong to any defined module. We also can note the allowed communication
from module post_model to facebook_info_retriever (black edge). However, the
opposite, as described in Example #2, is highlighted as a divergence.

4.3.1 Discussion

The software architect described the architectural rules incrementally. According to the
architect, this way facilitates the refinement of some rules to avoid false positives in the
architecture conformance checking process. It is worth noting that the architect relied
on the textual violation report to remember details about the old parts of the system
and to refine the architectural rules.

Although the feature responsible for sending e-mail had already been removed
from the user interface, it still is in the source code. The architect reported that
unused code impacts negatively on the maintainability because it may mislead
new developers. Moreover, another critical divergence was found between modules

44 Chapter 4. Proposed Approach Evaluation

unknown

dashboard_controller

dashboard_finder

! (#16)

! (#1)

post_model

facebook_info_retriever

! (#1)

report_model

! (#2)

user_model
! (#3)

event_model
! (#1)

Figure 4.1: Fragment of the reflexion model of Dito Social

facebook_info_retriever and post_model. Module facebook_info_retriever
is likely to be used only with the Facebook API, i.e., it cannot rely on other parts of
the system. According to the architect, this divergence hampers the evolution of the
system since module facebook_info_retriever is coupled with other parts. Last,
the architect argued that, as the number of modules grows, the reflexion model becomes
hard to analyze. Particularly in this case study, we also presented the DSM of the
system. The architect argue that the two models are complementary, e.g., DSMs are
much more appropriate for tasks that require a complete view of the system, but
reflexion models are more appropriate to analyze dependencies among few modules.

4.4 Tim Beta

Architectural rules specification: The software architect specified 43 modules and
seven architectural rules. A relevant subset of the specification is reported in Listing 4.4
(the complete architectural definition is available in Appendix C). Module models imple-
ments the Model layer of the MVC architectural pattern and hence accesses the modules
that are responsible for the data persistence (lines 3–7). Module core implements the
main features of the system and hence accesses the modules that provide underlying
services (lines 11–14). Module workers is responsible for background activities, e.g., up-
dating users’ information based on their facebook profile afterwards they sign in (line 18).

4.4. Tim Beta 45

1 models:
2 files: ’app/models/∗∗/∗.rb’
3 allowed: ’core, helpers, resque, logistica, dito_social_p,
4 postage_app, workers, facebook, devise, csv, olap,
5 twitter_oauth, datapoints, can_can, tim_points, linker,
6 twitter, rails, active_record, image_magick,
7 action_controller’
8
9 core:

10 files: ’app/core/∗∗/∗.rb’
11 allowed: ’models, helpers, facebook, twitter, foursquare, gmail,
12 mailers, instagram, dito_social_p, twitter_oauth,
13 contact_us, resque, sanitize, active_record, workers,
14 hoptoad’
15
16 workers:
17 files: ’app/workers/∗∗/∗.rb’
18 allowed: ’models, core, facebook, dito_social_p, rails’

Listing 4.4: Subset of the architectural specification of Tim Beta

Architectural conformance: ArchRuby could detect 22 violations in Tim Beta, as
reported in Table 4.3. An example of a detected violation is discussed next.

Table 4.3: Architectural violations detected in Tim Beta

Module Rules # Violations

models allowed: ’core, helpers,
...’

16

core allowed: ’models, helpers,
...’

6

Example of violation #3: Features related to the Orkut social network have been
removed from Tim Beta; consequently, the respective source code has been removed as
well. Nevertheless, as shown is Listing 4.5, class User—which belongs to module models—
accesses class Core::Datapoints::Orkut (line 2), which is not explicitly allowed according
to the architectural rules (lines 3–7 of Listing 4.4).
1 def update_orkut_stats user_net = nil, app = nil#from Module model
2 orkut_collector = Core::Datapoints::Orkut.new(
3 user_net.access_token,
4 user_net.access_secret,
5 user_net.social_id
6)
7 orkut_datapoints = orkut_collector.collect
8 end

Listing 4.5: Example #3 – Divergence detected in Tim Beta

46 Chapter 4. Proposed Approach Evaluation

Architectural visualization: Figure 4.2 illustrates a fragment of the reflexion
model to better visualize some identified violations (the complete reflexion model is
available in Appendix C). We can note divergences (orange edges) from modules core
and models to classes that do not belong to any defined module; the latter refers to
the scenario described in Example #3.

unknown

models

! (#16)

core

workers

controllers

views

! (#6)

Figure 4.2: Fragment of the reflexion model of Tim Beta

4.4.1 Discussion

The architect of Tim Beta relied on an artifact that specifies the most important
modules in the system as the basis to specify the architectural rules. As a consequence,
there is a relative small number of architectural rules. The architectural conformance
process detected components that the software architect had thought no longer exists.
For instance, all functionality related to the Orkut social network should have been
entirely removed from the source code, but fragments were still found in the source
code. Moreover, the architect argue (i) that ArchRuby is important to support the
architectural monitoring since it is impractical to manually do this process; (ii) that
ArchRuby should be incorporated into the continuous integration process; and (iii) that
the reflexion model can be used by new team developers to understand the system
modularization.

4.5 PLC Attorneys

Architectural rules specification: The software architect specified 14 modules and
11 architectural rules. A relevant subset of the specification is presented in Listing 4.6

4.5. PLC Attorneys 47

(the complete architectural definition is available in Appendix D). The purpose of the
system is to keep the customer aware of the tasks that have been resolved and the ones
that are still pendent. Therefore, module project is responsible for handling data
about the customers’ project and can access modules that contain data it needs (line 4).
Module project_relations is responsible for storing customer data, reporting
progress, and displaying charts, and hence can access modules that provide underlying
services (line 13). Module mailers is responsible for triggering e-mails to clients and
can access modules that provide information about the projects (line 17). Finally,
module controller is responsible for handling users requests and can access modules
that contain data it needs (lines 22-24).

1 project:
2 files: ’app/models/project.rb’
3 required: ’activerecord’
4 allowed: ’chartdraw, project_relations, admins’
5
6 project_relations:
7 files: ’app/models/area.rb, app/models/company.rb,
8 app/models/areas_project.rb, app/models/attack.rb,
9 app/models/control.rb, app/models/diagnostic.rb,

10 app/models/improvement.rb, app/models/action.rb,
11 app/models/task.rb, app/models/responsible.rb’
12 required: ’activerecord’
13 allowed: ’chartdraw, mailers, admins’
14
15 mailers:
16 files: ’app/mailers/∗∗/∗.rb’
17 allowed: ’project_relations, project’
18 required: ’actionmailer’
19
20 controller:
21 files: ’app/controllers/∗∗/∗.rb’
22 allowed: ’presenters, devise, actioncontroller,
23 project_relations, project, admins,
24 consolidated_control’

Listing 4.6: Subset of the architectural specification of PLC Attorneys

Architectural conformance: ArchRuby could detect two violations in PLC

Attorneys, as reported in Table 4.4. We argue that the small number of violations
is because the system is small and it is in the beginning of the development, which
contributes to developers to commit fewer architectural mistakes. However, we found a
critical violation that must be corrected before deploying the system to the production
environment. This violation is discussed next.

48 Chapter 4. Proposed Approach Evaluation

Table 4.4: Architectural violations detected in PLC Attorneys

Module Rules # Violations

mailers required: ’actionmailer’ 1
controller allowed: ’presenters, ...’ 1

Example of violation #4: The e-mail delivery service relies on Gem ActionMailer

for the task of sending e-mails. Nevertheless, as shown is Listing 4.7,
class DiagnosticsMailer—which belongs to module mailers—does not estab-
lish dependency with the aforementioned Gem, which is required according to the
architectural rules (line 17 of Listing 4.6). This violation is inevitably critical because
the e-mails will not be delivered without the establishment of the dependency
with ActionMailer.

1 class DiagnosticsMailer #from Module mailers
2 default from: "test@test.com"
3
4 def diagnostic_created(admin, project_id, area_id)
5 @admin = admin
6 @project = Project.find(project_id)
7 @area = Area.find(area_id)
8
9 mail(to: @admin.email, subject: ’[PLC − Added new diagnostic!’)

10 end
11 end

Listing 4.7: Example #4 – Absence detected in PLC Attorneys

Architectural visualization: Figure 4.3 illustrates a fragment of the reflexion model
to better visualize some identified violations (the complete reflexion model is available
in Appendix D). We note an absence (red edge) from module mailers to module
actionmailer, which refers to the scenario described in Example #4. We also note a
divergence (orange edge) from module controller to documents.

4.5.1 Discussion

Since the system is in the early stages of its development, the number of architectural
rules is relatively small. This also leads to a small number of architectural violations and
thereafter to a small number of violations detected by ArchRuby. Nevertheless, ArchRuby
could detect a serious architectural violation. The developer has not established a
required dependency between modules mailers and actionmailer. Without such

4.6. General Discussion 49

actionmailer

admins chartdrawmailers

project

project_relations

activerecord

X (#1)

controllerdocuments
! (#1)

Figure 4.3: Fragment of the reflexion model of PLC

dependency, the system was unable to send e-mails. The architect reported this violation
as a serious one because it breaks a core feature of the system. The architect also
suggests that ArchRuby should provide means to automatically specify the architectural
rules in order to minimize the effort by the software architect.

4.6 General Discussion

It is important to highlight some points about the evaluation described in this section:
(i) the software architects occasionally had to refine the architectural rules in order
to avoid false positives after the architectural conformance process, which indicates
that—in practice—the architectural rules specification and architectural conformance
steps are jointly done; (ii) we could detect a high number of divergences in Dito Social

and Tim Beta, which indicates that developers establish dependencies with modules
that are forbidden (or not explicitly allowed) by the architectural rules; (iii) on the
other hand, we could detected few violations in PLC Attorneys. Since the system is
new and small, we argue that these properties contribute to developers to commit fewer
architectural mistakes; (iv) the software architects had no previous knowledge on the
identified violations and reported that they negatively impact on the maintenance of
the systems; (v) since we rely primarily on reflexion models, the software architects
reported issues on visualizing the architectural violations as the number of modules
grows, suggesting a scalability problem. In such cases, we allowed the architect to switch
the high-level architectural model to DSM; and (vi) the software architects claimed
the need for tool support to automatically monitor the source code and perform the
architecture conformance checking process.

50 Chapter 4. Proposed Approach Evaluation

4.7 Threats to Validity

There are two main threats to validity of the study [Wohlin et al., 2012]. First, as usual
in empirical studies in software engineering, we cannot claim that our approach will
provide equivalent results in other systems (external validity). However, we rely on
three real-world systems that have being developed by different teams. Second, we
relied on three software architects (one per system) to define the rules, to validate
the detected violations, and to analyze the visualization model. As typical in human-
based classifications, our results might be affected by some degree of subjectivity
(construct validity). However, it is important to highlight that we interviewed the
software architects who designed the evaluated architectures, and are responsible for
their maintenance and evolution. Therefore, they are the right experts to evaluate our
proposed approach.

4.8 Final Remarks

The proposed approach is based on static analysis techniques and on a type propaga-
tion heuristic to address particularities of dynamically typed languages. In order to
validate this approach, we conducted an evaluation in three real-world software systems
implemented in the Ruby language.

We observed that architectural rules specification and architectural conformance
are an iterative process. In other words, the architectural rules specification was refined
by the architects in order to avoid false positives. Regarding the conformance process
itself, ArchRuby detected a high number of divergences in the three analyzed system.
The software architects had no previous knowledge on these violations and reported
that they negatively impact on the maintenance tasks. Some of these violations could
only be detected due to our type inference heuristic.

In the next chapter, we evaluate the proposed type inference heuristic. Basically,
we perform the type inference heuristic in our previous three real-world systems and in
28 other open-source systems, and analyze the number of dependencies that are detected
due to the heuristic. Moreover, we compare the proposed type inference heuristic with
dynamic techniques w.r.t. the accuracy. The goal is to investigate if dynamic techniques
can complement our approach.

Chapter 5

Type Inference Evaluation

Dynamically typed languages do not enforce types during development. However, this
information is important to architectural conformance processes. Therefore, as described
in Chapter 3, we implemented a simple heuristic that infers types in dynamically typed
languages to improve the number of analyzed dependencies. In this chapter, our goal is
to describe a study we conducted to check: (i) whether the proposed type inference
heuristic really increases the number of analyzed dependencies, (ii) whether static
techniques can be improved by also considering the results of dynamic techniques, and
(iii) whether type information provided by dynamic analysis can help in the architectural
conformance process.

We organized this chapter as follows. Section 5.1 investigates the effectiveness
of the proposed heuristic. Section 5.2 compares our static approach with dynamic
one. Section 5.3 measures the impact of dynamic analysis on the PLC system. Finally,
Section 5.4 concludes this chapter.

5.1 Effectiveness of the Type Inference Heuristic

The proposed type propagation mechanism, as described in Section 3.6, aims to raise
the effectiveness of ArchRuby by increasing the number of analyzed dependencies. In
this section—based on the data of our previous evaluation—we provide quantitative
and qualitative discussions on the number and importance of the types inferred by our
type inference heuristic (effectiveness).

In the evaluation presented in Chapter 4, some architectural violations are only
detected due to the proposed type inference heuristic. Therefore, in this section, we
investigate in the three previously evaluated systems the number of types and violations
that are only inferred and detected, respectively, due to this heuristic.

51

52 Chapter 5. Type Inference Evaluation

5.1.1 Research Questions

We conducted a study to address the following overarching research questions:

RQ #1 – How many types are only inferred due to the proposed type inference heuristic?

RQ #2 – How many violations are only detected due to the proposed type inference
heuristic?

5.1.2 Dataset

The study presented in this chapter also relies on the three systems—namely
Dito Social, Tim Beta, and PLC Attorneys—considered in Chapter 4. We choose
to use these systems because it is not a trivial task to obtain access to real-world
systems.

5.1.3 Results and Discussion

In this section, we provide answers for the proposed research questions.

RQ #1: How many types are only inferred due to our heuristic?
ArchRuby relies on static code analysis to extract the dependencies that should be
verified according to the planned architecture. The type inference heuristic used
by ArchRuby ensures the propagation of the inferred types. Otherwise, only direct
inferences of types (e.g., instantiation) would be considered.

Methodology: In order to quantify the number of types that are exclusively inferred
by our heuristic, we performed ArchRuby in three systems, enabling and disabling the
type propagation heuristic. In the presented evaluation, it is important to distinguish:
(i) the number of language features, which refers to expressions, statements, and
declarations; (ii) the number of dependencies, which refers to every single dependency
inspected by the conformance process; and (iii) the number of inferred types, which
refers to every single triple [method, var_name, type] in set TYPES, as previously
explained in Section 3.6. Thereupon, the number of language features is far higher
than the number of dependencies, which, in turn, is far higher than the number
of inferred types. For instance, assume the code in Listing 5.1. There are seven
language features—class definition (line 1), method definition (line 2), variable

5.1. Effectiveness of the Type Inference Heuristic 53

assignment (line 3), object instantiation (line 3), conditional test (line 4), method
invocation (line 4), and variable assignment (line 5). There are two dependencies to
be inspected by the conformance process, a instantiation of class Z (line 3) and a
method call from class Test to type Z (line 4). Finally, there is only one inferred type
([Test::bar, x, Z]).

1 class Test
2 def bar
3 x = Z.new
4 if x.send(’foo’)
5 y = 3
6 end
7 end
8 end

Listing 5.1: Example to describe language features, dependencies, and inferred types

Results and Discussion: Table 5.1 reports our results. On average, the percent-
age of additional types is 4.59% (i.e., types inferred only by the proposed heuristic).
PLC Attorneys is the only system that presented percentage below 5%, probably because
it is in the early stages of its development.

Table 5.1: Number of types inferred by the proposed type propagation heuristic

Project # of inferred
types

without heuristic

of inferred
types

with heuristic

% added

Dito Social 566 598 5.65% (+32)

Tim Beta 672 709 5.51% (+37)

PLC Attorneys 154 158 2.60% (+4)

Average 4.59%

To provide an answer in a large context, we replicated the study in a dataset with
28 open-source Ruby systems, as described in Appendix A. As reported in Table 5.2,
the percentage of additional types is 5.03% ± 3.95% (average ± standard deviation).
Statistically, the number of additional types should fall between 3.50% and 6.56% within
a 95% confidence interval.

After an analysis of these results, we observed that the proposed heuristic can
infer more types if it also propagates the return type of method invocations. For
instance, assume the piece of code in Listing 5.2. In this example, set TYPES would
contain tuples [Clazz::foo, y, A] (line 4) and [Clazz::bar, z, B] (line 9). However, if it

54 Chapter 5. Type Inference Evaluation

Table 5.2: Number of inferred types by the proposed type inference heuristic

Project # of inferred types
without heuristic

of inferred types
with heuristic

% added

Active Admin 345 349 1.16
CanCan 26 26 0.00
Capistrano 39 39 0.00
Capybara 155 166 7.10
CarrierWave 81 85 4.94
CocoaPods 438 465 6.16
DevDocs 283 292 3.18
Devise 114 121 6.14
diaspora 934 952 1.93
Discourse 2,950 3,124 5.90
FPM 157 172 9.55
GitLab 1,750 1,794 2.51
Grape 137 146 6.57
Homebrew-Cask 426 443 3.99
Homebrew 8,026 8,125 1.23
Huginn 463 477 3.02
Jekyll 259 273 5.41
Octopress 95 111 16.84
Paperclip 132 137 3.79
Rails 2,464 2,559 3.86
RailsAdmin 231 234 1.30
Resque 62 68 9.68
Ruby 4,116 4,391 6.68
Sass 519 560 7.90
Simple Form 113 115 1.77
Spree 1,311 1,324 0.99
Vagrant 586 620 5.80
Whenever 15 17 13.33
Average 936.68 970.89 5.03
Std Dev 1,709.14 1,752.40 3.95

could also infer [Clazz::foo, x, B] (line 3) by analyzing the type returned by method
bar, it would include [A::qux, k, B] (where k is the name of the formal parameter in
A::qux) in the set, which promotes the type propagation through the system.

5.1. Effectiveness of the Type Inference Heuristic 55

1 class Clazz
2 def foo
3 x = bar()
4 y = A.new
5 y.qux(x)
6 end
7
8 def bar
9 z = B.new

10 z.baz
11 z
12 end
13 end

Listing 5.2: Example of a potential improvement in the type inference heuristic

Summary: The proposed heuristic increases the number of inspected dependencies by
5% on average, but it can increase up to 17% (for the Octopress system, in Table 5.2).
We also argue that the number of additional types detected by the heuristic depends on
the underlying programming style. For example, the heuristic achieves better results
when developers largely rely on the dependency injection design patterns [Metz, 2012].

RQ #2: How many violations are only detected due to the proposed heuris-
tic?

The previous research question showed that the type inference heuristic increases the
number of inspected types in 5%, on average. Nonetheless, it is also important to
investigate whether these additional types contribute to the detection of architectural
violations in real scenarios.

Methodology: In order to measure the effectiviness of the type inference heuristic,
i.e., the number of violations that are identified exclusively by this heuristic, we
re-performed ArchRuby on the three systems previously evaluated in Section 4.1,
enabling and disabling the type propagation heuristic.

Results and Discussion: Three out of 48 architectural violations detected in the
three systems, are detected due exclusively to the type inference heuristic. Therefore, a
first analysis may point out the ineffectiveness of this heuristic. However, we claim that
the heuristic has its value. For example, we found 24 violations in Dito Social. On one
hand, from the 566 inferred types without the heuristic, we found 22 violations (3.89%);
on the other hand, from the 32 inferred types by our heuristic, we could find two more
violations (6.25%). Likewise, we found 22 violations in Tim Beta. From the 672 inferred

56 Chapter 5. Type Inference Evaluation

types without the heuristic, we found 21 violations (3.13%); on the other hand, from
the 37 inferred types by the heuristic, we could find one more violation (2.70%).

Listing 5.3 illustrates one of the violations that could be detected exclusively
by the proposed type inference heuristic. The code is from Tim Beta and belongs
to module models. There are forbidden accesses to class Core::Datapoints::Orkut

(lines 7, 9, and 16), which are forbidden since features related to the Orkut so-
cial network have been removed from Tim Beta. Specifically for the violation in
line 16, ArchRuby could detect it exclusively due to our heuristic, since the type
was first inferred in method verify_orkut_users_friends (line 7), but it was
propagated to the formal parameter collector (line 15) through the method call to
check_friends_count (line 9).

1 def self.verify_orkut_users_friends users_ids
2 file = File.open(’orkut_log.csv’, ’w’)
3 orkut_data = Network::ORKUT
4 users_ids.each do |user_id|
5 user_network = UserNetwork.where(:network_id => orkut_data.id,
6 :secundary_user_id => user_id).first
7 orkut_collector =

Core::Datapoints::Orkut.new(user_network.access_token,
8

user_network.access_secret,user_network.social_id)
9 how_many = check_friends_count(orkut_collector)

10 file.puts "#{user_network.id}, #{user_network.url}, #{how_many}"
11 end
12 file.close
13 end
14
15 def self.check_friends_count(collector)
16 datapoints = collector.collect
17 friends_count = datapoints[:friends]
18 if friends_count > 500
19 #many statements
20 else
21 #few statements
22 end
23 end

Listing 5.3: Divergence detected in Tim Beta due to the type propagation heuristic

Summary: Some violations are identified exclusively by our heuristic. Disregarding
the PLC Attorneys system where there are no violations detected by the proposed
heuristic, the overall percentage of the violations identified exclusively by the proposed
type inference heuristic is 4.35% (3/69), while in the remainder of the system it

5.2. Comparison with Dynamic Techniques 57

is 3.47% (43/1,238).

5.2 Comparison with Dynamic Techniques

As described in Section 2.5, type inference can be performed by dynamic analysis, which
requires the execution of the system and may have a high computational cost. By
contrast, dynamic techniques have an advantage to access information that is generated
by the language virtual machine itself. In that sense, this section evaluates the accuracy
of types inferred by static analysis when compared with types inferred with dynamic
analysis. Our goal is to analyze the types inferred by dynamic analysis to suggest
improvements to our proposed type inference algorithm.

5.2.1 Research Questions

This study aims to answer the following research questions:

RQ #1 – What is the accuracy of static type inference approaches compared with
dynamic ones?
RQ #2 – How to improve the accuracy of static approaches?

5.2.2 Methodology

Dataset: To answer the proposed research questions, the type inference algo-
rithm was evaluated in six open-source Ruby systems. The selection criteria
were: (i) systems that have automated tests and (ii) systems compatible with
version 2.1 or higher of Ruby, once the runtime can be inspected only from those
versions. Table 5.3 presents the selected systems, as well as information about the per-
centage of test coverage1, a reference of the last commit, and the number of lines of code.

Oracle: The types inferred during the execution of the automated tests of the selected
systems (i.e., dynamic technique) were considered as an oracle. To collect these types,
we implemented a profiler that stores type information generated at run time. Although
this decision can generate false negatives, we selected systems with a high test coverage
to minimize the problem (average of 89%, as reported in Table 5.3).

1This information was computed using SimpleCov tool: https://github.com/colszowka/simplecov.

https://github.com/colszowka/simplecov

58 Chapter 5. Type Inference Evaluation

Table 5.3: Evaluated systems

System Test Coverage Commit reference LOC
Capistrano 94% 8a33c00 1,779
CarrierWave 81% 6c5941f 2,636
Devise 97% 4c3838b 3,683
Resque 84% c295da9 2,315
Sass 95% 64c5c11 13,609
Vagrant 87% 0489188 8,429
Average 89% 5,408

Metrics: Type information was collected in two ways: (i) by executing automated tests
(i.e., by inspecting the runtime and storing all types detected during the execution) and
(ii) by executing the type inference algorithm described in Section 3.6. We generated
ordered pairs to represent the collected types. Pair (x, {A}) denotes that variable x can
assume type A.

We rely on two metrics to compare the results. The first one, named Recall1

and defined in Equation 5.1, measures the number of types the proposed static type
inference algorithm matches exactly when compared with types obtained during the
execution of automated tests.

Recall1 =
| Static ∩ Dynamic |

| Dynamic |
(5.1)

To illustrate Recall1, assume the following tuples are collected during automated
test execution: (a, {X}), (b, {Y}), and (c, {W, Z}). Next, assume that tuples (a, {X}),
(b, {Y}) and (c, {W}) are obtained by the static algorithm in evaluation. Thus, Recall1
would be 67% (2/3), once only tuples (a, {X}) and (b, {Y}) are exactly the same in both
approaches. Additionally, we propose a second metric, named Recall2 and defined in
Equation 5.2. This metric measures the number of variables the static algorithm is able
to infer a type to, even if partially. In Equation 5.2, function variables returns the set
of variables that has at least one inferred type.

Recall2 =
| variables(Static) ∩ variables(Dynamic) |

| Dynamic |
(5.2)

Reconsider the previous example used to illustrate the calculation of Recall1. It
is important to note that the proposed static type inference algorithm inferred only
type {W} to variable c. Thus, the value of Recall2 is 100% (3/3) since the evaluated
algorithm inferred at least one type to all three variables (a, b, and c).

5.2. Comparison with Dynamic Techniques 59

5.2.3 Results and Discussion

RQ#1 – What is the accuracy of static type inference approaches compared
with dynamic ones?

After the execution of the automated tests and the static algorithm under evaluation,
we calculate the recall measures described in the previous section. Table 5.4 reports
the results to the six evaluated systems. On average, the value for Recall1 is 44.4%;
on the other hand, for Recall2 the value rises to 58.1%. The values in parentheses
represent the numerator and denominator of the Recall1 and Recall2 equations. The
CarrierWave system obtained 50.8% for Recall1, which was the highest measure. This
value corresponds to 62 out of 122 variables that have their types inferred by the static
approach. The Sass system obtained 58.4% for Recall2, 635 out of 1,088 variables
have at least one type inferred by the static approach.

Table 5.4: Results comparing static and dynamic techniques

System Recall1 Recall2
Capistrano 39.0% (30/77) 45.5% (35/77)

CarrierWave 50.8% (62/122) 57.4% (70/122)

Devise 43.8% (155/354) 56.5% (200/354)

Resque 45.0% (9/20) 55.0% (11/20)

Sass 46.0% (500/1,088) 58.4% (635/1,088)

Vagrant 40.8% (220/539) 55.7% (300/539)

Average 44.4% 58.1%

Listing 5.4 illustrates a scenario where the proposed static type inference algorithm
was not capable to infer the type of a variable for the Vagrant system. The loop in
lines 2-4 iterates over an array to assign a value to variable command. This array is
populated by method create_command_filters, which uses reflection to produce the
array elements (lines 11-13), and hence the values will be known only during run time.
Therefore, it is very complex to static analysis to infer the type of these elements.

60 Chapter 5. Type Inference Evaluation

1 def filter(command)
2 command_filters.each do |c|
3 command = c.filter(command) if c.accept?(command)
4 end
5 command
6 end
7 def create_command_filters
8 [].tap do |filters|
9 @@cmd_filters.each do |cmd|

10 require_relative "command_filters/#{cmd}"
11 class_name = "VagrantPlugins::CommunicatorWinRM::
12 CommandFilters::#{cmd.capitalize}"
13 filters << Module.const_get(class_name).new
14 end
15 end
16 end

Listing 5.4: Example code of the Vagrant system

Similarly, Listing 5.5 illustrates a second example where it was not possible to
detect the type of a variable of the Capistrano system. Variable value is initialized
in line 2. However, its value is also updated in a loop (lines 3-5). Similarly to the
previous example, value has its value defined dynamically (in the loop), which imposes
complexity to type inference through static analysis.

1 def fetch(key, default=nil, &block)

2 value = fetch_for(key, default, &block)

3 while callable_without_parameters?(value)

4 value = set(key, value.call)

5 end

6 return value

7 end

Listing 5.5: Example code of Capistrano

Finally, Listing 5.6 shows a scenario at the Devise system where the value of a
variable is obtained through the access of a Hash data structure. In line 5, the skip

variable receives the value stored in key :skip_helpers of the options hash. Therefore,
a static analysis should infer the values passed as key and value to this structure to
correctly determine the type assigned to skip, which is not a trivial task.

5.2. Comparison with Dynamic Techniques 61

1 def default_used_helpers(options)

2 singularizer = lambda { |s| s.to_s.singularize.to_sym }

3 if options[:skip_helpers] == true

4 @used_helpers = @used_routes

5 elsif skip = options[:skip_helpers]

6 @used_helpers = self.routes - Array(skip).map(&singularizer)

7 else

8 @used_helpers = self.routes

9 end

10 end

Listing 5.6: Example code of Devise system

RQ#2 – How to improve the accuracy of static approaches?
To answer this second question, we manually analyzed the variables whose types could
not be inferred by the proposed static type inference algorithm. More specifically, we
investigated each code related to each variable to understand the reasons that led static
analysis to fail. This analysis provided us with suggestions of improvements that could
be applied to the algorithm to increase its accuracy. The proposed improvements are
classified with respect to their complexity:

• Simple: Type inference heuristics should consider the include and extend

features supported by Ruby, which offer the support of mixins to implement
multiple inheritance [Bracha and Cook, 1990]. For instance, suppose that a
class A includes module B, i.e., all methods defined in B are also part of class A.
Therefore, static analysis algorithms should simulate the functioning of those
features by inspecting all methods defined in modules that were added in classes
through the use of include and extend.

• Moderate: Type inference heuristics should consider the execution and return of
blocks, which are first class functions in Ruby and can be stored in variables and
used as parameters to function calls. For example, a block could change or define
a variable type during or after returning its execution. Basically, a block is like
a method, although there are differences in the context of execution. In short,
static type inference algorithms should track the changes that are made by the
execution of blocks.

62 Chapter 5. Type Inference Evaluation

• Complex: Type inference heuristics should consider values stored in data
structures, such as Array, Hash, Set, etc. Ruby supports reflection and
dynamic evaluation of code (e.g., eval), therefore the type inference algorithm
should be able to analyze dynamic instructions. For example, instance_eval,
class_eval, and define_method are features that change the program at run
time. Also, the algorithm should consider values assigned to instance variables
and hence static analysis needs to be aware of the execution context and the
assignment flow.

Table 5.5 reports the results of a manual analysis of the impact of the proposed
changes in the evaluated systems. The adoption of the simple and moderate im-
provements can raise the average Recall1 to 78.9% (44.4+2.0+0.7+13.4+18.4), which
is a considerable increase to the static analysis. Moreover, by adding the complex
modifications, this value would increase to 100% (78.9+11.7+3.5+5.9). As another
significant result, if only moderate improvements (block return and block execution)
are implemented, Recall1 would raise from 44.4% to 76.2%.

Table 5.5: Impact of proposed improvements in the Recall1 results

Recall1
Trivial Simple Moderate Complex

Systems base include extend block
return

block
execution

values in
structures

dynamic
instruc.

execution flow
in instance
variables

Total

Capistrano 39.0% 5.2% 1.3% 14.3% 13.0% 15.6% 1.3% 10.3% 100%

CarrierWave 50.8% 6.6% 1.6% 11.5% 13.1% 9.8% 2.5% 4.1% 100%

Devise 43.8% 2.8% 1.4% 12.7% 15.5% 9.0% 6.3% 8.5% 100%

Resque 45.0% 0% 0% 20.0% 15.0% 10.0% 0% 10.0% 100%

Sass 46.0% 0.6% 0.6% 13.8% 18.4% 12.9% 3.6% 4.1% 100%

Vagrant 40.8% 2.8% 0.4% 13.0% 22.3% 11.1% 2.2% 7.4% 100%

Average 44.4% 2.0% 0.7% 13.4% 18.4% 11.7% 3.5% 5.9% 100%

5.3 Measuring the Impact of Dynamic Analysis

As outlined in the previous section, dynamic analysis techniques can infer types that are
complex to infer with static analysis. Therefore, we can use type information generated
by dynamic analysis to improve ArchRuby results. This would raise the number of
dependencies to be analyzed by architectural conformance process, and possibly lead to
detection of new architectural violations. Therefore, in this section, we investigate the
impact of adding type information generated by dynamic analysis to the ArchRuby tool.

5.3. Measuring the Impact of Dynamic Analysis 63

5.3.1 Research Questions

This study aims to answer the following research questions:

RQ #1 – How could ArchRuby be complemented with information collected with
dynamic analysis?
RQ #2 – Does type information collected through dynamic analysis improve the
effectiveness of architectural conformance processes?

5.3.2 Results and Discussion

RQ#1 – How could ArchRuby be complemented with information collected
with dynamic analysis?

ArchRuby uses a static type inference algorithm to infer types. However, due to features
present in dynamically typed languages, not all types can be statically inferred. As
mentioned before, type information is very important to the architectural conformance
process because it reveals dependencies between classes.

Methodology: In order to collect type information during system execution, we
developed a profiler to Ruby systems. More specifically, this profiler uses an API
provided by the Ruby virtual machine to inspect the run-time environment during
system execution. It records all types generated during the execution. It is important
to notice that the Ruby virtual machine allows run-time inspections only in versions
greater than 2.1 of the language. Therefore, we selected the PLC Attorneys systems
because it uses version 2.2 of Ruby.

We rely on automated tests to collect run-time information. All the information
collected by the profiler is stored in a CSV file. Each line of this file contains the
following columns: class, method, local variables, and the types the local variables have
assumed. This file will be used later to complement type information of ArchRuby.
To illustrate the data in this CSV file, suppose a class Professor with a method
named students that has a local variable disciplines, which is an instance of class
Discipline. In that sense, the content of the first column is Professor, the second
is students, the third is disciplines, and the last one is Discipline. To use this
information in ArchRuby we added a new option that can be passed to the executable,
called more_types. The following example illustrates the usage:

archruby --arch_def_file=/arch_def.yml --app_root_path=/sys_path

--more_types=/information.csv

64 Chapter 5. Type Inference Evaluation

Results and Discussion: We collected type information in two scenarios: executing
the static algorithm and executing the automated tests. The static algorithm inferred
162 variable types and the profiler collected 238 variable types. Listing 5.7 shows an
example where the static analysis technique could not infer the variable type.

1 def create
2 ...
3 presenters = Presenters::Presenter.get_for_all_representations
4 json_presenter = presenters[:json].new(@project)
5 html_presenter = presenters[:html].new(@project)
6
7 format.html { redirect_to html_presenter.redirect_path }
8 format.json { render json: json_presenter.success.render }
9 ...

10 end

Listing 5.7: Example of variable type discovered by dynamic analysis

Local variables json_presenter and html_presenter (lines 4-5) have their
types defined by accessing the value stored in the presenters hash (line 3). As
described in Section 5.2, it is not trivial to static analysis to infer the types of such
variables. More specifically, it is considered complex once the static algorithm has to
map values stored in structures. Therefore, we can use type information generated by
dynamic analysis to complement ArchRuby execution.

RQ#2 – Does type information collected through dynamic analysis improve
the effectiveness of architectural conformance processes?

The previous research question indicated that dynamic analysis could be used
to complement type information generated by static analysis. Nonetheless, it is
important to investigate if these additional types indeed contribute to the architectural
conformance process. In other words, if these new types lead to the detection of new
architectural violations.

Methodology: We use the CSV file generated by the profiler described in the previous
research question. We also use the PLC system (these violations have already been
described in Section 4.5). To answer the second research question, we execute ArchRuby
with and without the additional type information. In each step, we collected the total
number of detected violations.

Results and Discussion: When configured to run only with types that are inferred
statically, ArchRuby identified two architectural violations in the PLC system. On

5.4. Final Remarks 65

the other hand, when type information provided by the profiler was also considered
ArchRuby detected four architectural violations.

Listing 5.8 presents the code responsible for the two architectural violations
detected only due to the types inferred by dynamic profiler.

1 def can_access?(admin)
2 mailers = ["AdminNotifier", "MasterNotifier"]
3 notifier_instance = nil
4 mailers.each do |mailer|
5 notifier_instance = Object.const_get(mailer).new
6 notifier_instance.send_notification(admin.id)
7 end
8 admin_projects.where(admin_id: admin.id).present?
9 end

Listing 5.8: Code of PLC system

The array assigned to mailers (line 2) contains the name of two classes responsible
to notify admins and master users when another user tries to access a resource. The
classes names are provided as strings. In line 5, the string is used to create a new object.
The instantiation of a new object is possible due to the reflexion services supported
by Ruby. However, this represents a limit to static code analysis since the type of
notifier_instance is only know at run time. Since the type information generated
by dynamic analysis complements the number of dependencies analyzed by ArchRuby,
the tool can detect more architectural violations.

5.4 Final Remarks

In this chapter, we conducted an evaluation on the type inference heuristic that provided
evidences of the increase on the number of generated dependencies to be analyzed by
the architectural conformance process. Besides that, we conducted a study to compare
static techniques, which the proposed type inference algorithm is based on, with the
dynamic techniques. Complementary, we measure the impact of adding type information
generated by dynamic analysis to ArchRuby.

In conclusion, our heuristic increased the number of inspected dependencies by 5%
on average. The use of such heuristic led to 4.35% of the violations being identified ex-
clusively by our heuristic. We also showed that, on average, the proposed type inference
algorithm could infer 44.4% of the types in Ruby systems when compared to dynamic
techniques. Moreover, we pointed out seven improvements that can be incorporated in
the initially proposed type inference heuristic to raise its accuracy. Finally, we presented

66 Chapter 5. Type Inference Evaluation

a study that demonstrates ArchRuby can benefit from type information generated by
dynamic analysis. For this study, we included the possibility to execute ArchRuby with
type information generated by dynamic analysis. Furthermore, ArchRuby found two
more violations for the PLC Attorneys system due to type information generated by
dynamic analysis.

Chapter 6

Conclusion

The architectural design can directly affect software performance, robustness, portability,
and maintainability since it comprises a set of key decisions and best practices that enable
the software evolution [Passos et al., 2010; Murphy et al., 1995]. However, as a project
evolves, these architectural patterns tend to deteriorate—due to lack of knowledge, short
deadlines, etc.—and hence nullifying the benefits provided by architectural designs. To
tackle this problem, several techniques have been proposed, such as Reflexion Models
[Murphy et al., 1995], Dependency Structure Matrices [Sullivan et al., 2001], Dependency
Constraint Languages [Terra and Valente, 2009], ArchLint [Maffort et al., 2013], etc.
Nevertheless, none of them addresses the particularities of dynamically typed languages.

To tackle this problem, we describe in this master dissertation an approach to
perform architectural conformance and to better visualize the architecture of systems im-
plemented in dynamically typed languages. Particularly, our approach, called ArchRuby,
targets systems implemented in the Ruby language. In a nutshell, ArchRuby receives as
input the architectural rules (defined by means of a DSL) and the source code of the
target system. Thereafter, it triggers the architectural conformance process in order
to detect design decisions that do not respect the intended architecture. Moreover,
ArchRuby implements a type inference heuristic to raise the number of dependencies to
be analyzed in the conformance process.

To evaluate the proposed approach, we conducted four evaluations. First, we
conducted an evaluation with the architects of three real-word systems and ArchRuby

found 48 architectural violations the developers had no prior knowledge. It also provided
developers with two high-level views of the software architecture that help them to
reason about the system organization. Second, we measure the effectiveness of the
proposed type inference heuristic reporting that (i) the number of analyzed types raises
5% on average and (ii) certain violations are only detected due to this heuristic. Third,

67

68 Chapter 6. Conclusion

we conducted a study to compare the proposed type inference algorithm with dynamic
techniques showing that (i) the proposed type inference algorithm provides an average
recall of 44% and (ii) seven improvements can be implemented in static techniques
to raise the number of inferred types. Fourth and last, we conducted a study with a
real-world system adapting ArchRuby to use information generated by dynamic analysis
techniques in order to raise the number of analyzed dependencies.

We organized this chapter as follows. First, Section 6.1 reviews the contributions
of our research. Next, Section 6.2 points the limitations of our approach. Finally,
Section 6.3 describes further work.

6.1 Contributions

This research makes the following contributions:

• The design of an architectural conformance approach that targets dynamically
typed languages. This approach, called ArchRuby, includes the definition of a
DSL to specify the architectural rules of a system, two high-level models to better
visualize the system architecture, and a type inference heuristic to increase the
number of evaluated dependencies (Chapter 3).

• A prototype tool that supports our approach and hence performs the architectural
conformance process for systems implemented in Ruby. It receives as input
the architectural rules and the source code of the target system to output the
architectural violations and two high-level architectural models (a graph and
a DSM) to reason about the system organization and to better visualize the
identified violations.

• An evaluation of the proposed approach with software architects of three real-world
systems—Dito Social, Tim Beta, and PLC Attorneys. As the result, ArchRuby
found 48 architectural violations that developers had no prior knowledge. The
architects also reported that the violations negatively impact on the maintenance
of the systems (Chapter 4).

• A study evaluating the proposed type inference algorithm in three real-world
systems reporting that it increases the number of dependencies to be analyzed and
helps to find architectural violations that cannot be detect without it. Moreover,
we identify that our algorithm needs to be improved and, in that sense, we adapt
ArchRuby to be complemented with type information collected with dynamic
analysis.

6.2. Limitations 69

6.2 Limitations

Our work has the following limitations:

• Our DSL to specify architectural rules does not allow architects to formulate
fine grained rules. For example, it does not support a rule that precludes the
instantiation of a class by a specific module. To tackle such case, the proposed
DSL needs to be improved to address the features offered by object-oriented
languages, such as object instantiations.

• The proposed heuristic to infer types does not cover all possible scenarios, such
as instance variable assignment flow. We also reported the limitations of our
heuristic in Section 5.2.

• We have not evaluated whether our approach provides equivalent results in system
implemented for contexts different from web-based systems.

6.3 Future Work

We consider that our work can be complemented with the following future work:

• Proposed Approach: (i) incorporating an architectural repair solution that pro-
vides suggestions on how to solve the detected violations, as implemented by
ArchFix [Terra et al., 2015] to Java systems; (ii) improving our type propagation
heuristic by implementing the improvements listed in Section 5.2; and (iii) inte-
grating the proposed approach to mainstreams IDEs (e.g., RubyMine) for a better
usability and to be continuously used by developers during development phase.

• The ArchRuby Tool: the tool can be extended at least as follows: (i) by executing
automated tests when they exist. ArchRuby could automatically detect and
execute the tests of the system under analysis to complement type information
that is extracted by static analysis; and (ii) by integrating with systems that
automated continuous integration tasks; and (iii) by extending the tool to other
dynamically typed languages. For example, we can implement modules to work
specifically with other languages and ArchRuby would automatically detect which
module to use based on the system under analysis.

• Evaluation with new systems: ArchRuby can be evaluated in more systems
implemented in Ruby, specially in systems implemented for contexts different
from web-based systems.

Bibliography

Agesen, O. and Holzle, U. (1995a). Type feedback vs. concrete type inference: A com-
parison of optimization techniques for object-oriented languages. In 10th Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
pages 91–107.

Agesen, O. and Holzle, U. (1995b). Type feedback vs. concrete type inference: A
comparison of optimization techniques for object-oriented languages. Technical
report.

Agesen, O., Palsberg, J., and Schwartzbach, M. I. (1995). Type inference of self:
Analysis of objects with dynamic and multiple inheritance. Software: Practice and
Experience, 25(9):975–995.

Ascher, D. and Lutz, M. (1999). Learning Python. O Reilly Media.

Baldwin, C. Y. and Clark, K. B. (1999). Design Rules: The Power of Modularity. MIT
Press.

Bean, M. (2015). Laravel 5 Essentials. Packt Publishing.

Black, D. A. (2009). The Well-Grounded Rubyist. Manning.

Borchers, J. (2011). Invited talk: Reengineering from a practitioner’s view – a personal
lesson’s learned assessment. In 15th European Conference on Software Maintenance
and Reengineering (CSMR), pages 1–2.

Bosch, J. (2004). Software architecture: The next step. In First European Workshop
(EWSA), pages 194–199.

Bracha, G. and Cook, W. (1990). Mixin-based inheritance. In 5th Conference on
Object-Oriented Programming: System Languages, and Applications (OOPSLA),
pages 303–311.

71

72 Bibliography

Brunet, J., Guerreiro, D., and Figueiredo, J. (2011). Structural conformance checking
with design tests: An evaluation of usability and scalability. In 27th International
Conference on Software Maintenance (ICSM), pages 143–152.

Converse, T. (2002). PHP Bible. Wiley.

Czarnecki, K. and Eisenecker, U. W. (2000). Generative programming: methods, tools,
and applications. ACM Press/Addison-Wesley Publishing Co.

De Schutter, K. (2012). Automated architectural reviews with semmle. In 28th IEEE
International Conference on Software Maintenance (ICSM), pages 557–565.

Flanagan, D. (2006). JavaScript: The Definitive Guide. O Reilly Media.

Furr, M., hoon (David) An, J., Foster, J. S., and Hicks, M. (2009). Static type inference
for Ruby. In 24th Symposium on Applied Computing (SAC), pages 1859–1866.

Gabriel, R. P. (1986). Performance and Evaluation of LISP Systems. MIT Press.

Goldberg, A. and Robson, D. (1989). Smalltalk-80: The Language and its Implementa-
tion. Addison-Wesley.

Greenfeld, D. R. and Greenfeld, A. R. (2015). Two Scoops of Django: Best Practices
for Django 1.8. Two Scoops Press.

Hartl, M. (2012). Ruby on Rails Tutorial: Learn Web Development with Rails. Addison-
Wesley.

Johnson, R. E. (1986). Type-checking smalltalk. In 11th Conference proceedings on
Object-oriented programming systems, languages and applications (OOPSLA), pages
315–321.

Jones, R. and Lins, R. D. (1996). Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. Wiley.

Knodel, J., Muthig, D., Haury, U., and Meier, G. (2008a). Architecture compliance
checking - experiences from successful technology transfer to industry. In 12th
European Conference on Software Maintenance and Reengineering (CSMR), pages
43–52.

Knodel, J., Muthig, D., Naab, M., and Lindvall, M. (2006). Static evaluation of
software architectures. In 10th European Conference on Software Maintenance and
Reengineering (CSMR), pages 279–294.

Bibliography 73

Knodel, J., Muthig, D., and Rost, D. (2008b). Constructive architecture compliance
checking - an experiment on support by live feedback. In 24th International Conference
on Software Maintenance (ICSM), pages 287–296.

Maffort, C., Valente, M. T., Anquetil, N., Hora, A., and Bigonha, M. (2013). Heuristics
for discovering architectural violations. In 20th Working Conference on Reverse
Engineering (WCRE), pages 222–231.

Maffort, C., Valente, M. T., Terra, R., Bigonha, M., Anquetil, N., and Hora, A. (2016).
Mining architectural violations from version history. Empirical Software Engineering
Journal, pages 1--42.

McCarthy, J. (1960). Recursive functions of symbolic expressions and their computation
by machine, part i. Communications of the ACM, 3:184–195.

Metz, S. (2012). Practical Object-Oriented Design in Ruby: An Agile Primer. Addison-
Wesley.

Miranda, S., Rodrigues, E., Valente, M. T., and Terra, R. (2016a). Architecture
conformance checking in dynamically typed languages. Journal of Object Technology,
15(3):1–34.

Miranda, S., Valente, M. T., and Terra, R. (2015a). ArchRuby: Conformidade e
visualização arquitetural em linguagens dinâmicas. In VI Brazilian Conference on
Software: Theory and Practice (CBSoft), Tools Session, pages 17–24.

Miranda, S., Valente, M. T., and Terra, R. (2015b). Conformidade e visualização
arquitetural em linguagens dinâmicas. In XVIII Ibero-American Conference on
Software Engineering (CIbSE), Software Engineering Technologies (SET) Track,
pages 137–150.

Miranda, S., Valente, M. T., and Terra, R. (2016b). Inferência de tipos em ruby: Uma
comparação entre técnicas de análise estática e dinâmica. In IV Workshop on Software
Visualization, Evolution and Maintenance (VEM), pages 105–112.

Murphy, G., Notkin, D., and Sullivan, K. (1995). Software reflexion models: Bridging
the gap between source and high-level models. In 3rd Symposium on Foundations of
Software Engineering (FSE), pages 18–28.

Palsberg, J. and Schwartzbach, M. I. (1991). Object-oriented type inference. In 6th
Conference on Object-Oriented Programming: System Languages, and Applications
(OOPSLA), pages 146–161.

74 Bibliography

Passos, L., Terra, R., Diniz, R., Valente, M. T., and Mendonça, N. (2010). Static
architecture-conformance checking: An illustrative overview. IEEE Software, 27(5):82–
89.

Perrotta, P. (2010). Metaprogramming Ruby: Program Like the Ruby Pros. Pragmatic
Bookshelf.

Resig, J. and Bibeault, B. (2013). Secrets of the JavaScript Ninja. Manning Publications.

Sangal, N., Jordan, E., Sinha, V., and Jackson, D. (2005). Using dependency models
to manage complex software architecture. In 20th Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages 167–176.

Sarkar, S., Ramachandran, S., Kumar, G. S., Iyengar, M. K., Rangarajan, K., and
Sivagnanam, S. (2009). Modularization of a large-scale business application: A case
study. IEEE Software, 26:28–35.

Schwartz, R. L. (2011). Learning Perl. O Reilly Media.

Sommerville, I. (2010). Software Engineering (9th Edition). Pearson.

Sullivan, K. J., Griswold, W. G., Cai, Y., and Hallen, B. (2001). The structure and value
of modularity in software design. In 9th International Symposium on Foundations of
Software Engineering (FSE), pages 99–108.

Sussman, G. J. and Guy L. Steele, J. (1998). Scheme: A interpreter for extended
lambda calculus. Higher Order Symbol. Comput., 11:405–439.

Terra, R. and Valente, M. T. (2009). A dependency constraint language to manage
object-oriented software architectures. Software: Practice and Experience, 32(12):1073–
1094.

Terra, R., Valente, M. T., Czarnecki, K., and Bigonha, R. S. (2015). A recommendation
system for repairing violations detected by static architecture conformance checking.
Software: Practice and Experience, 45(3):315–342.

Thomas, D., Fowler, C., and Hunt, A. (2004). Programming Ruby The Pragmatic
Programmers’ Guide. Pragmatic Bookshelf.

TIOBE index (2017). http://www.tiobe.com/tiobe-index.

Virding, R., Wikstrom, C., Williams, M., and Armstrong, J. (1996). Concurrent
Programming in Erlang. Prentice Hall.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A. (2012).
Experimentation in Software Engineering. Springer.

http://www.tiobe.com/tiobe-index

Appendix A

Open-source Dataset

Table A.1 summarizes information about our open-source dataset. It contains 28
out of the 30 most starred Ruby projects in GitHub (on August, 2015), which rep-
resents a large and heterogeneous collection of software systems, ranging from man-
agement systems and remote server automation to frameworks and medium-sized
general-purpose libraries.1 We discarded only two projects: Bootstrap for Sass, a
tiny project that solely provides support to the Sass-based bootstrap CSS framework;
and Software Engineering Blogs, which is not an application but a plain Ruby script
that generates an OPML2 file with a list of technology web sites. In total, we analyzed
over half million LOC and eight thousand rb files.

1 https://github.com/search?l=ruby&p=1&q=stars%3A%3E1&s=stars&type=Repositories,
as available on August 2015.

2Outline Processor Markup Language (OPLM) is an XML format for outlines, which is straightfor-
ward imported by RSS readers.

75

https://github.com/search?l=ruby&p=1&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?l=ruby&p=1&q=stars%3A%3E1&s=stars&type=Repositories

76 Appendix A. Open-source Dataset

Table A.1: Evaluated open-source systems

Project and version LOC # of rb
files

of Gems

Active Admin (v1.0.0.pre1) 6,053 154 42
CanCan (v1.6.10) 878 16 13
Capistrano (v3.4.0) 2,544 44 7
Capybara (v2.5.0) 8,894 107 20
CarrierWave (v0.10.0) 2,075 37 15
CocoaPods (v0.39.0.beta.4) 8,128 94 41
DevDocs (66cefbd) 12,339 293 27
Devise (v3.4.1) 3,007 60 19
diaspora* (v0.5.2.0) 6,775 126 128
Discourse (vlatestes-realease) 14,183 219 101
FPM (v1.4.0) 3,537 25 11
GitLab (v7.14.1) 11,591 219 137
Grape (v0.13.0) 3,370 88 24
Homebrew-Cask (v0.56.0) 5,720 136 8
Homebrew (8278b89) 133,322 3,429 4
Huginn (f4b8e73) 1,464 18 90
Jekyll (v3.0.0.pre.beta8) 3,911 61 39
Octopress (v2.0) 1,313 23 13
Paperclip (v4.3.0) 3,081 59 34
Rails (v4.2.4) 55,530 849 82
RailsAdmin (v0.7.0) 4,624 111 48
Resque (v1.25.0.pre) 1,885 25 12
Ruby (v2_2_3) 170,345 1,076 0
Sass (v3.4.18) 13,080 130 8
Simple Form (v3.1.0.rc2) 2,007 55 9
Spree (v3.0.4) 5,947 149 6
Vagrant (v1.7.4) 8,156 126 21
Whenever (v0.9.4) 632 13 3

Appendix B

Dito Social

B.1 Architectural Rules

1 helpers:
2 files: ’app/helpers/∗∗/∗.rb, app/helpers/events/∗∗/∗.rb’
3
4 badge_controller:
5 files: ’app/controllers/badge/∗∗/∗.rb’
6 allowed: ’resque, badge_workers, controller_base’
7
8 badge_workers:
9 files: ’app/workers/badge/∗∗/∗.rb, lib/send_badge_to_social_badge.rb’

10 allowed: ’resque, badge_model, user_model, social_helper’
11
12 badge_model:
13 files: ’app/models/badge.rb, app/models/user_badge.rb’
14 required: ’activerecord’
15 allowed: ’badge_workers, resque, app_model, activerecord’
16
17 dashboard_controller:
18 files: ’app/controllers/dashboard/∗∗/∗.rb’
19 allowed: ’dashboard_finder, stats_model, network_model, action_model, app_model,

interaction_model, post_model, social_helper, user_network_model, controller_base,
referral_model, origin_model, http_party, user_agent_model, user_model, airbrake’

20
21 dashboard_finder:
22 files: ’app/models/dashboard/∗∗/∗.rb’
23 allowed: ’stats_model, origin_model, action_model, app_model, user_model, social_helper,

user_agent_model, event_model, app_user_network_model, network_model,
user_network_model’

24
25 stats_generator:
26 files: ’app/models/generate_stats/∗∗/∗.rb’
27 allowed: ’stats_model, event_model, action_model, network_model’
28
29 stats_model:

77

78 Appendix B. Dito Social

30 files: ’app/models/action_source_stats.rb, app/models/action_stats.rb,
app/models/revenue_source_stats.rb, app/models/revenue_user_stats.rb,
app/models/stats.rb, app/models/total_stats.rb,
app/models/user_agent_platform_type_stats.rb’

31 allowed: ’’
32
33 events_controller:
34 files: ’app/controllers/events/∗∗/∗.rb’
35 allowed: ’resque, app_model, social_helper, events_workers, event_model, controller_base’
36
37 events_workers:
38 files: ’app/workers/events/∗∗/∗.rb, lib/post_event_job.rb’
39 allowed: ’resque, social_helper, user_model, user_network_model, event_creator,

referral_model, app_model, network_model’
40
41 event_creator:
42 files: ’app/models/create_event.rb’
43 allowed: ’social_helper, event_model, action_model, app_model, target_model, solr_workers,

resque, referrer_model, origin_model, referral_model, user_network_model, user_model,
network_model, user_agent_model’

44
45 ranking_controller:
46 files: ’app/controllers/ranking/∗∗/∗.rb’
47 allowed: ’resque, ranking_workers, controller_base’
48
49 ranking_workers:
50 files: ’app/workers/ranking/∗∗/∗.rb’
51 allowed: ’resque, app_model, ranking_model’
52
53 referral_controller:
54 files: ’app/controllers/referral/∗∗/∗.rb’
55 allowed: ’referral_model, controller_base, airbrake’
56
57 share_controller:
58 files: ’app/controllers/share/∗∗/∗.rb’
59 allowed: ’resque, post_model, post_workers, facebook_info_retriever, social_helper,

controller_base, http_party, interaction_model, airbrake, rails’
60
61 post_workers:
62 files: ’lib/customer_post_info_job.rb, lib/customer_post_first_update_job.rb,

lib/customer_post_update_job.rb, lib/customer_send_interactions_to_redis.rb,
lib/save_in_redis.rb, lib/update_big_post.rb, lib/prioritize_posts.rb, lib/post_info_job.rb,
lib/post_update_job.rb, lib/send_top_agents_to_redis.rb’

63 allowed: ’resque, post_model, social_helper, map_post_keys, post_summary,
interaction_model’

64
65 login_controller:
66 files: ’app/controllers/social_login/∗∗/∗.rb’
67 allowed: ’app_model, user_model, user_network_model, login_workers, resque,

controller_base, app_user_network_model, network_model, airbrake’
68
69 login_workers:
70 files: ’app/workers/login/∗∗/∗.rb, lib/update_friends_job.rb, lib/save_user.rb’
71 allowed: ’resque, user_model, social_helper, friendship_model’
72
73 solr_workers:

B.1. Architectural Rules 79

74 files: ’app/workers/solr/∗∗/∗.rb’
75 allowed: ’resque, social_helper, solr, app_model, app_user_network_model, json,

action_model, rails’
76
77 report_controller:
78 files: ’app/controllers/reports_controller.rb’
79 allowed: ’resque, report_model, reports_workers, interaction_model, controller_base,

report_model’
80
81 reports_workers:
82 files: ’app/workers/reports/∗∗/∗.rb’
83 allowed: ’resque’
84
85 notification_controller:
86 files: ’app/controllers/notification/∗∗/∗.rb’
87 allowed: ’’
88
89 controller_base:
90 files: ’app/controllers/application_controller.rb’
91
92 resque:
93 gems: ’Resque’
94
95 social_helper:
96 gems: ’SocialHelper’
97
98 view:
99 files: ’app/views/∗∗/∗.rb’

100 forbidden: ’model’
101
102 report_model:
103 files: ’app/models/report/∗∗/∗.rb’
104 allowed: ’post_model, social_helper, interaction_model, rails, mail, aws, http_party’
105
106 app_model:
107 files: ’app/models/app.rb’
108 required: ’activerecord’
109
110 event_model:
111 files: ’app/models/event.rb’
112 allowed: ’action_model’
113 required: ’activerecord’
114
115 action_model:
116 files: ’app/models/action.rb’
117 required: ’activerecord’
118
119 user_network_model:
120 files: ’app/models/user_network.rb’
121 required: ’activerecord’
122
123 network_model:
124 files: ’app/models/network.rb’
125
126 app_user_network_model:
127 files: ’app/models/app_user_network.rb’

80 Appendix B. Dito Social

128
129 user_model:
130 files: ’app/models/user.rb’
131 required: ’activerecord’
132 allowed: ’user_infos, network_connections_log_model, user_network_model, login_workers,

resque, app_model, social_helper, app_user_network_model, facebook_info_retriever, json,
facebook, network_model, event_model, action_model, interaction_model’

133
134 friendship_model:
135 files: ’app/models/friendship.rb’
136
137 user_infos:
138 files: ’app/models/city.rb, app/models/language.rb, app/models/education.rb’
139 required: ’activerecord’
140
141 referral_model:
142 files: ’app/models/referral.rb’
143 required: ’activerecord’
144
145 origin_model:
146 files: ’app/models/origin.rb, app/models/utm.rb, app/models/utm_medium.rb,

app/models/utm_campaign.rb, app/models/source.rb’
147 required: ’activerecord’
148
149 ranking_model:
150 files: ’app/models/ranking.rb’
151 required: ’activerecord’
152
153 target_model:
154 files: ’app/models/target.rb, app/models/target_type.rb’
155 required: ’activerecord’
156
157 post_model:
158 files: ’app/models/post.rb’
159 required: ’activerecord’
160 allowed: ’resque, post_workers, post_logger, facebook_info_retriever, social_helper,

interaction_model, question_option_model, logger, activerecord, rails’
161
162 user_agent_model:
163 files: ’app/models/user_agent_manager.rb, app/models/user_agent.rb,

app/models/user_agent_platform.rb’
164
165 referrer_model:
166 files: ’app/models/referrer.rb’
167 required: ’activerecord’
168
169 question_option_model:
170 files: ’app/models/question_option.rb’
171 required: ’activerecord’
172
173 map_post_keys:
174 files: ’lib/map_redis_keys.rb’
175
176 post_logger:
177 files: ’config/initializers/posts_logger.rb’
178

B.1. Architectural Rules 81

179 post_summary:
180 files: ’app/models/post_summary.rb’
181 required: ’activerecord’
182
183 interaction_model:
184 files: ’app/models/interaction.rb, app/models/interaction_agent.rb’
185
186 facebook_info_retriever:
187 files: ’lib/facebook_info_retriever.rb’
188 allowed: ’facebook, airbrake’
189
190 network_connections_log_model:
191 files: ’app/models/network_connections_log.rb’
192 required: ’activerecord’
193
194 twitter:
195 gems: ’Twitter’
196
197 json:
198 gems: ’JSON’
199
200 airbrake:
201 gems: ’Airbrake, Notification::Airbrake’
202
203 http_party:
204 gems: ’HTTParty’
205
206 facebook:
207 gems: ’Koala’
208
209 activerecord:
210 gems: ’ActiveRecord’
211
212 actioncontroller:
213 gems: ’ActionController’
214
215 aws:
216 gems: ’AWS’
217
218 solr:
219 gems: ’Sunspot’
220
221 logger:
222 gems: ’Logger’
223
224 rails:
225 gems: ’Rails’
226
227 mail:
228 gems: ’Mail’

Listing B.1: Dito Social architectural specification file

82 Appendix B. Dito Social

B.2 Reflexion Model

Figure B.1: RM automatically computed by ArchRuby for Dito Social

Appendix C

Tim Beta

C.1 Architectural Rules

1 controllers:
2 files: ’app/controllers/∗∗/∗.rb’
3 allowed: ’models, helpers, workers, core, facebook, twitter, foursquare, youtube, twitter_oauth,

google_plus, dito_social_p, cep_finder, linker, can_can, facebook_verifier, orkut_deleter,
resque, logistica, oauth, tim_points, logged_home, datapoints, instagram, rails, devise,
base_controller, action_controller, spreadsheet, opensocial’

4
5 core:
6 files: ’app/core/∗∗/∗.rb’
7 allowed: ’models, helpers, facebook, twitter, foursquare, gmail, mailers, instagram,

dito_social_p, twitter_oauth, contact_us, resque, sanitize, active_record, workers, hoptoad’
8
9 datapoints:

10 files: ’app/core/datapoints/∗∗/∗.rb, lib/collect_datapoints.rb’
11
12 invitations:
13 files: ’app/core/invitations/∗∗/∗.rb’
14
15 contact_us:
16 files: ’app/core/contact_us/∗∗/∗.rb’
17
18 helpers:
19 files: ’app/helpers/∗∗/∗.rb, app/helpers/admin/∗∗/∗.rb, app/helpers/api/∗∗/∗.rb,

app/helpers/timbeta/∗∗/∗.rb, app/helpers/timbetaapp/∗∗/∗.rb,
lib/home_controller_helper.rb, lib/network_controller_helpers.rb,
lib/connect_link_session_attributes.rb’

20 allowed: ’models, dito_social_p, tim_points, rails, linker’
21
22 mailers:
23 files: ’app/mailers/∗∗/∗.rb’
24 allowed: ’models, postage_app, active_record, action_mailer’
25
26 action_mailer:
27 gems: ’ActionMailer’
28

83

84 Appendix C. Tim Beta

29 models:
30 files: ’app/models/∗∗/∗.rb’
31 allowed: ’core, helpers, resque, logistica, dito_social_p, postage_app, workers, facebook, devise,

csv, olap, twitter_oauth, datapoints, can_can, tim_points, linker, twitter, rails, active_record,
image_magick, action_controller’

32
33 logistica:
34 files: ’lib/logistics.rb’
35
36 tim_points:
37 files: ’lib/tim_points.rb’
38
39 cep_finder:
40 files: ’lib/cep.rb’
41
42 logged_home:
43 files: ’lib/logged_home.rb’
44
45 linker:
46 files: ’lib/link.rb, lib/normalize_link.rb’
47
48 views:
49 files: ’app/views/∗∗/∗.rb’
50 allowed: ’controllers’
51
52 workers:
53 files: ’app/workers/∗∗/∗.rb’
54 allowed: ’models, core, facebook, dito_social_p, rails’
55
56 facebook:
57 gems: ’Koala’
58
59 orkut_deleter:
60 files: ’lib/correct_orkut/∗∗/∗.rb’
61
62 facebook_verifier:
63 files: ’lib/verify_token.rb, lib/facebook_token.rb’
64
65 youtube:
66 gems: ’YouTubeIt’
67
68 olap:
69 files: ’lib/send_user_to_olap_job.rb, lib/send_chip_to_olap_job.rb’
70
71 google_plus:
72 gems: ’GooglePlus’
73
74 foursquare:
75 gems: ’Foursquare2’
76
77 twitter:
78 gems: ’Twitter’
79
80 instagram:
81 gems: ’Instagram’
82
83 active_record:

C.1. Architectural Rules 85

84 gems: ’ActiveRecord’
85
86 twitter_oauth:
87 gems: ’TwitterOAuth’
88
89 oauth:
90 gems: ’OAuth2, OAuth’
91
92 opensocial:
93 gems: ’OpenSocial’
94
95 dito_social_p:
96 gems: ’UserNetwork, Network, Friendship, BadgesEarner, Badge, Ranking’
97
98 base_controller:
99 gems: ’ApplicationController, Api::ApplicationController’

100
101 action_controller:
102 gems: ’ActionController’
103
104 resque:
105 gems: "Resque"
106
107 postage_app:
108 gems: "PostageApp"
109
110 csv:
111 gems: "FasterCSV"
112
113 rails:
114 gems: ’Rails’
115
116 devise:
117 gems: ’Devise’
118
119 can_can:
120 gems: ’CanCan’
121
122 gmail:
123 gems: ’Gmail’
124
125 spreadsheet:
126 gems: ’Spreadsheet’
127
128 image_magick:
129 gems: ’Magick’
130
131 sanitize:
132 gems: ’Sanitize’
133
134 hoptoad:
135 gems: ’HoptoadNotifier’

Listing C.1: Tim Beta architectural specification file

86 Appendix C. Tim Beta

C.2 Reflexion Model

Figure C.1: RM automatically computed by ArchRuby for Tim Beta

Appendix D

PLC Attorneys

D.1 Architectural Rules

1 controllers:

2 files: ’app/controllers/∗∗/∗.rb’
3 allowed: ’presenters, devise, actioncontroller, project_relations, project, admins,

consolidated_control’

4

5 project:

6 files: ’app/models/project.rb’

7 required: ’activerecord’

8 allowed: ’chartdraw, project_relations, admins’

9

10 project_relations:

11 files: ’app/models/area.rb, app/models/company.rb, app/models/areas_project.rb,

app/models/attack.rb, app/models/control.rb, app/models/diagnostic.rb,

app/models/improvement.rb, app/models/action.rb, app/models/task.rb,

app/models/responsible.rb’

12 required: ’activerecord’

13 allowed: ’chartdraw, mailers, admins’

14

15 mailers:

16 files: ’app/mailers/∗∗/∗.rb’
17 allowed: ’project_relations, project’

18 required: ’actionmailer’

19

20 documents:

87

88 Appendix D. PLC Attorneys

21 files: ’app/models/attack_document.rb, app/models/control_document.rb,

app/models/document.rb, app/models/improvement_document.rb’

22 required: ’activerecord’

23

24 admins:

25 files: ’app/models/admin.rb, app/models/admin_project.rb,

app/models/admin_project_area.rb’

26 required: ’activerecord’

27 allowed: ’project_relations, project’

28

29 consolidated_control:

30 files: ’app/models/consolidated_area.rb, app/models/consolidated_checker.rb,

app/models/consolidated_manager.rb, app/models/consolidated_project.rb’

31 allowed: ’activerecord’

32

33 presenters:

34 files: ’app/presenters/∗∗/∗.rb’
35

36 devise:

37 gems: ’Devise’

38

39 chartdraw:

40 files: ’lib/chart_helper.rb’

41 allowed: ’project_relations’

42

43 actioncontroller:

44 gems: ’ActionController’

45

46 activerecord:

47 gems: ’ActiveRecord’

48

49 actionmailer:

50 gems: ’ActionMailer’

51

52 accesscontrol:

53 gems: ’CanCan’

Listing D.1: PLC Attorneys architectural specification file

D.2. Reflexion Model 89

D.2 Reflexion Model

Figure D.1: RM automatically computed by ArchRuby for PLC Attorneys

	Agradecimentos
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 An Overview of the Proposed Approach
	1.3 Outline of the Dissertation
	1.4 Publications

	2 Background
	2.1 Architectural Conformance
	2.2 Architectural Conformance Techniques
	2.3 Dynamic Languages
	2.4 Ruby
	2.5 Type Inference
	2.6 Final Remarks

	3 Proposed Approach
	3.1 Overview
	3.2 Running Example
	3.3 Architectural Rules Specification
	3.4 Architectural Conformance
	3.5 Architectural Visualization
	3.5.1 Reflexion Model
	3.5.2 Dependency Structure Matrix

	3.6 The Proposed Type Inference Heuristic
	3.7 The ArchRuby Tool
	3.8 Final Remarks

	4 Proposed Approach Evaluation
	4.1 Target Systems
	4.2 Methodology
	4.3 Dito Social
	4.3.1 Discussion

	4.4 Tim Beta
	4.4.1 Discussion

	4.5 PLC Attorneys
	4.5.1 Discussion

	4.6 General Discussion
	4.7 Threats to Validity
	4.8 Final Remarks

	5 Type Inference Evaluation
	5.1 Effectiveness of the Type Inference Heuristic
	5.1.1 Research Questions
	5.1.2 Dataset
	5.1.3 Results and Discussion

	5.2 Comparison with Dynamic Techniques
	5.2.1 Research Questions
	5.2.2 Methodology
	5.2.3 Results and Discussion

	5.3 Measuring the Impact of Dynamic Analysis
	5.3.1 Research Questions
	5.3.2 Results and Discussion

	5.4 Final Remarks

	6 Conclusion
	6.1 Contributions
	6.2 Limitations
	6.3 Future Work

	Bibliography
	A Open-source Dataset
	B Dito Social
	B.1 Architectural Rules
	B.2 Reflexion Model

	C Tim Beta
	C.1 Architectural Rules
	C.2 Reflexion Model

	D PLC Attorneys
	D.1 Architectural Rules
	D.2 Reflexion Model

