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Resumo

Extração de Método é uma refatoração chave para aprimorar a manutenibilidade de
sistemas, visto que métodos pequenos com nomes significativos favorecem legibilidade
e reúso de código. Por tais razões, Extração de Método é uma das refatorações mais
populares e versáteis. Entretanto, estudos empíricos recentes indicam que ferramentas
dedicadas a automação dessa refatoração são frequentemente sub-utilizadas e, mais
importante, não oferecem auxílio aos desenvolvedores na identificação de potenciais
fragmentos de código a serem extraídos.

Para suprir essa deficiência, propõe-se uma abordagem para identificar oportu-
nidades de Extração de Método que podem ser aplicadas de forma automatizada por
ferramentas de refatoração de IDEs. A abordagem utiliza uma heurística para ordenar
as oportunidades identificadas, centrada no princípio de design de separação de respon-
sabilidades. Especificamente, assume-se que as dependências estruturais estabelecidas
por um fragmento de código candidato a extração devem ser bem diferente daquelas
estabelecidas pelo código restante no método original.

Em um primeiro estudo envolvendo um conjunto sintetizado de oportunidades
de Extração de Método, introduzidas pela expansão de invocações de métodos (Inline
Method), a abordagem proposta mostrou-se mais efetiva (considerando revocação e
precisão) do que uma ferramenta que representa o estado da arte. Em um segundo
estudo envolvendo 13 sistemas de código aberto, uma a abordagem proposta alcançou
revocação global de 59,1%. Além disso, ao se tolerar pequenas variações em oportu-
nidades de Extração de Método conhecidas (por exemplo, incluindo/excluindo uma
única sentença de código), a revocação global sobe para 66,6%.

Palavras-chave: Refatoração Extração de Método, Sistemas de recomendação, Con-
junto de dependências.
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Abstract

Extract Method is a key refactoring for improving software maintainability. In fact,
small methods with meaningful names improve source code readability and also favor
reuse. For such reasons, Extract Method is one of the most popular and versatile
refactorings. However, recent empirical research shows that refactoring tools designed
to automate this refactoring are often underused and, more important, they do not
support developers in the identification of potential code fragments for extraction.

To address this issue, we propose an approach to identify Extract Method refac-
toring opportunities that are directly automated by IDE-based refactoring tools. The
proposed approach relies on a heuristic to rank the identified refactoring opportunities
based on the design principle of separation of concerns. Specifically, we assume that
the structural dependencies established by a Extract Method candidate should be very
different from the ones established by the remaining statements in the original method.

In a first study using synthesized Extract Method opportunities introduced by
inlining method invocations, shows that our approach is more effective (w.r.t. recall
and precision) than a state-of-the-art tool. In a second study, with 13 open-source
systems our approach achieved an overall recall of 59.1%. Moreover, when we tol-
erate suggestions that are slight variations of known Extract Method instances (e.g.,
including/excluding a single statement), recall rises to 66.6%.

Keywords: Extract Method refactoring, Recommendation systems, Dependency
sets.
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Chapter 1

Introduction

In this chapter, we present the motivation of this dissertation (Section 1.1). We then
state the problem and provide an overview of our solution (Section 1.2). Finally, we
present the outline of the dissertation (Section 1.3) and our publications (Section 1.4).

1.1 Motivation

A well-known property of software systems is their need to evolve, driven by the pres-
sure of changing real-world requirements [Lehman, 1980]. Unfortunately, this evolu-
tion process usually leads to deviations from the original design and an increase in
the complexity. This phenomenon, usually referred as software aging, makes software
maintenance and evolution increasingly costly [Parnas, 1994]. Although it is difficult
to completely avoid software aging, developers can tackle this phenomenon with refac-
toring.

Refactoring is defined as the process of changing a software system to improve
its internal structure in such a way that it does not alter the external behavior of
the code [Opdyke, 1992; Fowler, 1999]. Thus, refactoring is an important practice to
recover from design deviations and to improve the quality of the source code. While
refactoring is usually associated with software maintenance, it is also employed in the
earlier phases of development. For example, practitioners of Test Driven Development
(TDD) advocate the use of refactoring as an essential step in a software development
cycle: (i) write a test ; (ii) make the test work quickly ; and (iii) refactor to add design
decisions one at a time [Beck, 2003].

Fowler [1999] also presents a catalog of refactorings, including Extract Method,
Inline Method, Move Method, Pull Up Field, Replace Inheritance with Delegation,

1



2 Chapter 1. Introduction

and many others. Particularly, this dissertation focuses on Extract Method, which we
define in the next section.

1.1.1 Extract Method Refactoring

When a method contains a code fragment that can be grouped together and the main-
tainer decides to turn that fragment into a new method, we call this refactoring Extract
Method [Fowler, 1999]. Figures 1.1 and 1.2 present a minimal code example, before
and after the refactoring, to illustrate its mechanics. In Figure 1.1, the statements at
lines 4 and 5 were extracted into a new method, called printDetails, which is shown
in Figure 1.2.

1 void printOwing(double amount) {
2 printBanner ();
3 //print details
4 System.out.println("name:" + _name);
5 System.out.println("amount" + amount );
6 }

Figure 1.1. Code before Extract Method

1 void printOwing(double amount) {
2 printBanner ();
3 printDetails(amount );
4 }
5 void printDetails (double amount) {
6 System.out.println ("name:" + _name);
7 System.out.println ("amount" + amount );
8 }

Figure 1.2. Code after Extract Method

One of the main motivations for Extract Method is to decompose a method that
is too long or difficult to understand. Short methods with meaningful names improve
readability and also favor reuse. Besides, overriding methods in subclasses is easier
when they are finely grained. In fact, empirical studies suggest that Extract Method
is one of the most popular and versatile refactorings [Murphy et al., 2006; Murphy-Hill
et al., 2012; Wilking et al., 2007]. For example, Tsantalis et al. [2013] analyzed history
data from three open-source projects and discovered Extract Method instances with
nine distinct purposes.
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1.1.2 Current Tool Support

Despite the simplicity of the aforementioned example (Figures 1.1 and 1.2), refactoring
is usually a complex task, specially considering all possible scenarios and preconditions
involved in such process [Schäfer et al., 2009; Borba et al., 2004; Steimann and Thies,
2009; Verbaere et al., 2006; Opdyke, 1992]. Therefore, tool support is crucial to in-
crease productivity and reliability. Currently, most mainstream IDEs offer some kind
of refactoring automation. For example, Eclipse provides automated Extract Method
application given a selected code fragment, as long as the selection respects some pre-
conditions.

However, despite the availability of supporting tools, recent empirical research
shows that these tools, especially those supporting Extract Method refactorings, are
most of the times underused [Negara et al., 2013; Kim et al., 2012; Murphy-Hill et al.,
2012; Murphy-Hill and Black, 2008b]. For example, in a study including developers
working in their natural environment, Negara et al. [2013] found that the number of
participants who are aware of the automated support for Extract Method but still
apply it manually is higher than the number of participants who predominantly apply
it automatically. Moreover, a study from Murphy-Hill and Black [2008a] revealed that
some users were discouraged to use the Extract Method tool of Eclipse IDE due to
usability problems regarding the manual selection of valid code fragments. More im-
portant, current tools focus only on automating refactoring application, but developers
expend considerable effort on the manual identification of refactoring opportunities.

In face of this scenario, we advocate that recommendation systems designed to
identify Extract Method refactoring opportunities can play an important role in modern
IDEs. Particularly, they can be effective instruments to increase the popularity of
refactoring tools among IDE users since they avoid the manual step of selecting a
valid code fragment. More important, such systems may suggest valuable refactoring
opportunities that developers are not aware, alleviating the burden to manually inspect
the source code.

1.2 Proposed Approach

We previously discussed how the automated identification of Extract Method refactor-
ing opportunities may leverage existing tool support and contribute to a widespread
adoption of refactoring practices. In this dissertation, we propose a novel approach,
based on structural dependencies, to identify and rank Extract Method refactoring
opportunities that can be directly automated by IDE-based refactoring tools.
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1.2.1 Problem Statement

We aim to design, implement, and evaluate a refactoring recommendation approach,
which should have the following input and output:

• Input: The source code of a method.

• Output: Potential Extract Method refactoring opportunities, such that:

1. They can be automatically extracted using the existing tool support.

2. They preserve the program’s original behavior.

3. They are ranked by relevance, inspired by the minimize coupling/maximize
cohesion design guideline, i.e., they should encapsulate a well-defined com-
putation (high cohesion) that is independent from the input method (low
coupling).

While the first two properties of the output can be formally specified, the third
one is subjective in its essence. The notion of relevance in recommendation systems is
subjected to human judgment. However, we desire that the system’s notion of relevance
is as close as possible from an expert’s notion of relevance.

In order to illustrate the proposed recommendation system, we use the method
presented in Figure 1.3, from the JHotDraw system. In this method, lines 5–9 are
closely related to each other, encapsulating a well-defined computation responsible for
the initialization of field fConnectors. Specifically, an object of type Vector is instan-
tiated and populated. This code can be better organized by extracting these statements
into a new method, preferably with a descriptive name (e.g., initFConnectors). Thus,
a possible output in this case is a recommendation suggesting to extract lines 5–9 to a
new method.

1 private void initialize () {
2 setText("node");
3 Font fb = new Font("Helvetica", Font.BOLD , 12);
4 setFont(fb);
5 fConnectors = new Vector (4);
6 fConnectors.addElement(new LocatorConnector(this , Locator.north ()));
7 fConnectors.addElement(new LocatorConnector(this , Locator.south ()));
8 fConnectors.addElement(new LocatorConnector(this , Locator.west ()));
9 fConnectors.addElement(new LocatorConnector(this , Locator.east ()));

10 }

Figure 1.3. An example method from the JHotDraw system
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1.2.2 Proposed Solution: JExtract

JExtract, the tool we designed to implement our approach, is an Extract Method refac-
toring recommendation system. Specifically, given one or more methods, the output of
our tool is a ranked list of refactoring opportunities. Moreover, when developers accept
a recommendation, JExtract automatically applies it.

Figure 1.4 depicts the main elements involved in our recommendation approach,
which can be summarized in the following two subproblems:

public class C {
  ...
  void methodM(A a) {
    Foo f = new Foo();
    if (x) {
      doA(a);
      int y = getY();
      y++;
      doB();
    }
    super.methodM();
  }
  ...
}

A B C

candidate

1

2

3

4

Generation of Candidates Scoring Function Ranking and Filtering
Extract Method

Recommendations
Source Code

JExtract

Figure 1.4. Overview of the proposed approach

1. Candidates Generation: Given a method, JExtract identifies all viable Extract
Method candidates, regardless of their relevance. More specifically, it analyzes
the source code and enumerates each Extract Method candidate that respects a
set of preconditions necessary to guarantee its viability. Additionally, we enforce
a configurable size threshold to avoid suggesting the extraction of very small code
fragments (e.g., with one or two statements).

2. Ranking: Given a list of Extract Method candidates, JExtract ranks the items by
relevance and exclude non-relevant ones. More specifically, it relies on a scoring
function to classify the candidates according to their potential to improve the de-
sign of the code. This function, which is the key element of our solution, is based
on the minimize coupling/maximize cohesion design guideline. We assume that
the structural dependencies established by top-ranked Extract Method candidates
should be very different from the ones established by the remaining statements
in the original method. When this assumption holds, the extraction tends to
encapsulate a well-defined computation with its own set of dependencies (high
cohesion) and that is also independent from the original method (low coupling).

1.3 Outline of the Dissertation

We organized the remainder of this work as follows:
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• Chapter 2 covers central concepts related to this dissertation, including a dis-
cussion on refactoring recommendation systems applied to software engineering.
We also present an overview on tools for detecting Extract Method refactoring
opportunities and related work.

• Chapter 3 presents the proposed approach. We detail the two main phases
of the approach (Candidates Generation and Ranking) and illustrate the whole
process using an example method. Furthermore, this chapter reports an initial
study we designed to calibrate our approach, exploring ranking strategies and
threshold parameters. Finally, we present JExtract, the tool that implements
our proposed approach.

• Chapter 4 reports the evaluation of our approach. First, we investigate how
our approach performs compared to state-of-the-art ones. Second, we report a
study with a sample of 1,182 synthesized Extract Method instances from 13 open-
source systems. Last, we investigate alternative ranking strategies to confirm the
findings of the exploratory study reported in Chapter 3.

• Chapter 5 presents the final considerations of this dissertation, outlining its
main contributions, limitations, and future work.

1.4 Publications

This dissertation generated the following publications and therefore contains material
from them:

• Danilo Silva, Ricardo Terra, and Marco Tulio Valente. Recommending Auto-
mated Extract Method Refactorings. In 22nd IEEE International Conference on
Program Comprehension (ICPC), pages 146–156, 2014.

• Danilo Silva, Ricardo Terra, and Marco Tulio Valente. JExtract: An Eclipse
Plug-in for Recommending Automated Extract Method Refactorings. V Con-
gresso Brasileiro de Software: Teoria e Prática, Sessão de Ferramentas, pages
1–8, 2014. (Under submission).



Chapter 2

Background

In this chapter, we discuss background and work related to this dissertation. First,
Section 2.1 presents a brief introduction on Recommendation Systems for Software En-
gineering, since our approach falls in this category of system. Next, we present previous
work in the area of refactoring recommendation systems, dedicating special attention
to two tools: JDeodorant (Section 2.2), a state-of-the-art refactoring recommendation
system that we compared our approach with, and JMove (Section 2.3), a Move Method
recommendation system that our technique for ranking Extract Method candidates is
inspired by. Section 2.4 briefly presents other approaches related to the identification
of Extract Method refactoring opportunities. Last, Section 2.5 concludes this chapter
with some final remarks.

2.1 Recommendation Systems for Software

Engineering

Recommendation Systems for Software Engineering (RSSEs) is an emerging research
area [Robillard et al., 2010]. A RSSE is a software application that provides potential
valuable information for a software engineering task in a given context. For example,
the solution we propose in this dissertation provides information to aid the task of de-
composing a method into smaller parts, in the form of code fragments recommended for
extraction. Moreover, such systems may employ a variety of techniques, e.g., there are
approaches based on search algorithms [O’Keeffe and Cinnéide, 2006; Seng et al., 2006],
Relational Topic Model (RTM) [Bavota et al., 2014], metrics-based rules [Marinescu,
2004], clustering [Anquetil and Lethbridge, 1999; Mitchell and Mancoridis, 2006], etc.

Finally, RSSEs can help developers in a wide range of activities, besides

7



8 Chapter 2. Background

refactoring-related tasks. For example, current RSSEs can recommend relevant source
code fragments to help developers to use frameworks and APIs (CodeBroker [Ye and
Fischer, 2005], Strathcona [Holmes et al., 2006], and APIMiner [Montandon et al.,
2013]), software artifacts that must be changed together (eRose [Zimmermann et al.,
2005]), parts of the software that should be tested more cautiously (Suade [Nagappan
et al., 2006]), and tasks for repairing software architectures (ArchFix [Terra et al.,
2014]).

2.2 JDeodorant

JDeodorant is a RSSE that suggests and applies refactoring operations on Java
systems, aiming to solve common code smells, such as Feature Envy, Long Method, and
God Class [Tsantalis and Chatzigeorgiou, 2009, 2011; Fokaefs et al., 2012]. Specifically,
JDeodorant employs an automated approach to identify Extract Method refactoring
opportunities, proposed by Tsantalis and Chatzigeorgiou [2011]. Since existing IDEs
focus only on automating the extraction of statements indicated by the developer, the
authors aim to fill the gap by recommending code fragments that could benefit from
decomposition.

Identification of Code Slices: JDeodorant employs backward slicing, a static analy-
sis technique to identify the slice of code that may affect a variable at a given point. This
technique relies on the Program Dependence Graph (PDG) to represent the methods
under analysis. In a PDG, nodes represent statements and edges represent dependen-
cies (control or data). Therefore, backward slicing consists on selecting statements
connected in the PDG, starting with a set of seed statements.

The identification of data dependencies is crucial to generate precise and correct
slices, as well as to preserve program’s behavior after code extraction. Thus, the authors
employ a variety of program analysis techniques to construct the PDG, considering
issues such as polymorphic method calls, unstructured control flow, exceptions, and
aliasing.

While traditional slicing algorithms consider the entire method body as a region
where the slice may expand, the authors adopt the concept of block-based slicing,
introduced by Maruyama [2001]. By employing this concept, it is possible to produce
more than one slice for a given slicing criterion, constrained by different block-based
regions of a method. The authors propose two algorithms, based on different criteria,
to select the slices to be extracted:
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• Complete computation slice: It generates a slice that modifies the value of a
variable. The statements that assign a value to a given variable are initially
selected as seeds, which are expanded using backward slicing.

• Object state slice: It generates a slice that affects the state of an object reference.
The statements that affect the state of the object are selected as seeds, which are
also expanded using backward slicing.

Figure 2.1 exemplifies both slicing criteria, the first using variable dy and the second
using the object reference fold. By selecting such slices, it is possible to decompose
the method by applying an Extract Method refactoring.

Figure 2.1. Complete computation slice and Object state slice examples

It is worth noting that the selected slices may contain statements that cannot be
removed from the original method, for example, when they are also required for the
computation of other variable or other object states. In this case, these statements
must be duplicated, i.e., they should be present both in the extracted method and
the original method. However, such duplication may not preserve behavior. For this
reason, the authors defined a set of rules to prohibit harmful duplication scenar-
ios. For example, a statement that modifies the state of an object cannot be duplicated.
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Evaluation #1: The authors considered several aspects of the recommendations,
such as precision, usefulness, behavior-preservation, and impact on source code quality
metrics. In a first experiment on JFreeChart system, an independent expert answered
the following questions regarding the recommendations triggered by JDeodorant:

1. Does the code fragment suggested to be extracted as a separate method have a distinct

and independent functionality compared to the rest of the original method?

2. Does the application of the suggested refactoring solve an existing design flaw (e.g.,

by decomposing a complex method, removing a code fragment that is duplicated among

several methods, or extracting a code fragment suffering from Feature Envy)?

From the 64 evaluated recommendations, the expert agreed on 57 (89%) in the
first question and on 27 (42%) in the second question. From such results, the authors
argued that the extracted methods showed to be useful and cohesive. For the behav-
ior preservation concern, the authors relied on the existing automated tests, which
covered 41 from the 64 triggered recommendations. All tests ran without errors after
the application of the suggested refactoring opportunities, which indicates with a rela-
tive certainty that no bugs were introduced by the code transformations, an essential
premise for refactoring.

Furthermore, the authors verified that the recommended refactorings had a
positive impact on the slice based cohesion metrics proposed by Ott and Thuss
[1993], namely Overlap, Tightness, and Coverage. Specifically, the authors applied
the refactorings approved by the expert evaluator and compared: (i) metric values
before the refactoring and (ii) average metric values for the original and extracted
method after the refactoring. The average increase was +0.303 for Overlap, +0.319

for Tightness, and +0.113 for Coverage.1

Evaluation #2: In this evaluation, the suggestions triggered by the tool were con-
trasted with suggestions identified by expert developers. More specifically, two experts
analyzed the source code of two systems (they had previously worked on) to iden-
tify method decomposition opportunities, which in this case were considered the ideal
answer. Thereby, the experts received as input only a list of methods to analyze,
which was a sample of the methods that had at least one recommendation triggered by
JDeodorant. In this scenario, JDeodorant achieved the precision and recall of 51% and
69%, respectively. Therefore, the authors concluded that the tool is able to identify
refactoring opportunities that are usually found by human experts.

1Metric values range over the [0, 1] interval.
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2.3 JMove

JMove is a RSSE, proposed by Sales et al. [2013], that recommends Move Method
refactoring opportunities for Java systems, i.e., it detects methods located in incorrect
classes and then suggests moving such methods to more suitable ones. JMove is
influenced by the work of Tsantalis and Chatzigeorgiou [2009] that follows a classical
heuristic to detect Feature Envy bad smells: a method m envies a class C 0 when m ac-
cesses more services from C 0 than from its own class. However, the authors proposed a
novel heuristic to detect misplaced methods, based on the similarity of dependency sets.

Dependency Sets: The proposed technique first retrieves the set of structural de-
pendencies established by a given method m located in a class C. The set of structural
dependencies, which are used to compute the similarity, includes the types that are
referenced in the source code. A method establishes a dependency on a certain type C

when:

• Calls a method defined in type C.

• Accesses a field defined in type C.

• Instantiates an object of type C.

• Declares a variable or parameter of type C.

• Declares C as the return type of a method.

• Handles an exception of type C.

• Annotates the code with an annotation type C.

Next, it computes two similarity coefficients: (a) the average similarity between
the set of dependencies established by m and by the remaining methods in C; and
(b) the average similarity between the dependencies established by m and by the
methods in another class Ci. If the similarity measured in step (b) is greater than
the similarity measured in (a), it is inferred that m is more similar to the methods in
Ci than to the methods in its current class C. Therefore, Ci is a candidate class to
receive m. By computing this similarity for every class Ci of the system, the tool is
able to suggest the best class to receive the method.

Similarity Coefficients: To measure the similarity between the sets of dependencies
established by two methods the authors rely on similarity coefficients, which are
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usually employed to measure the similarity between two generic sets. The authors
investigated the use of 18 different similarity coefficients, using JHotDraw system, to
choose the most suitable one. As the result, they decided for the use of Sokal and
Sneath 2 coefficient.

Evaluation: The authors evaluated the approach using 14 open-source Java systems.
They introduced Move Method opportunities in those systems by applying random
Move Method operations. More specifically, they randomly selected a sample of 3% of
the classes in each system and manually moved a method of them to new classes, also
randomly selected. After that, the authors compared the set of suggestions triggered
by JMove with the set of synthesized Move Method instances, achieving an average
precision of 60.63% and an average recall of 81.07%.

2.4 Other Approaches

2.4.1 Slicing and PDG Based Code Extraction

Weiser [1981] formally defines slicing as a method for automatically decomposing pro-
grams by analyzing their data and control flow, represented usually in a Program De-
pendency Graph (PDG). Most studies found in the literature for function (or method)
extraction are based on the concept of program slicing. While not a comprehensive
list, we may cite the work of Gallagher and Lyle [1991]; Cimitile et al. [1996]; Lanu-
bile and Visaggio [1997]; Lakhotia and Deprez [1998]; Maruyama [2001]; Komondoor
and Horwitz [2003]; Harman et al. [2004]; Abadi et al. [2009]; and Ettinger [2012].
Nevertheless, these approaches extract code slices based on some kind of user input
(e.g., a certain variable or point of interest in the code). As presented in Section 2.2,
JDeodorant [Tsantalis and Chatzigeorgiou, 2011] is also centered on slicing. However,
in contrast to the aforementioned approaches, it provides automated identification of
Extract Method refactoring opportunities.

While not directly based on slicing, Sharma [2012] also proposes an approach
to identify Extract Method refactoring opportunities. Specifically, the author employ
a longest edge removal algorithm in a Data and Structure Dependency (DSD) graph,
which is a combination of a data flow graph and a structure dependency graph. In a
DSD graph, edges may represent: (i) data dependencies or (ii) structural dependencies,
i.e., a dependency between a statement and its enclosing block statement (e.g., if, for,
while, etc.). The author proposes a technique to partition the DSD graph, forming
disconnected sub-graphs that correspond to code fragments candidates for extraction.
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Specifically, the approach employs a heuristic to remove edges iteratively from the DSD
graph. This heuristic is centered on the idea that two statements connected by a data
dependency edge and placed closer in a DSD graph are likely to be related than two
connected statements that are placed farther in the DSD graph. Therefore, the longer
the edge, the lower the likelihood that the connected nodes should reside in a single
method.

2.4.2 Visualization Based Approaches

Visualization techniques may be employed to aid the identification of Extract Method
opportunities. For example, Kanemitsu et al. [2011] propose a visual representation of
the PDG of a method that includes the notion of the weight of edges, which reflects
as the distance between nodes. The authors define the distance between every pair of
nodes having a data dependency in terms of three possible scenarios:

• Atomic Data Dependency: A statement defines (initializes) a variable, and a
single statement references the variable.

• Spread Data Dependency: A statement defines a variable, and many other state-
ments reference the variable.

• Gathered Data Dependency: A statement references many variables that are de-
fined in other statements.

A screenshot of their supporting tool, called ReAF, is presented in Figure 2.2. ReAF
allows developers to visualize the PDG and select nodes for extraction. ReAF can
also automatically merge nodes in the PDG visualization taking as input a threshold
value for the weight of the edges. More important, these merged nodes corresponds to
Extract Method refactoring opportunities.

Similarly, Kaya and Fawcett [2013] propose an approach, based on a treemap vi-
sualization, that uses density of variable references in code fragments to identify main
tasks that could be extracted from large methods, composed of several blocks. Their
treemap visualization tool helps developers to observe and analyze suggested refactor-
ings. In the proposed technique, an input method is represented with a placement tree
where each node represents a different scope. Scopes are defined by all code enclosed
within braces. A scope may include children scopes, forming a hierarchical structure.
The authors define the notion of dominant variables, which are the most referenced
ones inside a particular scope. A single dominant variable is assigned for each scope
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Figure 2.2. Screenshot of ReAF tool [Kanemitsu et al., 2011]

using a set of proposed rules to cover the cases of ties. In the proposed visualiza-
tion, illustrated in Figure 2.3, the nodes of the treemap are colored according to their
dominant variable.

Moreover, the authors propose the extraction of code when any of the two fol-
lowing patterns are observed: (i) a large code fragment with a color different from its
parent and (ii) consecutive sibling nodes with the same color. The authors evaluated
their tool on C++ systems and reported cases of code fragments extracted from long
methods with the aid of their visualization approach.

Figure 2.3. Treemap visualization proposed by Kaya and Fawcett [2013]
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2.4.3 Combining Structural and Linguistic Information

Another line of research aims to combine structural and linguistic information extracted
from source code to identify groups of related statements. Sridhara et al. [2011] propose
an approach to: (i) automatically identify code fragments that represent a high level
action and (ii) describe it using natural language. Their technique may be applied, for
example, to automatically generate descriptive source code comments. The authors
propose a set of heuristics, considering structural and linguistic information, to group
related statements that fall into one of the following patterns:

1. A sequence of similar statements that represents a single action.

2. A conditional block that performs an action with subtle variations based on its
condition.

3. Loop constructs that implement a set of predefined actions, e.g., find an element
in a collection.

For each recognized pattern, the authors define specific rules to generate a phrase, in
natural language, describing the action. The authors evaluated their approach with
a sample of 75 summarized code fragments and 15 human evaluators, reporting that:
(i) in 94.6% of the cases evaluators agreed that the identified code fragments actually
represented a high level action; and (ii) in 89.7% of the cases evaluators agreed that
the description generated by the approach was appropriate.

Although the authors proposed their technique originally for automatic documen-
tation generation, they also mention other usage scenarios, including the identification
of Extract Method opportunities. However, its applicability is limited to the patterns
the technique implements.

Wang et al. [2014] presents the SEGMENT tool, which also combines structural
and linguistic information. SEGMENT separates meaningful blocks within a method,
by inserting blank lines, to increase readability. The tool uses a heuristic based on
both program structure and naming information to identify meaningful blocks, i.e.,
consecutive statements that logically implement a high level action. The proposed
approach is composed by the following phases:

1. Identify Initial Blocks: It groups related statements to form blocks of code. These
statements may be related by: (i) syntactical similarities (SynS blocks); (ii) a
data-flow chain (DFC blocks); and (iii) compound statements including {switch,
while, if, for, try, do, synchronized} (E-SWIFT blocks).
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2. Remove Block Overlap: It joins consecutive overlapping blocks according to a set
of proposed rules.

3. Refine SynS Blocks: It splits large SynS blocks using additional information
extracted from word usage and naming conventions.

4. Merge Short Blocks: It merges very small blocks or individual statements with
other blocks, also using linguistic information.

In the final output, blank lines are inserted between each identified block, aiding the
comprehension of the code. The authors report that SEGMENT’s effectiveness from a
code reader’s perspective achieved a precision of 66% and a recall of 87.6%. Although
their approach does not focus on the identification of Extract Method opportunities,
their technique can be adapted to it.

2.4.4 Leveraging Current Refactoring Tools

Besides automated identification of Extract Method opportunities, some studies focus
on issues of current refactoring tools. For example, Murphy-Hill and Black [2008a]
reported a study to investigate the usability of current refactoring tools. The authors
observed several usability issues in a study where 11 experienced programmers per-
formed a number of Extract Method refactoring tasks using Eclipse IDE. Specifically,
the study revealed that: (i) programmers need support in making a valid selection to
prevent errors; and (ii) programmers need expressive and understandable feedback to
recover from violated preconditions. As result of this study, the authors defined a set
of guidelines that could improve the user experience using refactoring tools. Moreover,
the authors designed three refactoring assisting tools according to the proposed guide-
lines to demonstrate how speed, accuracy, and user satisfaction can be significantly
increased.

On the other hand, Ge et al. [2012] tackle the automatic refactoring tools underuse
problem. The authors found that one cause of this problem is that developers some-
times fail to recognize that they are going to refactor. For this reason, the authors
propose BeneFactor, a refactoring tool that detects developers’ manual refactoring,
reminds them that automatic refactoring is available, and can automatically com-
plete their refactoring. Specifically, they rely on a set of manual refactoring workflow
patterns, including those frequently adopted by developers when performing Extract
Method, to detect such scenarios.
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2.5 Final Remarks

This chapter presented an overview of the state-of-the-art in refactoring recommenda-
tions system, focusing on Extract Method refactorings. Even though most approaches
are based on the concept of slicing and PDGs, such as JDeodorant, recent studies also
explore structural and linguistic information, visualization techniques, and density of
variable references.

In the next chapter, we detail our Extract Method refactoring recommendation
approach. However, we can already outline two main differences from the state-of-the-
art approaches:

1. We do not rely on slicing techniques to identify related statements to be extracted.
Rather, we rely on the similarity between dependency sets, influenced by JMove’s
technique to measure similarity between methods. Nevertheless, we extended
JMove’s notion of dependencies to better fit our problem.

2. We propose a heuristic for ranking Extract Method opportunities, i.e., we define
a scoring function that aims to express the relevance of each opportunity.





Chapter 3

Proposed Approach

This chapter explains in details the proposed approach for recommending Extract
Method refactoring opportunities, previously introduced in Section 1.2. We start by
discussing each of the phases involved in the recommendation process, namely the
candidates generation phase (Section 3.1) and the ranking phase (Section 3.2), we also
provide a full example to illustrate the approach (Section 3.3). Following, we present
a preliminary exploratory study (Section 3.4) conducted when designing the solution
and the tool we built to implement the approach (Section 3.5). Finally, we end this
chapter with some final remarks (Section 3.6).

3.1 Candidates Generation

This phase is responsible for identifying all Extract Method refactoring possibilities for
a method, which we refer as Extract Method candidates. In this context, a candidate is
a range of statements that could be extracted into a new method, without introducing
any compilation error or behavior modification. The highlighted code fragment shown
in Figure 3.1 is an example of an Extract Method candidate. Note that many other
candidates can be identified in that method. For example, lines 09–13 or lines 09–14
are also potential candidates, just to cite a few.

3.1.1 Candidates Generation Algorithm

Before the identification of candidates, we must first extract from the source code the
relevant information our algorithm needs; thus creating a model representing the source
code of the method. The main entities represented in this model are statements and
blocks, which are series of sequential statements that follow a linear control flow in the

19
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01 public void mouseReleased(MouseEvent me) { 
02 

1/01 

for (Button btn : buttons) { 
03 2/01 int cx = btn.fig.getX() + btn.fig.getWidth() - btn.icon.getIconWidth(); 
04 2/02 int cy = btn.fig.getY(); 
05 2/03 int cw = btn.icon.getIconWidth(); 
06 2/04 int ch = btn.icon.getIconHeight(); 
07 2/05 Rectangle rect = new Rectangle(cx, cy, cw, ch); 
08 

2/06 

if (rect.contains(me.getX(), me.getY())) { 
09 3/01 Object metaType = btn.metaType; 
10 3/02 FigClassifierBox fcb = (FigClassifierBox) getContent(); 
11 3/03 FigCompartment fc = fcb.getCompartment(metaType); 
12 3/04 fc.setEditOnRedraw(true); 
13 3/05 fc.createModelElement(); 
14 3/06 me.consume(); 
15 3/07 return; 
16 } 
17 } 
18 1/02 super.mouseReleased(me); 
19 } 

Figure 3.1. An Extract Method candidate from ArgoUML system (lines 10–13)

Control Flow Graph (CFG).1 The structure of such model is represented in Figure 3.1,
where we can notice that each statement is labeled using the X/Y pattern. In this case,
X and Y denote the block and the statement, respectively. For example, 2/03 is the
third statement of the second block, which declares variable cw.

Using the model aforementioned described as input, we generate all Extract
Method candidates using Algorithm 1.

Algorithm 1 Candidates generation algorithm
Input: A method M

Output: List with Extract Method candidates

1: Candidates ;
2: for all block B 2M do
3: n statements(B)
4: for i 1, n do
5: for j  i, n do
6: C  subset(B, i, j)
7: if isV alid(C) then
8: Candidates Candidates+ C

9: end if
10: end for
11: end for
12: end for

The three nested loops in Algorithm 1 (lines 2, 4, and 5) iterates through each
subsequence of statements, of each block, to consider them for extraction. More im-
portant, this algorithm enforces the following properties:

1A CFG is a directed graph in which nodes represent basic blocks and edges represent control flow
paths [Allen, 1970].
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• Only contiguous statements inside a block are selected, as the selection is defined
by the range i to j. In Figure 3.1, for example, it is not possible to select a
candidate with 3/02 and 3/04 without including 3/03.

• It is not possible to select only part of a statement. That is, when a statement is
selected, the respective children statements are also included. In Figure 3.1, for
example, when statement 2/06 is selected, its children statements 3/01 to 3/07
are also included.

• The selected statements are direct children of a single block of statements. In
Figure 3.1, for example, it is not possible to generate a candidate with both 2/06
and 3/01 since they belong to distinct blocks.

3.1.2 Preconditions Checking

It is important to note that not every possible subsequence turns into a candidate
because Algorithm 1 relies on the isV alid function (line 7) to check two kinds of
preconditions: Viability Preconditions and Quality Preconditions.

3.1.2.1 Viability Preconditions

We check whether the candidates are applicable and preserve the program’s behavior.
For example, when two or more variables are assigned by a code fragment selected
for extraction and they are further used by other statements, we cannot apply the
Extract Method. Fundamentally, there is no way to define a method with multiple
return values in Java, unless an auxiliary data structure is used.2 The code fragment
enclosed at lines 03–05 in Figure 3.1 is an example of such scenario since variables cx,
cy, and cw are assigned in these statements and further used at line 07.

Another example of an invalid candidate is the code fragment enclosed by lines
08–16. In this case, extracting the code into a new method would change the behavior
of the exiting jump introduced by the return statement at line 15. More specifically,
instead of exiting the mouseReleased method, it would only exit the new method
created by the extraction. Currently, our prototype implementation relies on the pre-
conditions defined by the Extract Method refactoring tool provided by the Eclipse IDE.

2Currently, we implemented our approach for Java. However, it is straightforward to adapt it to
other object-oriented languages.
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3.1.2.2 Quality Preconditions

We also check whether the candidates to extraction follow minimal design quality
preconditions. Thus, we propose a size threshold to filter out the extreme cases in
which a candidate would result in a poor-quality recommendation because of its small
size (e.g., a candidate with a single statement) and also when it is too large (e.g., a
candidate encompassing almost all statements of the method).

This size threshold is defined as the minimum number of statements K. More
specifically, assuming that C is the set of statements to be extracted and M 0 are the
remaining statements in the method, we check the following condition:

|C| � K ^ |M 0| � K

Therefore, a valid candidate must have at least K statements and its extraction
must keep the original method with at least K statements. This condition implies that
methods with less than 2⇥K statements do not produce candidates.

It is important to note that when a certain statement contains child statements,
they are also considered in the counting. For example, the if statement at line 09 in
Figure 3.1 has a size of 8, because it contains 7 children of size 1. On the other hand,
the method call at line 18 only count as 1, as it is a single statement with no children.

3.1.3 Computational Complexity

We define the computational complexity of Algorithm 1 in terms of the number of
times the isV alid function is called. In the worst case scenario, when all statements of
the method belongs to a single block, the complexity is O(n2), where n is the number
of statements of the method. The computational complexity of the isV alid function
itself is hard to determine in practice because its implementation relies on operations
provided by the refactoring tools of the underlying IDE. However, we can speculate
that the complexity is at least proportional to the size of the method, i.e., ⌦(n). On
the other hand, as the generation of candidates for a method is independent from other
methods of the system, when we consider the generation of candidates for N methods,
the cost would increase linearly.

3.2 Ranking

After the candidates generation step, a scoring function is used to rank the candidates
and show the most relevant ones as Extract Method recommendations. The intuition is
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that Extract Method recommendations should be as independent as possible from the
original method, in terms of dependencies, in order to hide an autonomous and well-
defined computation. In this section, we describe the kinds of structural dependencies
considered for the computation of the function (Section 3.2.1) and how the information
extracted from the structural dependencies is used to compute the final score of a
candidate (Section 3.2.2).

3.2.1 Structural Dependencies

Statements may read variables, invoke methods, and perform other operations that
induce dependencies on other source code entities of the system (or external libraries).
This information may be used to characterize and discriminate concerns in the source
code. More specifically, considering a selection of statements S, we may compute its
set of dependencies, denoted by Dep(S), by extracting the distinct entities referenced
in S. Therefore, we represent the structural dependencies of a code fragment using
dependency sets. Besides, our approach considers three kinds of dependencies, with
distinct levels of granularity: (i) variables, (ii) types, and (iii) packages.

3.2.1.1 Variables

The dependency set of S, considering variables, is denoted by Depv(S). If a statement s
from a selection of statements S declares, assigns, or reads a variable v, then v is added
to Depv(S). In a similar way, reads from and writes to formal parameters and fields
are also considered when computing Depv(S).

For example, the statement at line 03 of Figure 3.1 writes to variable cx, which
denotes a dependency on cx. Furthermore, the statement at line 08 reads from param-
eter me, which denotes a dependency on me.

3.2.1.2 Types

The dependency set of S, considering types, is denoted by Dept(S). If a statement s

from a selection of statements S depends on a type (class or interface) T , then T is
added to Dept(S). Specifically, the following scenarios denote the dependency on a
type:

• If s calls a method m, the type T that declares m is included in Dept(S).

• If s reads from or writes to a field f , the type T that declares f is included in
Dept(S).
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• If s creates an object of type T , then T is included in Dept(S).

• If s declares a variable v, the type T of v is included in Dept(S).

• If s handles an exception of type T , then T is included in Dept(S).

• If s casts an object to type T , then T is included in Dept(S).

• If s contains a type literal of type T , then T is included in Dept(S).

Considering Figure 3.1, the statements at lines 11 and 12 depend on type
FigCompartment, but for distinct reasons. The former declares a variable of type
FigCompartment, while the latter invokes method setEditOnRedraw, which is defined
on type FigCompartment.

When handling parameterized types, we include the main type and all its type
parameters in Dept(S). This rule is applied recursively in the case of nested pa-
rameterized types. For example, when we declare a variable of type Map<String,
List<FigCompartment>>, types Map, String, List, and FigCompartment are included
in Dept(S).

It is worth noting that we may optionally ignore a list of known common types,
such as basic types of the language (e.g., String, Object, etc.). More specifically, our
supporting tool is preconfigured with the same filters used in JMove, which ignores
types from the core Java API. We assume that these types are not relevant when
characterizing the dependencies established by methods, analogous to stop words in
natural language processing systems. However, further work is necessary to confirm
that assumption, as we discuss in Section 5.3.

3.2.1.3 Packages

The dependency set of S, considering packages, is denoted by Depp(S). For each
type T included in Dept(S), as described in the previous section, the package where
T is implemented is included in Depp(S). Additionally, all its parent packages are
included in Depp(S). However, similarly to the list of types to ignore, we may optionally
ignore some common root packages, such as com, org, or java, as they do not denote
meaningful modules.

Considering Figure 3.1, the statement at line 11 depends on type
FigCompartment, thus it also depends on org.argouml.uml.diagram.ui, which is
the package that contains FigCompartment. Besides, we also consider that the state-
ment depends on org.argouml.uml.diagram, org.argouml.uml, and org.argouml.



3.2. Ranking 25

The package org is not in this list because it is ignored when using the default settings
of our tool.

3.2.2 Computing the Score of Candidates

Let m0 be the selection of statements of an Extract Method candidate for method m

and m00 the remaining statements in m. We can compute two dependency sets from
the dependencies in m0 and m00, which we denote by Dep0 and Dep00, respectively.

Dep’’ Dep’ 

Low similarity 
High score 

Dep’’  Dep’ 

High similarity 
Low score 

int m(A a) { 

 B b = a.getB(); 

  

  

 a.m2(); 

} 

Dep’’ 
(Remaining) 

Dep’ 
(Extracted) 

 C c = new C(); 

 D d = a.x; 

Computation of Dep’ and Dep’’ 

A 
B 

A 
C 

D 

Figure 3.2. Overview of the scoring strategy

The reasoning behind our scoring strategy is that the sets Dep0 and Dep00 should
be as dissimilar as possible. As illustrated in Figure 3.2, the lower the intersection
(similarity) between Dep0 and Dep00, the higher the score since there will be a low
coupling between the extracted method and the remaining code fragment. In this
scenario, we are segregating distinct concerns by extracting the method. On the other
hand, the higher the intersection (similarity), the lower the score since there will be a
high coupling between the extracted method and the remaining code fragment.

The same rationale can be used to the considered kinds of dependencies: (i) vari-
ables, where methods should encapsulate their use (and therefore the partial compu-
tation they are used for); (ii) types, where methods should preferably hide the services
provided by them, reducing the impact of changes in their members; and (iii) packages,
which is analogous to types, but at a higher level of abstraction.

3.2.2.1 Distance Between Sets

To compute the score, we need to define the notion of distance between the aforemen-
tioned sets Dep0 and Dep00, which is defined as:

dist(Dep0, Dep00) = 1� 1

2

h a

(a+ b)
+

a

(a+ c)

i
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where a = |Dep0
T

Dep00|, b = |Dep0 \Dep00|, and c = |Dep00 \Dep0|.

This distance is based on the Kulczynski set similarity coefficient [Everitt et al.,
2011; Sales et al., 2013; Terra et al., 2013a]. Kulczynski measures the similarity between
two sets, returning a value between 0 (lowest similarity) and 1 (highest similarity).
The Kulczynski distance between two sets is obtained by subtracting the Kulczynski
coefficient from 1. Therefore, the highest such distance, the highest the dissimilarity
of the sets. Section 3.4 presents an exploratory study we conducted with other five set
similarity coefficients in order to decide to use Kulczynski.

3.2.2.2 Scoring Function

Let m0 be the selection of statements of an Extract Method candidate for method m

and m00 the remaining statements in m. The score of m0 is defined as:

s(m0) =
wv ⇥ dist(Dep0v, Dep00v) + wt ⇥ dist(Dep0t, Dep00t) + wp ⇥ dist(Dep0p, Dep00p)

wv + wt + wp

where wv, wt, and wp are weight factors for each kind of dependency (variables, types,
and packages, respectively). The denominator is used to normalize the score so that
the value ranges from 0 to 1.

In the exploratory study conducted in Section 3.4, we investigate the use of
weighting schemes that enable/disable each level of dependency. However, unless oth-
erwise noted, when we refer to the scoring function we are using its simplest form,
where the weight of each component is equal to 1:

s(m0) =
1

3

h
dist(Dep0v, Dep00v) + dist(Dep0t, Dep00t) + dist(Dep0p, Dep00p)

i

In the special case where Dep0 \ Dep00 is empty for all kinds of dependencies
(variables, types, and packages) we assign zero to the score of the candidate. The
reason for this rule is that there is no merit in extracting code that does not encapsulate
any concern. Likewise, the score is also zero when the remaining statements do not
encapsulate any concern. In summary, the score of an Extract Method candidate is
zero when any of the following conditions hold:

|Dep0v \Dep00v|+ |Dep0t \Dep00t|+ |Dep0p \Dep00p| = 0 (condition 1)

|Dep00v \Dep0v|+ |Dep00t \Dep0t|+ |Dep00p \Dep0p| = 0 (condition 2)
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3.2.3 Filtering the Rank of Candidates

By the exhaustive nature of our candidates generation algorithm, there are usually
dozens of candidates for each method. Since users are usually interested on receiving
just a few good recommendations, we filter the list of candidates according to the
following parameters:

• Maximum Recommendations per Method: Limits the number of recommendations
for a single method. This parameter is preset to 3 (changeable), which means that
only the top three ranked recommendations of each method are considered.

• Minimum Score Value: Filters out recommendations with score value lower than
a threshold parameter (ranging from 0 to 1). This parameter is preset to 0
(changeable), which means that no recommendation is filtered.

In Chapter 4, we discuss the influence of these parameters on the results of our
approach, considering their impact on precision and recall.

3.2.4 Computational Complexity

To compute the dependency sets Dep0 and Dep00, we need to perform a single traversal
through each statement of the method, which is done in linear time to the number of
statements. Besides, we must compute the intersection between these sets, which can
also be done in linear time, assuming a O(1) set look-up operation. Finally, the ranking
requires sorting the list of candidates, which can be done in O(n lg(n)) time, where n

is the number of candidates. Similarly to the first phase, as the ranking of candidates
of a method is independent from other methods of the system, when we consider the
generation of candidates for N methods, the cost increases linearly.

3.3 The Approach in Action

This section presents an illustrative example, walking through each step of our recom-
mendation approach applied to a given method. Figure 3.3 illustrates method execute
from class LoginAction of the MyWebMarket system. Throughout this section, we al-
ways refer to such method since we aim to demonstrate how our approach provides
Extract Method refactoring opportunities for it.

This example method is responsible for handling a request for logging in a user
in a Web application. The method uses the Hibernate API to retrieve the user record
corresponding to the provided information from a database. When it succeeds, the
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01 public String execute() throws Exception { 
02 1/01 logger.info("Starting execute()"); 
03 1/02 Session sess = HibernateUtil.getSessionFactory().openSession(); 
04 1/03 Transaction t = sess.beginTransaction(); 
05 1/04 Criteria criteria = sess.createCriteria(User.class); 
06 1/05 criteria.add(Restrictions.idEq(this.user.getUsername())); 
07 1/06 criteria.add(Restrictions.eq("password", this.user.getPassword())); 
08 1/07 User user = (User) criteria.uniqueResult(); 
09 1/08 t.commit(); 
10 1/09 sess.close(); 
11 

1/10 

if (user != null) { 
12 2/01 ActionContext.getContext().getSession().put(AUTHENTICATED_USER, user); 
13 2/02 logger.info("Finishing execute() -- Success"); 
14 2/03 return SUCCESS; 
15 } 
16 1/11 this.addActionError(this.getText("login.failure")); 
17 1/12 logger.info("Finishing execute() -- Failure"); 
18 1/13 return INPUT; 
19 } 

Figure 3.3. An example method extracted from the MyWebMarket system

user session is set up and a success indicator is returned. When the user record is not
found, a failure message is displayed and the method returns a failure indicator. The
method also logs execution information, using the Log4j API.

3.3.1 Candidates Generation

Our approach first analyzes the method to construct its corresponding model (refer to
Section 3.1.1). As we can note by the labeling of the statements in Figure 3.3, two
blocks of statements are identified. The first block is the top level block of the method,
containing 13 statements (lines 02 to 18). The second block is enclosed by the if
statement at line 11, containing only three statements (lines 12 to 14).

Next, for each of these two blocks, we iterate through every possible subsequence
of statements, checking whether they are valid Extract Method candidates according
to the viability and size threshold preconditions (refer to Algorithm 1). Table 3.1 rep-
resents each of these candidates, grouping them by their corresponding block (Block 1
or Block 2 ). Inside a particular block, a cell at row i and column j—which we de-
note by the tuple (i, j)—corresponds to the Extract Method candidate enclosed by the
statements i to j of the block. Therefore, we display in each cell:3

• The – symbol when it does not satisfy the size threshold precondition, which in
this example we assume to be 3 statements, i.e., K = 3.

3Cells below the main diagonal are empty because they correspond to cases when j < i.
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• The ⇥ symbol when it does not satisfy the viability precondition, although it
satisfies the size threshold precondition.

• The score of the candidate when it is valid.

Table 3.1. Candidates generated from the example method

Block 1

i\j 1 2 3 4 5 6 7 8 9 10 11 12 13

1 – – ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ 0.61 ⇥ – – –

2 – – ⇥ ⇥ ⇥ ⇥ ⇥ 0.81 ⇥ ⇥ – –

3 – – ⇥ ⇥ ⇥ 0.63 0.63 ⇥ ⇥ ⇥ –

4 – – 0.50 0.61 0.54 0.54 ⇥ ⇥ ⇥ 0.36

5 – – 0.53 0.47 0.42 ⇥ ⇥ ⇥ 0.30

6 – – 0.00 0.00 ⇥ ⇥ ⇥ 0.24

7 – – 0.00 ⇥ ⇥ ⇥ 0.35

8 – – ⇥ ⇥ ⇥ 0.42

9 – ⇥ ⇥ ⇥ 0.49

10 ⇥ ⇥ ⇥ 0.61

11 – – 0.46

12 – –

13 –

Block 2

i\j 1 2 3

1 – – 0.48

2 – –

3 –

From 91 distinct (i, j) tuples in Block 1, 28 do not satisfy the size threshold
precondition (i.e., contain less than 3 statements) and 41 do not satisfy the viability
preconditions (i.e., causes syntactical errors or behavior changes). As an example, tuple
(3, 7) is not viable since two variables (t and user) are declared inside the extracted
code fragment and further used in the code. As another example, tuple (10, 10) is
also not viable since by extracting a code fragment with a return statement inside a
conditional the behavior of the program would change. In summary, 22 out of the 91
tuples from Block 1 are valid candidates.

In Block 2, on the other hand, only 1 out of the 6 possible tuples is a valid
candidate, the other 5 tuples are discarded due to the size threshold. In total, this
phase yields a list of 23 candidates to be ranked in the second phase of the approach.

3.3.2 Ranking

Next, we need to compute the score for each candidate identified at the first phase.
Therefore, we need to identify the dependencies present in the source code and build
the sets Dep0 and Dep00, as described in Section 3.2.2.
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In order to illustrate the computation of the scoring function, we will consider Ex-
tract Method candidate 1/02–09, i.e., the extraction of the statements 2 to 9 of Block 1.
We will focus on the first extracted statement (1/02). It declares variable sess, which
is added to Dep0v. The type of variable sess is Session, which is added to Dep0t. Be-
sides, there are two method invocations (getSessionFactory and openSession) which
triggers the addition of their declaring types (HibernateUtil and SessionFactory,
respectively) to Dep0t. By adding types Session and SessionFactory, we also add
their package org.hibernate to Dep00p. Although package org.hibernate has a par-
ent package org, it is disregarded due to the ignore list of common root packages. Last,
package classes of type HibernateUtil is added to Dep00p.

The sets Dep0v, Dep0t, and Dep0p are built by repeating this procedure for every
statement to be extracted. Similarly, the sets Dep00v, Dep00t, and Dep00p are built by
repeating this procedure for the remaining statements. Table 3.2 presents the depen-
dencies identified for candidate 1/02–09. The left column lists the dependencies only
present in the remaining statements (Dep00 \ Dep0), while the right column lists the
dependencies only present in the extracted statements (Dep0 \Dep00). The center col-
umn contains the common dependencies, found both in the extracted and remaining
statements (Dep0

T
Dep00).

Table 3.2. Dependency sets computed for the example candidate

Variables

c = |Dep

00
v \Dep

0
v| = 4 a = |Dep

0
v

T
Dep

00
v| = 1 b = |Dep

0
v \Dep

00
v| = 4

INPUT
AUTHENTICATED_USER
SUCCESS
logger

user criteria
sess
t
this.user

Types

c = |Dep

00
t \Dep

0
t| = 6 a = |Dep

0
t

T
Dep

00
t| = 1 b = |Dep

0
t \Dep

00
t| = 7

SystemConstants
Action
ActionContext
ActionSupport
Map
Category

LoginAction HibernateUtil
User
Criteria
Session
SessionFactory
Transaction
Restrictions

Packages

c = |Dep

00
p \Dep

0
p| = 5 a = |Dep

0
p

T
Dep

00
p| = 1 b = |Dep

0
p \Dep

00
p| = 2

com.opensymphony
com.opensymphony.xwork2
java.util
org.apache
org.apache.log4j

classes org.hibernate
org.hibernate.criterion

The values from Table 3.2 allow us to compute the distance between the depen-
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dency sets, using the formula presented at Section 3.2.2.1:

dist(Dep0v, Dep00v) = 1� 1

2

h 1

(1 + 4)
+

1

(1 + 4)

i
= 0.8

dist(Dep0t, Dep00t) = 1� 1

2

h 1

(1 + 7)
+

1

(1 + 6)

i
= 0.866

dist(Dep0p, Dep00p) = 1� 1

2

h 1

(1 + 2)
+

1

(1 + 5)

i
= 0.75

Thus, the score is calculated by replacing the distance values computed above
in the score equation presented in Section 3.2.2.2. In this case, the score value for
candidate 1/02–09 is:

s(m0) =
1

3

h
0.8 + 0.866 + 0.75

i
= 0.805

The score values calculated for all 23 candidates are presented in Table 3.1. As-
suming parameter Maximum Recommendations per Method as 3 and Minimum Score
Value as 0, the final list of recommendations is:

1. Extract statements 1/02–09 (score of 0.805)

2. Extract statements 1/03–09 (score of 0.63)

3. Extract statements 1/03–08 (score of 0.63)

The higher score of the first recommendation (0.805) is due the fact that such
Extract Method candidate encapsulates all the code responsible for the database opera-
tion, isolating variables, types, and packages related to module Hibernate. In contrast,
the second recommendation (score of 0.63) does not include statement 1/02 and there-
fore fails to encapsulate the entire database operation concern, i.e., entities such as
variable sess, type Session, and package org.hibernate are not referenced only by
the code fragment suggested to be extracted.

3.4 Exploratory Study

The final design of our solution required a preliminary evaluation in order to calibrate
alternative strategies to rank the refactoring opportunities. In this section, we report
an exploratory study—wich was conducted in a controlled environment—to address
the following overarching research questions:
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RQ #1 – How many known Extract Method instances can be found by the proposed
approach?

RQ #2 – What is the best set similarity coefficient and dependency set strategy to
rank Extract Method candidates?

RQ #3 – What is the impact of the minimal number of statements threshold on the
provided Extract Method recommendations?

RQ #4 – What is the precision of the proposed approach?

3.4.1 Target System

This first study relies on a simple web-based e-commerce system, called MyWebMarket,
which includes functions to manage customers and products, handle purchase orders,
generate reports, etc. This system was implemented two years ago by Terra et al. [2012]
to evaluate refactoring recommendations to repair software architectural violations.
Despite its small size—1, 016 LOC and 116 methods—MyWebMarket was carefully
designed to resemble on a smaller scale the architecture of a large real-world human
resource management system [Terra and Valente, 2009].4

MyWebMarket was first implemented as a monolithic system (version used in this
study) and has evolved to more modularized versions. More important, we identified
25 Extract Method instances that were applied over the system evolution, which we
used in the study setup.

3.4.2 Study Setup

To evaluate the recommendations triggered by our tool, we rely on an oracle, which
is a set of well-known Extract Method instances. A recommendation is considered
relevant when the oracle contains it, otherwise it is not relevant. Therefore, given a set
of recommendations R and a set of known Extract Method instances O, the recall and
precision of our approach is computed as follows:

recall =
|R

T
O|

|O|

precision =
|R

T
O|

|R|

4
MyWebMarket source is publicly available at: http://aserg.labsoft.dcc.ufmg.br/jextract

http://aserg.labsoft.dcc.ufmg.br/jextract
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Our oracle contains 25 well-known Extract Method opportunities, as previously
mentioned. We define an Extract Method opportunity as a sequence of statements to
be extracted into a new method. It is worth noting that we only consider equal recom-
mendations that suggest the extraction of exactly the same sequence of statements.

We used the minimal size threshold of 3 statements (i.e., K = 3) and the canonical
formula for the ranking function described in Section 3.2.2.2 (i.e., using a uniform
weighting scheme and the Kulczynski coefficient) to run this experiment. Besides, we
ignored dependencies on types of packages java.lang and java.util. Similarly, we
ignore dependencies on the root packages com, org, java and javax.

In particular cases, the results are referred as Top n recall or precision, which
means that we are computing the recall or precision using n as the parameter Maximum
Recommendations per Method, introduced in Section 3.2.3.

3.4.3 RQ #1: How many known Extract Method instances

can be found by the proposed approach?

This research question investigates if our approach is able to detect the known Ex-
tract Method instances, regardless of their positions in the rank. More specifically, we
check whether such instances are identified as valid candidates in the first phase of the
approach (refer to Section 3.1).

Our approach was able to detect 14 Extract Method instances (56%) as valid
candidates. The remaining 11 instances require some kind of code transformation
to attend the preconditions of the candidates generation phase. Most of them (10)
require the extraction of non-contiguous code. As an example, Figure 3.4 presents an
Extract Method instance that our approach did not detect as a valid candidate. Since
such method should implement only functional concerns, the persistence-related code
(lines 3–4 and 12–14) should be extracted into a new method. However, this code
fragment is non-contiguous. As a matter of fact, if we move lines 3–4 to after line 11
(which preserves behavior in this case), our approach would suggest the desired Extract
Method recommendation. Likewise, all failing instances fit in this pattern, except for
one instance in which the repetition of some statements were required prior to the
method extraction.

In the following research questions, we considered only the 14 contiguous Extract
Method instances since it would be pointless to measure the effectiveness of the ranking
when the expected candidate is not even returned from the candidates generation phase.
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1 public String save() throws Exception {
2 logger.info( "Starting save()" );
3 Session s= HibernateUtil.getSessionFactory (). openSession ();
4 Transaction t = sess.beginTransaction ();
5

6 purchaseOrder.setOrderDate(new Date ());
7 for (PurchaseOrderItem item :
8 purchaseOrder.getPurchaseOrderItems ()){
9 item.setPurchaseOrder(this.purchaseOrder );

10 }
11

12 s.save(this.purchaseOrder );
13 t.commit ();
14 s.close ();
15

16 this.task = SystemConstants.UD_MODE;
17 ....
18 }

Figure 3.4. A non-contiguous Extract Method instance (lines 3–4 and 12–14)

3.4.4 RQ #2: What is the best set similarity coefficient and

dependency set strategy to rank Extract Method

candidates?

This research question investigates different set similarity coefficients to compute the
distance between sets of dependencies, as presented in Table 3.3. To measure the
similarity between Dep0 and Dep00, the considered coefficients rely on variables a (the
number of dependencies on both sets), b (the number of dependencies on Dep0 only),
and c (the number of dependencies on Dep00 only), as described in Section 3.2.2.1.

Table 3.3. General Purpose Similarity Coefficients

Coefficient Definition Range

a. Jaccard a/(a+ b+ c) 0–1*

b. Sorenson 2a/(2a+ b+ c) 0–1*

c. Sokal and Sneath 2 a/[a+ 2(b+ c)] 0–1*

d. PSC a2/[(b+ a)(c+ a)] 0–1*

e. Kulczynski 1
2 [a/(a+ b) + a/(a+ c)] 0–1*

f. Ochiai a/[(a+ b)(a+ c)]
1
2 0–1*

The symbol “⇤” denotes the maximum similarity.

The six evaluated similarity coefficients were drawn from an initial list of 18
coefficients studied in a previous work of Terra et al. [2013a]. We have not included
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the other 12 coefficients because they require an additional parameter, which is not
applicable in our context. Specifically, they required a parameter d, which corresponds
to the size of the set of all entities on neither Dep0 nor Dep00. However, since we only
consider the dependencies in a method, they are always on either Dep0 or Dep00 (or
both).

Additionally, we also investigated the impact of excluding some kinds of depen-
dencies in our scoring function by assigning a value of zero for one or more of the weight
factors wv, wt, or wp (refer to Section 3.2.2.2). For example, wv = 0 excludes variable
dependencies information.

For each set similarity coefficient reported in Table 3.3, we tested the recommen-
dations produced by each possible combination of dependency sets, as presented in
Figure 3.5. In this figure, V stands for Variables, T stands for Types , and P for Pack-
ages. For example, TV stands for a compound score of Types and Variables dependency
sets, but excluding Packages.

Figure 3.5 reports the Top n recall for the tested combinations of similarity coef-
ficients and dependency sets, regarding only the 14 Extract Method instances respect-
ing the proposed preconditions (as discussed in the answer to RQ #1). Recall, in this
case, is defined as the percentage of instances covered by the first n recommendations
triggered for each method in the system. For example, using Jaccard and only Type
dependencies we were able to cover 4 (28.6%) Extract Method instances relying solely
on the first recommendation (Top 1). Thus, the results reported in Figure 3.5 supports
three central findings:

• There are two well-defined groups of similarity coefficients: (i) ineffective
coefficients—namely Jaccard, Sorenson, and Sokal and Sneath 2—that, indepen-
dently of the considered dependency sets, achieved the maximum Top 1 recall of
28.7%; and (ii) effective coefficients—namely Ochiai, PSC, and Kulczynski—that
achieved Top 1 recall values above 80%. It is worth noting that, interestingly,
Sokal and Sneath 2 was the most effective coefficient in the study of Sales et al.
[2013].

• If we consider a single strategy to compute dependency sets (i.e., just T, just V,
or just P), we can infer that dependency sets considering just Types (T) are more
effective.

• Combining dependency sets can slightly improve the results. For example, when
we use the TV strategy (i.e., dependency sets for types and variables), Top 1 recall
is always greater than or equal to the ones achieved using just T or V. Moreover,
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Figure 3.5. Top n recall using different scoring strategies (MyWebMarket)
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when we compare TVP against TV, Top 2 and Top 3 recall are higher in five out
of six coefficients (Ochiai is the exception).

In summary, the combination of the Kulczynski coefficient and the TVP strategy
achieved the maximal recall values. Using such combination, we could provide cor-
rect recommendations for 12 out of 14 Extract Method instances (85.7%) using only
the first recommendation (Top 1). Moreover, the recall increases to 100% on Top 2.
Although other configurations were only slightly inferior, we decided to rely on the
Kulczynski coefficient and the TVP configuration in our approach. In Chapter 4, we
further investigate ranking strategies on a larger dataset.

3.4.5 RQ #3: What is the impact of the minimal number of

statements threshold on the provided Extract Method

recommendations?

The results from RQ #2 supported the choice of the Kulczynski coefficient and the TVP
dependency sets for our approach. This research question, on the other hand, inves-
tigates the impact of the minimal threshold parameter (K) on the recall. Figure 3.6
shows the Top n recall values with the minimal thresholds ranging from 1 to 6. As
can be inferred, the optimal choice for the minimal threshold is indeed 3 statements,
which was the value used when investigating the RQ #2. On one hand, when using
values higher than 3, the Top 2 recall decreases from 100% (K=3) to 22% (K=6). On
the other hand, when using values lower than 3, our approach detects many spurious
results that achieves a high score but are meaningless due to their size (e.g., one or two
statements).
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Figure 3.6. Top n recall using different values of K (MyWebMarket)
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3.4.6 RQ #4: What is the precision of the proposed approach?

In the previous research questions, we rely on recall to guide central design decisions
in our approach (RQ #2) and evaluate the relevance of the minimal size threshold
parameter (RQ #3). However, as usual, recall measures should be complemented by
precision measures. Regarding precision, it is worth noting that our approach generates
a large number of candidates in the first phase. Specifically for MyWebMarket, we
generate 951 valid candidates, which correspond to 35.2 candidates/method on average.
For that reason, the approach heavily depends on the ranking phase to filter out non-
relevant candidates. Therefore, parameters Maximum Recommendations per Method
and Minimum Score Value (described in Section 3.2.3) influence the precision of the
results. Therefore, this research question investigates the impact of the aforementioned
parameters on the precision of our approach.

Figure 3.7 shows the overall precision and recall of our approach for variations
of Minimum Score Value, i.e., we removed from the rank all recommendations with
a ranking score less than a given threshold (x-axis). Moreover, we did not restrict
the number of recommendations per method (i.e., Maximum Recommendations per
Method = 1). The results indicate that our overall precision is very low, usually less
than 20%, when we set up a minimum threshold below 0.8. However, when we set up
a minimum score threshold above 0.8, recall faces a significant decrease, falling below
30%. In fact, Figure 3.7 shows that there is no single threshold alone that provides
high precision without sacrificing recall or vice-versa. This fact is mainly due to the
existence of a large number of similar recommendations (with also similar scores) for
the same method on the rank.
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Figure 3.7. Precision and recall by Minimum Score Value (MyWebMarket)



3.4. Exploratory Study 39

The aforementioned finding leads us to limit the number of recommendations
for a single method (parameter Maximum Recommendations per Method). Figure 3.8a
shows the precision-recall curves when we consider only the Top n recommendations
of each method. In other words, the curves show how precision and recall vary as
the maintainer proceeds with the examination of the recommendations in our ranking,
starting from the top-ranked recommendation. A relevant observation is that the
Top 1 strategy can achieve an overall precision of 50.0%, while preserving a high recall
(85.7%).
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Figure 3.8. Precision vs. Recall (MyWebMarket)

Moreover, we also computed a second type of precision, considering just the
recommendations related to methods that have a valid Extract Method instance in the
oracle. This precision, which we referred to as method-level precision, would correspond
the scenario where developers initially manifest interest on receiving automated Extract
Method refactoring recommendations for a particular method they are maintaining or
trying to comprehend. In this scenario, as presented in Figure 3.8b, we could achieve
a precision of 85.7% and a recall of 85.7%.5

On the other hand, the Top 2 and Top 3 strategies trade precision for a higher
recall. More specifically, the precision decreases even when considering two recommen-
dations per method (from 85.7% for Top 1 to 58% for Top 2). However, it is possible
to achieve a recall of 100% with two recommendations per method.

In summary, this research question provides the following insights:

5By construction, considering one recommendation per valid method, precision will be equal to
recall, when evaluating the whole set of recommendations
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• On one hand, it is not feasible to present all potential candidates, since our
approach would generate a massive number of recommendations, which causes
very low precision rates.

• On the other hand, it is better to present only one recommendation per method.
We claim that the proposed score function is most effective when used to rank
recommendations confined to the scope of methods. In practical terms, a sup-
porting tool for our approach should suggest few recommendations per method,
preferably just only the best one.

3.4.7 Threats to Validity

We must state at least one major threat to the external validity of the reported study.
Since we considered only a small web-based system, we cannot claim that our approach
will provide equivalent results in other systems (as usual in empirical studies in soft-
ware engineering). On the other hand, MyWebMarket was carefully implemented and
designed to resemble on a smaller scale the architecture of a large-scale and long-lived
real-world human resource management system [Terra and Valente, 2009]. Besides,
this is only a preliminary case study. Chapter 4 reports an evaluation with other Java
systems of different domains.

3.5 Tool Support

This section presents JExtract, the tool we built to implement the proposed Extract
Method refactoring recommendation approach. More specifically, we discuss its basic
functionality, configuration, and internal architecture.6

3.5.1 Functionality and User Interface

JExtract is a plug-in for the Eclipse IDE that allows developers to request Extract
Method recommendations for a particular method. Figure 3.9 shows a screenshot of the
Eclipse IDE workbench with JExtract plug-in. We can observe the Extract Method Rec-
ommendations view at the bottom, displaying a list of recommendations. In this case,
we triggered the Find Extract Method Opportunities action for method mouseReleased,
previously presented in Figure 3.1. The best candidate for the method is highlighted
(lines 132–135), which corresponds to the extraction of statements 3/02–05, achieving
a score of 0.7148.

6
JExtract is publicly available at: http://aserg.labsoft.dcc.ufmg.br/jextract

http://aserg.labsoft.dcc.ufmg.br/jextract
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Figure 3.9. Screenshot of JExtract Plug-in

Besides inspecting the recommendations, the tool enables developers to apply the
operation automatically, taking advantage of the underlying Eclipse refactoring sup-
port. In this case, the Extract Method refactoring wizard is opened, where developers
can fill the name of the new method and preview the change.

Before requesting recommendations, developers may change the following param-
eters of the tool:

• Minimum Statements: Minimum number of statements that can be extracted and
also the minimum number of statements that can be left in the original method.
It corresponds to the size threshold K described in Section 3.1.2.2.

• Maximum Recommendations per Method: Maximum number of recommendations
that can be given for a single method, as described in Section 3.2.3.

• Minimum Score Value: Score threshold to filter recommendations, as described
in Section 3.2.3.

• Ignore Type List: List of types that should be ignored when extracting depen-
dencies. Values are specified as a comma separated list of qualified type names.
A name prefix followed by the wildcard character (*) is also supported. This pa-
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rameter is preset to "java.lang.*,java.util.*" (changeable) to ignore types
from the core Java API.

• Ignore Package List: List of packages that should be ignored when extracting
dependencies. Values are specified as a comma separated list of qualified package
names. A name prefix followed by the wildcard character (*) is also supported.
This parameter is preset to "java,javax,com,org,br" (changeable), to ignore
common root package names that are not meaningful modules.

3.5.2 Architecture

We designed JExtract centered on the plug-in architecture provided by the Eclipse
IDE. We also take advantage of the available native infrastructure, such as the Java
Development Tools (JDT) and Language Toolkit (LTK).

Eclipse IDE JExtract 

Code Analyzer 

Candidate 
Generator Scorer 

Ranker 

UI 

JDT Core 

LTK Core 
Refactoring 

LTK UI 
Refactoring 

Figure 3.10. JExtract’s architecture

Figure 3.10 illustrates the architecture of the current implementation of JExtract.
Internally, JExtract is subdivided in the following five main modules:

1. Code Analyzer: This module provides the following services to other modules:
(a) it builds the structure of block and statements (refer to Subsection 3.1.1);
(b) it extracts the structural dependencies (refer to Subsection 3.2.1); and (c) it
checks if an Extract Method candidate satisfies the underlying Eclipse Extract
Method refactoring preconditions. In fact, this module contains most commu-
nication between JExtract and Eclipse APIs (e.g., org.eclipse.jdt.core and
org.eclipse.ltk.core.refactoring).

2. Candidate Generator: This module generates all Extract Method candidates
based on Algorithm 1 and hence depends on service (a) of module Code An-
alyzer.
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3. Scorer: This module calculates the score of the Extract Method candidates gener-
ated by module Candidate Generator (refer to Subsection 3.2.2) and hence depends
on service (b) of module Code Analyzer.

4. Ranker: This module is responsible for sorting and filtering the list of Extract
Method candidates generated by module Candidate Generator and scored by
module Scorer. It depends on service (c) of module Code Analyzer to filter
candidates that do not satisfy preconditions.

5. UI: This module consists of the front-end of the tool, which relies on the
Eclipse UI API (org.eclipse.ui) to implement two menu extensions, six ac-
tions, and one main view. Moreover, it depends on module UI from LTK
(org.eclipse.ltk.ui.refactoring) to delegate the refactoring appliance to the
underlying Eclipse Extract Method refactoring tool.

3.6 Final Remarks

This chapter presented our approach to identify and recommend Extract Method refac-
toring opportunities. The proposed approach consists of two phases: first it identifies
code fragments viable for extraction, which are later ranked. We rely on the ranking
to select the best refactoring opportunities, centered on the design principle of sepa-
ration of concerns. Next, we presented an illustrative example of the application of
our approach, demonstrating that it was able to isolate a code fragment related to a
database operation from its original method.

We also reported an initial exploratory study that guided the design of our ap-
proach. We compared 6 similarity coefficients, which led the decision to use the Kul-
czynski coefficient, although 3 of the 6 coefficients showed to be effective. Besides, we
explored a number of possible weighting schemes to identify which of the three compo-
nents of the scoring function (variables, types, and packages) is more relevant to rank
the candidates. This experiment led to the decision of using the same weight for each
component.

Last, we presented JExtract, an Eclipse plug-in that implements our approach,
describing its design and basic functionalities. Our tool allows developers to request
Extract Method recommendations, which can be inspected and automatically applied.
Moreover, we described parameter settings that can be used to control the results of
the tool.

In the next chapter, we present the evaluation of our approach. In a first study,
we compare our approach with JDeodorant, a state-of-the-art recommendation system,
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using three systems. In a second study, we evaluate our approach in 13 open-source
systems using a synthesized dataset. We also return to some of the research questions
from the exploratory study to investigate whether the same observations can be made
on other systems.



Chapter 4

Evaluation

In Chapter 3, we presented our Extract Method refactoring recommendation approach
and reported an initial exploratory study to calibrate our technique. In this chapter,
we evaluate the proposed approach by investigating two additional research questions:

RQ #5 – How does our approach perform when compared to state-of-the-art ones?

RQ #6 – How does our approach perform when evaluated with other systems?

To answer RQ #5 , we compare the results of our tool with JDeodorant and
discuss their differences (Section 4.1). Besides MyWebMarket, we included two other
systems in this comparison (JUnit and JHotDraw). To answer RQ #6 , we present a
quantitative study using a set of 1,182 well-known Extract Method instances from 13
open-source systems (Section 4.2). Last, we conclude this chapter with final remarks
(Section 4.3).

4.1 Study 1: Comparative Evaluation

In this study, we investigate how our approach performs in comparison with existing
ones, focusing on recall and precision. In order to address this question, we conducted
a study with three systems: MyWebMarket, the system we previously used in the
exploratory study, and two well-known open-source systems, JUnit and JHotDraw.
Unlike MyWebMarket, we did not have an oracle of Extract Method instances for
JUnit and JHotDraw. Therefore, we adopted a strategy to synthesize such oracle by
applying Inline Method refactoring operations. The remainder of this section describes
the study design (Section 4.1.1) and discusses the results (Section 4.1.2).

45
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4.1.1 Study Design

4.1.1.1 Selected Tools for Comparison

Even though the large number of approaches in the literature related to code extraction,
we compare our approach with those that satisfy the following requirements:

• Fully Automated: The approach should provide Extract Method refactoring sug-
gestions with no user input or interaction.

• Tool Availability: There must be a publicly available supporting tool.

• Java Support: Since our evaluation relies on Java systems, the tool must support
such language.

We only considered JDeodorant in this study because it is the only tool that fulfills
such requirements.

4.1.1.2 Target Systems

We included three systems in this study: MyWebMarket, JUnit (version 3.8), and
JHotDraw (version 5.2). In order to measure recall and precision, we check the sug-
gestions reported by each tool against an oracle, which includes all relevant Extract
Method opportunities for a given method. For this reason, we considered again My-
WebMarket to take advantage of the existing oracle. On the other hand, for JUnit and
JHotDraw, we synthesized the oracles, as detailed in the next section.

It is worth noting that we specially chose JUnit and JHotDraw for a specific rea-
son. Since they have been designed and implemented by expert developers (especially
in the earlier versions we selected), we may assume, with relative certainty, that there
is no relevant Extract Method instances in these systems. This property is important
because existing Extract Method instances would make our oracle incomplete.

4.1.1.3 Oracle Construction

To construct an oracle for JUnit and JHotDraw, we judiciously applied Inline Method
refactoring operations in order to create system’s versions with well-known Extract
Method instances. This strategy is based on the assumption that when a certain
method m invokes m0 and the computation performed by m0 is inlined into m, an
Extract Method opportunity is introduced in m. In other words, we assume that the
inlined code fragment is expected to be found by tools that identify Extract Method
refactoring opportunities.
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We followed these steps to construct the oracle:

1. We retrieved all methods of the target systems with more than three statements
(minimum size threshold K, as recommended by the exploratory study described
in Section 3.4).

2. For each method m retrieved in Step 1, we retrieved all methods it invokes.
Each of these methods, which we denote by m0, should satisfy the following
preconditions:

• The size of m0 must be at least three statements, i.e., |m0| � 3, in con-
formance to the minimum size threshold value. Moreover, this rule avoids
methods that do not contain complex logic (e.g., getter, setter, and delegate
methods).

• The size ratio between both methods (i.e., |m0|/|m|) should lie in the range
[0.1, 2]. This rule avoids some extreme cases where the inlined method is
very small (|m0|/|m| < 1/10) or very large (|m0|/|m| > 2) when compared
to the invoker. Thereupon, we increase the chance of significant Extract
Method refactoring opportunities.

• The Inline Method preconditions of the IDE refactoring tool must be re-
spected when inlining the invocation of m0.

• Method m0 cannot be one of the methods previously modified by this process,
i.e., if a method m1 is inlined into a method m2, then m2 cannot be inlined
into another method.

3. From the list of method invocations computed at Step 2, we selected a single
invocation to apply an Inline Method refactoring. We gave precedence to methods
implemented in other classes and, as a second criterion, to larger methods.

4. The selected invocation was inlined using the IDE refactoring tool and the cor-
responding Extract Method instance (that reverts the inline) is registered in the
oracle.

Table 4.1 presents the number of Extract Method instances in our oracle (25
for JUnit and 56 for JHotDraw). As can be observed, we generated valid instances
for 26.0% and 25.2% of candidate methods in JUnit and JHotDraw, respectively
(i.e., methods with at least six statements, assuming the minimum size threshold
K = 3).
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Table 4.1. Study 1: Target systems

System Oracle size Total methods � 2⇥K

JUnit 3.8 25 (26.0%) 470 96

JHotDraw 5.2 56 (25.2%) 1,478 222

Method size must be at least 2⇥K to produce candidates.

4.1.1.4 JExtract Setup

In this study, we used the default settings of JExtract (as presented in Table 4.2),
except for parameter Maximum Recommendations per Method, for which we compared
three different settings, namely Top 1, Top 2, and Top 3. Top-n means that in each
valid candidate method JExtract triggers n recommendations at maximum.

Table 4.2. Study 1: JExtract Settings

Parameter Value

Minimum Statements 3

Maximum Recommendations per Method 1, 2, and 3

Minimum Score Value 0.0

Ignore Type List "java.lang.*,java.util.*"

Ignore Package List "java,javax,com,org,br"

4.1.1.5 JDeodorant Setup

In this study, we used the default settings of JDeodorant, except for the following
parameters:

• Minimum Number of Slice Statements, which was set to 3 to be consistent with
the setup of our approach (minimum size threshold K).

• Minimum Number of Statements in Method, which was set to 6 because, when
K = 3, our approach does not generate suggestions for methods with less than
2⇥K statements.

• Maximum Number of Duplicated Statements, which was set to 0 because: (i) we
knew in advance that our oracle does not include any suggestion that involves
duplicating statements and (ii) our approach does not suggest duplicating state-
ments.
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It is important to mention that, in accordance to JDeodorant’s documentation,
we attached the source code of all APIs the target systems depend on. For instance,
we even included the source code of Java API.

4.1.2 Results and Discussion

We ran both tools on the three aforementioned systems to collect their recommenda-
tions. Table 4.3 reports recall and precision values achieved by JExtract (separated
into three configurations: Top 1, Top 2, and Top 3) and JDeodorant. In the first and
second columns of the table, we display the system and the number of Extract Method
instances in the oracle, respectively. In the other columns, we repeat for each tool: the
number of relevant recommendations found (#), recall (Rc.), and precision (Pr.).

Table 4.3. Study 1: Comparing JExtract and JDeodorant

JExtract JDeodorant
Top 1 Top 2 Top 3

System # # Rc. Pr. # Rc. Pr. # Rc. Pr. # Rc. Pr.
JHotDraw 5.2 56 19 0.339 0.339 26 0.464 0.236 32 0.571 0.198 2 0.036 0.045
JUnit 3.8 25 13 0.520 0.520 16 0.640 0.327 18 0.720 0.250 0 0.000 0.000
MyWebMarket 14 12 0.857 0.857 14 1.000 0.500 14 1.000 0.333 2 0.143 0.333
Overall 95 44 0.463 0.463 56 0.589 0.299 64 0.674 0.232 4 0.042 0.062

We can draw the following observations from these results:

• Our approach achieves the best results in MyWebMarket, i.e., 85.7% recall us-
ing the Top 1 recommendation strategy. In JUnit and JHotDraw, on the other
hand, we achieved a recall of 52% and 33.4%, respectively. This difference is
somewhat expected since we based on the findings of the exploratory study with
MyWebMarket to design and calibrate our approach.

• JDeodorant could find 4 of the 95 Extract Method instances in the oracle. There-
fore, its overall recall and precision were 4.2% and 6.2%.

While analyzing the suggestions provided by JExtract and JDeodorant, we ob-
served that some differ from the oracle’s suggestion by including/excluding a single
statement. To investigate how frequently such scenario occurs, Table 4.4 reports a
second set of recall and precision values, using an oracle that tolerates a difference
of one single statement from the expected answer. In this scenario, there is a signifi-
cant improvement in the results, specially for JDeodorant. For example, overall recall
improves 34% for JExtract Top 1 and more than 300% for JDeodorant.
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Table 4.4. Study 1: Comparing JExtract and JDeodorant (tolerance of one
statement)

JExtract JDeodorant
Top 1 Top 2 Top 3

System # # Rc. Pr. # Rc. Pr. # Rc. Pr. # Rc. Pr.
JHotDraw 5.2 56 30 0.536 0.536 36 0.643 0.445 40 0.714 0.401 11 0.196 0.250
JUnit 3.8 25 15 0.600 0.600 20 0.800 0.571 21 0.840 0.569 5 0.200 0.333
MyWebMarket 14 14 1.000 1.000 14 1.000 0.857 14 1.000 0.595 2 0.143 0.500
Overall 95 59 0.621 0.621 70 0.737 0.540 75 0.789 0.475 18 0.189 0.292

In summary, we conclude that, in this particular study, JExtract was significantly
superior to JDeodorant, regardless of the configuration used (Top 1, Top 2, or Top 3).
The precise reason why JDeodorant was not able to find most of the recommenda-
tions in the oracle requires further investigation. However, it is worth noting that,
in contrast to our approach, JDeodorant is able to extract non-contiguous code frag-
ments, reordering and duplicating statements when necessary. Such scenarios are not
contemplated in this study, but they are listed as future work in Section5.3.

4.1.3 Threats to Validity

There are two main threats regarding the validity of this study. First, as usual, we
cannot extrapolate our results to other systems (external validity). Second, we cannot
claim that the Extract Method instances we have based the evaluation on represent
the whole spectrum of real refactoring instances normally performed by maintainers.
However, we can at least assume that the earlier versions of JUnit and JHotDraw
have a fairly good internal design and therefore most methods encapsulate a precise
design decision. Therefore, we claim that our inlined Extract Methods denote code
that should be refactored with a high confidence.

4.2 Study 2: Quantitative Evaluation

In this study, we investigate how our approach performs in a wider range of sys-
tems. In order to address this question, we selected 13 well-known open-source Java
systems. Similar to the strategy we used for JUnit and JHotDraw, we synthesize a
new oracle, which now includes a larger sample of 1,182 Extract Method instances.
The remainder of this section describes the study design (Section 4.2.1), the main
results (Section 4.2.2), and investigates the impact of alternative ranking strategies
(Section 4.2.3).
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4.2.1 Study Design

4.2.1.1 Target Systems

We selected a sample of 13 systems from a corpus created by Terra et al. [2013b], which
is a compiled version of the Qualitas Corpus [Tempero et al., 2010]. Table 4.5 lists the
selected systems, which we chose favoring well-known and active projects. Besides, we
aimed to cover a diversity of domains (e.g., XML processing, UML modeling, database,
code analysis tools, etc.).

Table 4.5. Study 2: Selected systems

System Instances Diferent Classes Source Files Avg. Method Size
Ant 1.8.2 99 52 (52.5%) 57 22.1
ArgoUML 0.34 98 39 (39.8%) 65 23.8
Checkstyle 5.6 100 23 (23.0%) 62 17.3
Findbugs 1.3.9 99 51 (51.5%) 58 22.0
Freemind 0.9.0 100 46 (46.0%) 58 19.5
Jasper Reports 3.7.4 100 45 (45.0%) 54 25.0
JEdit 4.3.2 99 51 (51.5%) 48 24.9
JFreechart 1.0.13 100 82 (82.0%) 52 23.1
Log4j 2.0-beta 88 38 (43.2%) 62 20.0
Quartz 1.8.3 70 36 (51.4%) 41 18.1
Squirrel SQL 3.1.2 30 12 (40.0%) 14 19.1
Tomcat 7.0.2 100 54 (54.0%) 51 25.7
Xerces 2.10.0 99 37 (37.4%) 48 39.2
Overall 1,182 566 (47.9%) 670 23.5

Table 4.5 also presents: the number of Extract Method instances we synthesized
for each systems (second column); the proportion of the instances that were created by
inlining method invocations where the class of the invoker was different from the class
of the invoked method (third column); the number of source files changed in the process
(fourth column); and the average size—in number of statements—of the methods in
the oracle (last column). Moreover, Figure 4.1 shows a histogram of the size of the
methods in the oracle. As usual, there are few large methods and many medium/small
methods.

4.2.1.2 Oracle Generation

We constructed the oracle using the same process described in Section 4.1.1.3. However,
in this case, we did not assume that there are no relevant Extract Method instances
in the selected systems. We relaxed this constraint to allow the generation of a large
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Figure 4.1. Size of the methods in the oracle

dataset, accepting that, in this case, our oracle is possibly incomplete. Nevertheless,
we still consider that the instances in the oracle are relevant with a high confidence.
Moreover, we introduced the following changes in the process:

• We ignore the visibility of class members (i.e., we changed private, protected, and
package members to public) to increase the opportunities to inline invocations of
methods that are not from the same class of the invoker. In the previous study,
we observed that, due to members’ visibility, a small number (8.6%) of inlined
methods were from different classes.

• Rather than giving precedence to methods implemented in other classes or to
larger methods, we randomly chose the method invocations to be inlined. In
such way, we eliminate any bias in the size distribution (but still consider only
those greater than the minimum size threshold).

• The maximum number of Extract Method instances we generate for a single
system is limited to 100, avoiding that the largest systems dominate our sample.

• We do not inline a method more than once in different invocation points. The
intention of this rule is introduce more variety in the Extract Method instances
of the oracle.

• We apply a maximum of five Inline Method refactoring operations in the same
file, also with the intention to introduce more variety.

In total, we synthesized 1,182 instances, which 47.9% has originated from a dif-
ferent class, in 670 source files.



4.2. Study 2: Quantitative Evaluation 53

4.2.2 Results and Discussion

Table 4.6 reports recall and precision values achieved by JExtract on the 13 systems.
Similarly to the previous study, we present the number of relevant recommendations
found (#), recall (Rc.), and precision (Pr.) for each configuration: Top 1, Top 2, and
Top 3. We must state that precision, in contrast to the previous study, should be viewed
as a lower bound to actual precision because the original systems in this scenario have
more chance to include relevant Extract Method instances (besides the ones synthesized
by inlining methods). Thus, such instances are considered false positives when reported
by our approach.

Table 4.6. Study 2: Recall and precision

Top 1 Top 2 Top 3
System # # Rc. Pr. # Rc. Pr. # Rc. Pr.
Ant 1.8.2 99 26 0.263 0.263 43 0.434 0.221 51 0.515 0.177
ArgoUML 0.34 98 24 0.245 0.245 39 0.398 0.200 53 0.541 0.182
Checkstyle 5.6 100 41 0.410 0.410 64 0.640 0.323 77 0.770 0.266
Findbugs 1.3.9 99 27 0.273 0.273 49 0.495 0.249 67 0.677 0.231
Freemind 0.9.0 100 34 0.340 0.340 46 0.460 0.232 61 0.610 0.207
Jasper Reports 3.7.4 100 28 0.280 0.280 48 0.480 0.241 60 0.600 0.202
JEdit 4.3.2 99 26 0.263 0.263 52 0.525 0.264 60 0.606 0.205
JFreechart 1.0.13 100 15 0.150 0.150 35 0.350 0.176 50 0.500 0.168
Log4j 2.0-beta 88 30 0.341 0.341 50 0.568 0.287 62 0.705 0.239
Quartz 1.8.3 70 19 0.271 0.271 31 0.443 0.221 41 0.586 0.197
Squirrel SQL 3.1.2 30 9 0.300 0.300 12 0.400 0.203 15 0.500 0.170
Tomcat 7.0.2 100 30 0.300 0.300 37 0.370 0.188 47 0.470 0.160
Xerces 2.10.0 99 34 0.343 0.343 44 0.444 0.222 55 0.556 0.186
Overall 1,182 343 0.290 0.290 550 0.465 0.234 699 0.591 0.201

We can draw the following observations from these results:

• The overall results are inferior to the previous study, specially when we inspect
Top 1 recall (29.0% vs. 46.3%). However, this difference is less evident in Top 2
recall (46.5% vs. 58.9%) and Top 3 recall (59.1% vs. 67.4%). Nevertheless, we
still consider these results acceptable. For example, 59.1% of the oracle instances
are covered when using Top 3 configuration.

• The results do not vary widely from system to system (standard deviation of
0.062 in Top 1 recall). The stronger differences are observed in: (i) JFreechart,
which presents the worst Top 1 recall (15%); and (ii) Checkstyle, which presents
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the best Top 1 recall (41%). These observations suggest that our tool can be used
in systems from different domains.

Similar to the previous study, Table 4.7 presents the results when we accept a
tolerance of 1 statement from the ideal answer. In this scenario, there is a significant
improvement in the results, specially on Top 1 recall (42.5% vs. 0.29%).

Table 4.7. Study 2: Recall and precision (tolerance of one statement)

Top 1 Top 2 Top 3
System # # Rc. Pr. # Rc. Pr. # Rc. Pr.
Ant 1.8.2 99 37 0.374 0.374 52 0.525 0.369 59 0.596 0.340
ArgoUML 0.34 98 42 0.429 0.429 54 0.551 0.415 59 0.602 0.357
Checkstyle 5.6 100 55 0.550 0.550 69 0.690 0.520 79 0.790 0.488
Findbugs 1.3.9 99 40 0.404 0.404 63 0.636 0.467 76 0.768 0.448
Freemind 0.9.0 100 43 0.430 0.430 60 0.600 0.414 73 0.730 0.407
Jasper Reports 3.7.4 100 41 0.410 0.410 61 0.610 0.407 67 0.670 0.357
JEdit 4.3.2 99 39 0.394 0.394 56 0.566 0.411 61 0.616 0.346
JFreechart 1.0.13 100 39 0.390 0.390 53 0.530 0.357 64 0.640 0.333
Log4j 2.0-beta 88 38 0.432 0.432 58 0.659 0.471 62 0.705 0.429
Quartz 1.8.3 70 33 0.471 0.471 48 0.686 0.493 53 0.757 0.423
Squirrel SQL 3.1.2 30 10 0.333 0.333 15 0.500 0.322 18 0.600 0.295
Tomcat 7.0.2 100 40 0.400 0.400 47 0.470 0.335 53 0.530 0.297
Xerces 2.10.0 99 45 0.455 0.455 55 0.556 0.374 63 0.636 0.361
Overall 1,182 502 0.425 0.425 691 0.585 0.415 787 0.666 0.378

4.2.2.1 Impact of Method Size

Figure 4.2 shows a barchart comparing the recall values achieved considering only
methods of a certain size range. We can observe that we achieve better results for
small methods. In fact, since the number of candidates is related to the number of
statements of the method, we argue that our observation is somewhat expected, i.e., it
is harder to rank the recommendation of the oracle on the top position when there are
numerous candidates in the method.

4.2.3 Exploring Ranking Strategies

Taking advantage of this larger dataset, we decided to further investigate RQ #2
from the exploratory study (refer to Section 3.4):
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Figure 4.2. Recall for different method size ranges

RQ #2 – What is the best set similarity coefficient and dependency set strategy to
rank Extract Method candidates?

First, we investigated if Kulczynski is the best coefficient in face of these 13
systems. Table 4.8 shows the recall (using only Top 1 config, for brevity) achieved
for each project using each coefficient: Jaccard (JAC), Sorenson (SOR), Sokal and
Sneath 2 (SS2), PSC, Kulczynski (KUL), and Ochiai (OCH). We can observe that
Kulczynski is superior in most systems, except two of them: JFreechart and Log4j.
Therefore, this observation corroborates with our decision to use this coefficient.

Table 4.8. Study 2: Comparison of similarity coefficients (Top 1 recall)

System JAC SOR SS2 PSC KUL OCH
Ant 1.8.2 0.232 0.242 0.232 0.242 0.263 0.232
ArgoUML 0.34 0.163 0.153 0.153 0.214 0.245 0.224
Checkstyle 5.6 0.310 0.320 0.310 0.400 0.410 0.390
Findbugs 1.3.9 0.253 0.253 0.253 0.273 0.273 0.253
Freemind 0.9.0 0.250 0.250 0.240 0.260 0.340 0.300
Jasper Reports 3.7.4 0.250 0.260 0.260 0.250 0.280 0.270
JEdit 4.3.2 0.182 0.182 0.182 0.242 0.263 0.242
JFreechart 1.0.13 0.170 0.170 0.160 0.150 0.150 0.160
Log4j 2.0-beta 0.318 0.318 0.307 0.341 0.341 0.364
Quartz 1.8.3 0.200 0.186 0.186 0.243 0.271 0.200
Squirrel SQL 3.1.2 0.233 0.233 0.233 0.267 0.300 0.267
Tomcat 7.0.2 0.210 0.200 0.210 0.280 0.300 0.290
Xerces 2.10.0 0.182 0.192 0.182 0.273 0.343 0.303
Overall 0.227 0.228 0.223 0.264 0.290 0.270
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Second, we investigated if we could improve our results by assigning different
weights for each kind of dependency (due to variables, types, and packages). Table 4.9
shows in each column a different weighting scheme, denote by wv-wt-wp, which are the
weight factors of the scoring function (refer to Section 3.2.2.2).

Table 4.9. Study 2: Comparison of weighting schemes (Top 1 recall)

System 1-1-1 1-0-0 0-1-0 0-0-1 1-1-0 2-1-1 1-2-1 1-1-2 100-10-1 1-10-100
Ant 1.8.2 0.263 0.242 0.212 0.182 0.273 0.283 0.273 0.273 0.263 0.242
ArgoUML 0.34 0.245 0.255 0.163 0.112 0.296 0.286 0.224 0.214 0.276 0.204
Checkstyle 5.6 0.410 0.500 0.240 0.180 0.410 0.450 0.390 0.400 0.520 0.360
Findbugs 1.3.9 0.273 0.242 0.212 0.182 0.303 0.303 0.263 0.273 0.313 0.263
Freemind 0.9.0 0.340 0.370 0.140 0.130 0.350 0.360 0.320 0.290 0.370 0.230
Jasper Reports 3.7.4 0.280 0.290 0.220 0.190 0.310 0.320 0.300 0.250 0.310 0.270
JEdit 4.3.2 0.263 0.354 0.192 0.131 0.313 0.313 0.263 0.273 0.343 0.273
JFreechart 1.0.13 0.150 0.140 0.150 0.150 0.180 0.160 0.180 0.150 0.170 0.170
Log4j 2.0-beta 0.341 0.261 0.148 0.216 0.307 0.364 0.330 0.341 0.307 0.341
Quartz 1.8.3 0.271 0.171 0.186 0.171 0.271 0.243 0.271 0.271 0.243 0.229
Squirrel SQL 3.1.2 0.300 0.300 0.167 0.100 0.267 0.300 0.300 0.300 0.300 0.267
Tomcat 7.0.2 0.300 0.330 0.140 0.130 0.340 0.300 0.270 0.300 0.310 0.260
Xerces 2.10.0 0.343 0.293 0.141 0.121 0.313 0.354 0.323 0.354 0.313 0.273
Overall 0.290 0.291 0.179 0.156 0.305 0.312 0.284 0.283 0.313 0.260

From these results, we outline the following observations:

• No weighting scheme drastically improves the results achieved by the default
configuration (1-1-1), since the maximum recall achieved is 31.3% (for the 100-
10-1 config).

• There is not a clear overall winner, i.e., the configuration with the best perfor-
mance (in bold) varies from system to system.

• Nevertheless, there is a tendency towards weighting schemes including variables,
as opposed to the observations on MyWebMarket, where types had a stronger
influence. In fact, the worst recall were achieved by the schemes that ignores
variables (0-1-0 and 0-0-1).

4.2.4 Threats to Validity

In this study, we must also state the threats we previously discussed. First, we cannot
extrapolate our results to other systems (external validity). However, we included 13
open-source systems from different domains, which provides at least an indication that
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our approach is general enough to be performed in other systems. Second, similar
to the previous study, we cannot claim that the Extract Method instances we based
the evaluation on represent the whole spectrum of real refactoring instances normally
performed by maintainers. However, the selected systems are well-known projects, most
of them largely used in industrial environments. Therefore, we can at least assume that
they have a professional internal design quality and their methods encapsulate relevant
design decisions.

4.3 Final Remarks

This chapter reported two studies we conducted to evaluate our approach. In Sec-
tion 4.1, we compared the effectiveness of JExtract and JDeodorant using three sys-
tems: MyWebMarket, JUnit, and JHotDraw. In this particular study, JExtract pre-
sented an advantage over JDeodorant. For example, using a typical configuration
(Top 3), it achieved overall recall and precision of 67.4% and 23.2%, against 4.2% and
6.2% for JDeodorant.

In Section 4.2, we evaluated our tool with 13 open-source systems. JExtract
achieved acceptable results in every system, indicating its applicability in different do-
mains. In this study, the overall recall, using Top 3 config, was 59.1%. Moreover, when
investigating alternative ranking strategies we found that: (i) Kulczynski was again the
best set similarity coefficient; and (ii) different weighting schemes (i.e., values for the
weight factors wv, wt, and wp) may yield slightly better results, but not consistently
for all systems.

It is worth noting that the datasets used in both studies and a supporting
tool that automates their generation are publicly available at JExtract’s web site:
http://aserg.labsoft.dcc.ufmg.br/jextract

http://aserg.labsoft.dcc.ufmg.br/jextract
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Conclusion

Extract Method is a key refactoring for improving program comprehension and main-
tainability. Moreover, its one of the most popular refactoring due to its versatil-
ity [Fowler, 1999; Murphy et al., 2006; Murphy-Hill et al., 2012; Tsantalis et al., 2013].
However, existing Extract Method supporting tools are most of the times underused
and do not support developers in the task of identifying potential code fragments can-
didates for extraction [Negara et al., 2013; Kim et al., 2012; Murphy-Hill et al., 2012;
Murphy-Hill and Black, 2008b].

To address this shortcoming, we proposed an approach to identify Extract Method
refactoring opportunities that can be directly automated by IDE-based refactoring
tools. Our approach ranks the identified opportunities based on the design principle
of separation of concerns. Specifically, we assume that the following sets should be as
dissimilar as possible: (i) the set of dependencies established by the code fragment to
be extracted; and (ii) the set of dependencies established by the remaining statements
in the original method. To compute sets similarity, we rely on Kulczynski coefficient,
which we chose based on an exploratory study with five other coefficients. A supporting
tool, called JExtract, was also implemented.

Our evaluation using a set of synthesized Extract Method opportunities, which
were introduced by inlining method invocations, suggests that JExtract is more effective
(w.r.t. recall and precision) than JDeodorant, a state-of-the-art tool. Moreover, in a
second study with a sample of 1,182 synthesized Extract Method instances from 13
open-source systems, our approach achieved an overall recall of 59.1%.

We organized the remainder of this chapter as follows. First, Section 5.1 re-
views the contributions of our research. Next, Section 5.2 points the limitations of our
approach. Finally, Section 5.3 presents future work.
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5.1 Contributions

This research makes the following contributions:

• An approach that identifies and ranks Extract Method refactoring recommenda-
tions, which aim to decompose long or complex methods to improve the system
design (Chapter 3).

• An exploratory study conducted to support the decisions regarding the heuristic
we used to rank the suggested refactoring opportunities (Section 3.4).

• A publicly available prototype tool, called JExtract, that implements our ap-
proach and hence suggests Extract Method refactoring opportunities for a re-
quested method or for the entire system (Section 3.5).

• An evaluation comparing our approach with JDeodorant, a state-of-the-art tool,
using two open-source systems and a small scale Web application (Section 4.1).

• A quantitative evaluation using a sample of 1,182 synthesized Extract Method
instances from 13 open-source systems (Section 4.2).

• Two publicly available datasets of well-known Extract Method opportunities:
the first with 95 instances distributed among three systems; and the second with
1,182 instances distributed among 13 systems (Chapter 4).

• The approach proposed to create the synthesized datasets, including a publicly
available supporting tool to automate the process (Section 4.1.1.3 and 4.2.1.2).

5.2 Limitations

Our approach has the following limitations:

• Our approach is limited to suggest the extraction of code fragments that can be
automatically applied by current IDE refactoring tools.

• Our approach cannot untangle code fragments before their extraction, i.e., it
does not suggest refactoring that requires reordering or duplicating statements
previous to the extraction.

• We do not recommend names for the new methods created when applying a
suggested Extract Method refactoring.
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• We did not evaluate with experts whether the recommendations provided by our
approach are helpful in real refactoring tasks.

5.3 Future Work

We intend to complement this research with the following future work:

• Proposed approach: (i) the capability to reorder statements before the code ex-
traction to achieve a better separation of concerns; (ii) the recommendation of
names for new methods, possibly using a technique based on the work of Sridhara
et al. [2011]; and (iii) the combination of Extract Method with Move Method to
move misplaced code within a method to a more appropriate class.

• Evaluation: (i) a study with experts to assess the quality of the recommendations
provided by the tool in real scenarios; (ii) the construction of a new dataset
containing real Extract Method instances identified in historical data from open-
source systems and (iii) a study to investigate the impact of ignoring core Java
types or packages when computing the dependency sets.

• JExtract Tool: (i) a study on the possibility to recommend refactoring oppor-
tunities for a method that is being edited, without an explicit request by the
developer; and (ii) improvements in usability and user interface.
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