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RefDiff 2.0: A Multi-language Refactoring
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Abstract—Identifying refactoring operations in source code changes is valuable to understand software evolution. Therefore, several
tools have been proposed to automatically detect refactorings applied in a system by comparing source code between revisions. The
availability of such infrastructure has enabled researchers to study refactoring practice in large scale, leading to important advances on
refactoring knowledge. However, although a plethora of programming languages are used in practice, the vast majority of existing
studies are restricted to the Java language due to limitations of the underlying tools. This fact poses an important threat to external
validity. Thus, to overcome such limitation, in this paper we propose RefDiff 2.0, a multi-language refactoring detection tool. Our
approach leverages techniques proposed in our previous work and introduces a novel refactoring detection algorithm that relies on the
Code Structure Tree (CST), a simple yet powerful representation of the source code that abstracts away the specificities of particular
programming languages. Despite its language-agnostic design, our evaluation shows that RefDiff’s precision (96%) and recall (80%)
are on par with state-of-the-art refactoring detection approaches specialized in the Java language. Our modular architecture also
enables one to seamlessly extend RefDiff to support other languages via a plugin system. As a proof of this, we implemented plugins
to support two other popular programming languages: JavaScript and C. Our evaluation in these languages reveals that precision and
recall ranges from 88% to 91%. With these results, we envision RefDiff as a viable alternative for breaking the single-language barrier
in refactoring research and in practical applications of refactoring detection.

F

1 INTRODUCTION

R EFACTORING is a well-known technique to improve the
design of a system and enable its evolution [1]. In fact,

existing studies [2], [3], [4], [5], [6] show that refactoring
is frequently applied by development teams, and it is an
important aspect of their software maintenance workflow.

Therefore, detecting refactoring activity in software
projects is a valuable information to help researchers un-
derstand software evolution. For example, past studies used
such information to shed light on important aspects of refac-
toring practice, such as the usage of refactoring tools [2], [7],
the motivations driving refactoring [4], [5], [6], the risks of
refactoring [4], [5], [8], [9], [10], and the impact of refactoring
on code quality metrics [4], [5]. Moreover, it is often impor-
tant to keep track of refactorings when performing source
code evolution analysis because files, classes, or functions
may have their histories split by refactorings such as Move
or Rename [11].

Additionally, knowing which refactoring operations
were applied in the version history of a system may help
in several practical tasks. For example, in a study by
Kim et al. [4], many developers mentioned the difficulties
they face when reviewing or integrating code changes after
large refactoring operations, which impact several code ele-
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ments. Thus, developers might feel discouraged to refactor
their code. If a tool is able to identify such refactoring oper-
ations, it can possibly resolve merge conflicts automatically.
Moreover, diff visualization tools can also benefit from such
information, presenting refactored code elements side-by-
side with their corresponding version before the change.
Another application for such information is adapting client
code to a refactored version of an API it uses [12], [13]. If
we are able to detect the refactorings that were applied to
an API, we might be able to replay them on the client code
automatically.

Given the importance of studying refactoring activity,
we proposed RefDiff in previous work [14]. RefDiff is an
automated approach that identifies refactoring operations
performed in the version history of Java systems. By that
time, our main goal was to provide a reliable tool to mine
refactoring activity in a fully automated fashion, with better
precision and recall than existing approaches. Since then,
other approaches have emerged, such as RMiner [15], which
enhanced precision to even higher standards. Today, the
availability of such tools enables large-scale and in-depth
empirical studies on refactoring practice [6], [11].

Nevertheless, despite the advancements in the field of
refactoring detection, existing tools are centered in the Java
language. Thus, we are still not able to mine refactoring
activity in a vast amount of software repositories written
in other programming languages. By restricting refactoring
research to a single language, we may get a biased un-
derstanding of the reality. Interestingly, in the most recent
edition of his refactoring book, Fowler changed all examples
to use JavaScript [16], which corroborates the idea that refac-
toring practice in other languages should be discussed on
equal footing with Java. Moreover, the practical applications
of refactoring detection tools are hindered by the lack of
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support of other popular programming languages.
For all these reasons, in this paper we propose a

multi-language refactoring detection approach, named as
RefDiff 2.0, which is a redesign of its first version that
introduces an extensible architecture. In RefDiff 2.0, the
refactoring detection heuristics are fully implemented in a
common core, and support for programming languages is
provided by plug-in modules. As a way to validate this ar-
chitecture, we implemented and evaluated extension mod-
ules for three mainstream programming languages with
distinct characteristics: Java, JavaScript (a widely popular
dynamic programming language, used mostly to build web
applications) and C (a procedural programming language,
used mostly to implement system software).

Additionally, we reworked the refactoring detection
heuristics of RefDiff to significantly improve its preci-
sion when compared to our previous work. Now, RefDiff
achieves 96.4% of precision and 80.4% of recall when eval-
uated in the Java dataset proposed by Tsantalis et al. [15],
against 79.3% of precision and 80.2% of recall in its prior ver-
sion. Moreover, RefDiff’s precision is on par with RMiner,
the current state-of-the-art in Java refactoring detection
(96.4% vs. 98.8%). This is a key achievement because our
approach is not specialized in a single language.

In summary, we deliver the following contributions in
this work:

• A major extension of our refactoring detection ap-
proach proposed in previous work [14], which in-
cludes a redesign of its core to work with a language-
independent model and improved detection heuris-
tics.

• A publicly available implementation1 of our ap-
proach, with out-of-the-box support for Java, C, and
JavaScript.

• An evaluation of the precision and recall of RefDiff
using a large scale dataset of refactorings performed
in real-world Java open-source projects, comparing
it with RMiner, a state-of-the-art tool for detecting
refactorings in Java. As a byproduct of this evalua-
tion, we also extend the dataset with new refactoring
instances discovered by our tool.

• An evaluation of the precision and recall of RefDiff
in real-world C and JavaScript open source projects.

The remainder of this paper is structured as follows.
Section 2 describes related work, discussing existing refac-
toring detection approaches. Section 3 presents the proposed
approach in details. Section 4 describes the design and
results of a large scale evaluation of RefDiff in Java projects.
Section 5 describes the design and results of an evaluation
of RefDiff in C and JavaScript projects. Section 6 discusses
challenges and limitations. Last, Section 7 presents final
remarks and concludes the paper.

2 BACKGROUND

Empirical studies on refactoring rely on means to identify
refactoring activity. Thus, different techniques have been

1. RefDiff and our evaluation data are public available at:
https://github.com/aserg-ufmg/RefDiff

proposed and employed for this task. For example, Murphy-
Hill et al. [2] collected refactoring usage data using a plug-
in that monitors user actions in the Eclipse IDE, including
calls to refactoring commands. Negara et al. [7] describe a
tool, called CodingTracker, to infer refactorings from fine-
grained code edits. They use this tool to study refactorings
performed by 23 developers working in their IDEs during
a total of 1,520 hours. The tool achieved a precision of
99.3% when evaluated with the automated Eclipse refac-
torings performed by the study participants. On a sample
of both manual and automated refactorings, CodingTracker
achieved a precision of 93% and a recall of 100%. However,
CodingTracker requires the installation of a refactoring in-
ference plugin in IDEs.

Other studies use metadata from version control
systems to identify refactoring changes. For example,
Ratzinger et al. [17] search for a predefined set of terms
in commit messages to classify them as refactoring changes.
In specific scenarios, a branch may be created exclusively
to refactor the code, as reported by Kim et al. [5]. Another
strategy is employed by Soares et al. [18]. They propose
an approach that identifies behavior-preserving changes by
automatically generating and running test-cases. While their
approach is intended to guarantee the correct behavior of a
system after refactoring, it may also be employed to classify
commits as behavior-preserving. Moreover, many existing
approaches are based on static analysis. This is the case of
the approach proposed by Demeyer et al. [19], which finds
refactored elements by observing changes in code metrics.

Static analysis is also frequently used to find differences
in the source code by comparing two revisions [3], [14],
[15], [20], [21], [22], [23]. Approaches based on comparing
source code differences have the advantage of beeing able to
identify refactoring operations applied in version histories.
As RefDiff is one of these approaches, it can be directly
compared with others within this category. In the next
sections, we discuss RefDiff 1.0 and three other approaches.

2.1 RefDiff 1.0
The original version of RefDiff [14], which we will denote as
RefDiff 1.0 throughout this paper, employs a combination of
heuristics based on static analysis and code similarity to de-
tect 13 well-known refactoring types. One of its distinguish-
ing characteristic is the use of the classical TF-IDF similarity
measure from information retrieval to compute code simi-
larity. In our previous work, we evaluated RefDiff 1.0 using
an oracle of 448 refactoring operations, distributed across
seven Java projects. We built this oracle by deliberately
applying refactorings in software repositories in a controlled
manner. Although this strategy poses the risk of creating
an artificial dataset, this way we assured this oracle was
complete and could be used to compute both precision and
recall. We compared our tool with three existing approaches,
namely Refactoring Miner [3], Refactoring Crawler [20], and
Ref-Finder [23]. Our approach achieved precision of 100%
and recall of 88%, surpassing the three tools subjected to the
comparison.

2.2 Refactoring Miner/RMiner 1.0
Refactoring Miner is an approach originally introduced
by Tsantalis et al. [3], capable of identifying 14 high-

https://github.com/aserg-ufmg/RefDiff
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level refactoring types: Rename Package/Class/Method, Move
Class/Method/Field, Pull Up Method/Field, Push Down Method/-
Field, Extract Method, Inline Method, and Extract Superclass/In-
terface. In its original version, Refactoring Miner employs a
lightweight algorithm, similar to the UMLDiff proposed by
Xing and Stroulia [24], for differencing object-oriented mod-
els, inferring the set of classes, methods, and fields added,
deleted or moved between two code revisions. Refactoring
Miner was employed and evaluated in empirical studies
on refactoring along its evolution. In the first study, using
the version histories of JUnit, HTTPCore, and HTTPClient,
Tsantalis et al. [3] reported 8 false positives for the Extract
Method refactoring (96.4% precision) and 4 false positives
for the Rename Class refactoring (97.6% precision). No false
positives were reported for the remaining refactorings. In a
second study that mined refactorings in 285 GitHub hosted
Java repositories [6], we found found 1,030 false positives
out of 2,441 refactorings (63% precision). However, we also
evaluated Refactoring Miner using as a benchmark the
dataset reported by Chaparro et al. [25], in which it achieved
93% precision and 98% recall.

In a recent study, Tsantalis et al. [15] proposed a major
evolution of its tool, now named as RMiner (version 1.0).
RMiner relies on an AST-based statement matching algo-
rithm and a set of detection rules that cover 15 representa-
tive refactoring types. Its statement matching algorithm em-
ployes two techniques to be resilient to code restructuring
during refactoring: abstraction, which deals with changes in
statements’ AST type due to refactorings, and argumentiza-
tion, which deals with changes in sub-expressions within
statements due to parameterization. To evaluate RMiner,
the authors created a dataset with 3,188 real refactorings
instances from 185 open-source projects. Using this oracle,
the authors found that RMiner has a precision of 98% and
recall of 87%, which was the best result so far, surpassing
RefDiff 1.0, the previous state-of-the-art, which achieved
precision of 75.7% and recall of 85.8% in this dataset.

2.3 Refactoring Crawler

Refactoring Crawler, proposed by Dig et al. [20], is an
approach capable of finding seven high-level refactoring
types: Rename Package/Class/Method, Pull Up Method, Push
Down Method, Move Method, and Change Method Signature. It
uses a combination of syntactic analysis to detect refactoring
candidates and a reference graph analysis to refine the
results.

First, Refactoring Crawler analyzes the abstract syntax
tree of a program and produces a tree, in which each node
represents a source code entity (package, class, method, or
field). Then, it employs a technique known as shingles encod-
ing to find similar pairs of entities, which are candidates
for refactorings. Shingles are representations for strings
with the following property: if a string changes slightly,
then its shingles also change slightly. In a second phase,
Refactoring Crawler applies specific strategies for detecting
each refactoring type, and computes a more costly metric
that determines the similarity of references between code
entities in two versions of the system. For example, two
methods are similar if the sets of methods that call them are
similar, and the sets of methods they call are also similar.

The strategies to detect refactorings are repeated in a loop
until no new refactorings are found. Therefore, the detection
of a refactoring, such as a rename, may change the reference
graph and enable the detection of new refactorings.

The authors evaluated Refactoring Crawler comparing
pairs of releases of three open-source software components:
Eclipse UI, Struts, and JHotDraw. Such components were
chosen because they provided detailed release notes de-
scribing API changes. The authors relied on such informa-
tion and on manual inspection to build an oracle containing
131 refactorings. The reported results are: Eclipse UI (90%
precision and 86% recall), Struts (100% precision and 86%
recall), and JHotDraw (100% precision and 100% recall).

2.4 Ref-Finder
Ref-Finder, proposed by Prete et al. [22], [23], is an ap-
proach based on logic programming capable of identifying
63 refactoring types from the Fowler’s catalog [1]. The
authors express each refactoring type by defining structural
constraints, before and after applying a refactoring to a
program, in terms of template logic rules.

First, Ref-Finder traverses the abstract syntax tree of a
program and extracts facts about code elements, structural
dependencies, and the content of code elements, to rep-
resent the program in terms of a database of logic facts.
Then, it uses a logic programming engine to infer concrete
refactoring instances, by creating a logic query based on the
constraints defined for each refactoring type. The definition
of refactoring types also consider ordering dependencies
among them. This way, lower-level refactorings may be
queried to identify higher-level, composite refactorings. The
detection of some types of refactoring requires a special
logic predicate that indicates that the similarity between two
methods is above a threshold. For this purpose, the authors
implemented a block-level clone detection technique, which
removes any beginning and trailing parenthesis, escape
characters, white spaces, and return keywords and com-
putes word-level similarity between the two texts using the
longest common sub-sequence algorithm.

The authors evaluated Ref-Finder in two case studies. In
the first one, they used code examples from the Fowler’s
catalog to create instances of the 63 refactoring types. The
authors reported 93.7% recall and 97.0% precision for this
first study. In the second study, the authors used three
open-source projects: Carol, jEdit, and Columba. In this
case, Ref-Finder was executed in randomly selected pairs
of versions. From the 774 refactoring instances found, the
authors manually inspected a sample of 344 instances and
found that 254 were correct (73.8% precision).

It is worth noting that Ref-Finder and Refactoring
Crawler require a full build of the program under analysis.
Therefore, their usage is not recommended when mining
refactorings from version histories in the large. In this case,
it might be a challenge to build each release, due to missing
external dependencies, for example. For that reason, our
evaluation (Section 4) focus on comparing RefDiff with
RMiner.

3 PROPOSED APPROACH

Our approach consists of two phases: Source Code Analysis
and Relationship Analysis. In the first phase, Source Code
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Analysis, we take as input two revisions of a system, v1 and
v2, and build two models that represent their source code.
Both models have the form of a tree, in which each node
corresponds to a code element (classes, functions, etc.). In
the second phase, Relationship Analysis, we compute a set
R, which contains triples of the form (n1, n2, t), where n1
is a code element from revision v1, n2 is a code element
from revision v2 and t is a relationship type. Such relation-
ships may denote a high-level refactoring operation (move,
rename, extract, etc.) or an exact correspondence between
the code elements. For example, consider the diff between
two revisions of a system depicted in Figure 1. Among other
changes, the class Calculator , declared in revision 1, is
renamed to FpCalculator in revision 2. This corresponds
to a relationship of the type Rename between them. In the
next sections, we describe in details each phase of our
approach.

3.1 Phase 1: Source Code Analysis

The goal of this phase is to compute a language-
independent model that represents the source code of the
system, which we denote from now on as Code Structure
Tree (CST). The CST is a tree-like structure that resembles an
Abstract Syntax Tree (AST). However, in this representation
we are only interested in coarse-grained code elements (e.g.,
classes and functions) that encompass a code region and
may be referred by an identifier in other parts of the system.

To construct the CST, we need to parse the source code,
generate the AST for the target programming language,
and extract the necessary information. Thus, the decision
of which types of AST nodes become CST nodes depends
on the programming language. For example, in Java we
represent classes, enums, interfaces, and methods as CST
nodes. In contrast, local variables are not represented. Nev-
ertheless, it is important to note that the granularity of the
CST nodes determines the granularity of the relationships
we are able to find, e.g., we can only find relationships
between methods if we represent methods in the CST.
Table 1 lists the types of AST nodes that are represented
in the CST for each programming language supported by
the current implementation of our approach.

TABLE 1
AST nodes that are represented in CSTs

Language Node types

Java class, enum, interface, and method
C file and function
JavaScript file, class, and function

Figure 2 exemplifies the transformation of the example
system from Figure 1 into a corresponding CST. In revi-
sion 1, the class Main is declared with a single method
main and the class Calculator contains two methods:
sum and min . Note that these classes and methods become
nodes in the CST for revision 1, preserving the same nesting
structure of the source code. Analogously, the figure also
depicts the CST for revision 2, which contains seven nodes
in total (two classes and five methods).

Besides the representation of the code elements, the CST
also embeds a simplified call graph and a type hierarchy
graph of the nodes within the CST, that is, there are edges
to represent whether a certain node n1 calls n2, or whether
n1 is a subtype of n2. The first information is necessary to
find Extract and Inline relationships between code elements,
while the second is used to find inheritance-related relation-
ships, such as Pull Up and Push Down.

Moreover, along with each node of the CST, we store the
following information:

Identifier
An identifier of the code element in its declared
scope. The identifier is usually the name of the
code element, but it may also contain additional
information to avoid ambiguities. For example,
the identifier of the class Calculator from
Figure 2 is simply its name, but the identifier
of the method sum is sum(double,double) ,
because there could be an overloaded method
with a different signature.

Namespace
An optional prefix that, along with the identi-
fier, globally identifies the code element. This
information only applies to top-level nodes and
corresponds to the package or folder that the
element is contained. For example, the names-
pace of the class Calculator from Figure 2 is
my.calc. .

Node type
A string that identifies the node type in the
target language (class, function, method, etc.).

Parameters list
An optional list of the name of the parameters,
in the case the node corresponds to a method or
function.

Tokenized source code
The source code of the element in the form of
a list of tokens. Here, we include all tokens in
the code region that encompasses the complete
declaration of the code element, including its
name/signature. This information is necessary
to compute the similarity between code ele-
ments, as explained in Section 3.3.

Tokenized source code of the body
The source code of the body of the code ele-
ment in the form of a list of tokens. Here we
include only the tokens within the body of the
code element, but not its name/signature. This
information is also necessary to compute the
similarity between code elements in the special
cases of Extract and Inline relationships, as ex-
plained in Section 3.3.2. It is worth noting that
this information is optional, as not every node
has a body (e.g., abstract methods).

It is worth noting that we generate the CST only for
source files that have been added, removed, or modified
between revisions. Such information can be efficiently ob-
tained from version control systems, without the need to
analyze the content of all files within the repository. This
way, we avoid a costly operation that might compromise
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my/calc/Main.java 

my/calc/Calculator.java → my/calc/FpCalculator.java 

Revision 1 Revision 2 

package my.calc; 
  
public class Main { 
  public static void main(String[] args) { 
    FpCalculator c = new FpCalculator(); 
    double r = c.sum(c.minimum(2.3, 3), 1.8); 
    print(r); 
  } 
  private static void print(double res) { 
    System.out.printf("%.2f", res); 
  } 
} 

package my.calc; 
 
public class Main { 
  public static void main(String[] args) { 
    Calculator c = new Calculator(); 
    double r = c.sum(c.min(2.3, 3), 1.8); 
    System.out.printf("%.2f", r); 
  } 
 
 
 
} 

package my.calc; 
  
public class FpCalculator { 
  public double sum(double x, double y) { 
    return x + y; 
  } 
  public double minimum(double x, double y) { 
    if (x < y) return x; 
    else return y; 
  } 
  public double maximum(double x, double y) { 
    if (x > y) return x; 
    else return y; 
  } 
} 

package my.calc; 
  
public class Calculator { 
  public double sum(double x, double y) { 
    return x + y; 
  } 
  public double min(double x, double y) { 
    if (x < y) return x; 
    else return y; 
  } 
 
 
 
 
} 

3 

2 

1 

3 
1 

2 

Method print is 
extracted from main 

Class Calculator is 
renamed to FpCalculator 

Method min is 
renamed to minimum 

Fig. 1. Illustrative diff between two revisions of a system annotated with refactoring operations

n3 

n6 my.calc.Main 

n7 main(String[]) 

n12 maximum(double,double) 

CST for revision 1 CST for revision 2 

n1 is parent of n2 n1 n2 

n1 uses n2 n1 n2 

n9 my.calc.FpCalculator 

n10 sum(double,double) 

n11 minimum(double,double) 

n8 print(double) 

n1 my.calc.Main 

n2 main(String[]) 

my.calc.Calculator 

n4 sum(double,double) 

n5 min(double,double) 

Fig. 2. CST of both revisions of the example system from Figure 1

the scalability of our approach, as large repositories contain
thousands of source files, but only a small fraction of them
change between revisions.

Although the construction of the CST is a language-
specific process, from this point on, the approach is
language-independent and relies only on information en-
coded in CSTs. This way, one is able to extend our approach
to work with different programming languages only by
implementing the Source Code Analysis module. To demon-
strate this capability, we provide implementations for three
programming languages: Java, C, and JavaScript.

3.2 Phase 2: Relationship Analysis
This phase takes as input the CST’s of revisions v1 and
v2 and outputs the set of relationships R. Let N1 and N2

be the sets of code elements from the CST’s of v1 and v2
respectively. Each relationship r ∈ R is a triple (n1, n2, t),

where n1 ∈ N1, n2 ∈ N2, and t is a relationship type. The
types of relationships are listed in the first column of Table 3,
and can be subdivided into two groups:

• Matching relationships, which indicate that the
node n1 corresponds to n2 in the subsequent revi-
sion. The possible matching relationships are Same,
Convert Type, Pull Up, Push Down, Change Signature,
Move, Rename, and Move and Rename. We say that
a node n1 matches with n2 if exists a relationship
(n1, n2, t) ∈ R such that t is a matching relationship.

• Non-matching relationships, which indicate that ei-
ther node n1 is decomposed to create n2, or node n1
is incorporated into n2. There are four non-matching
relationships: Extract Supertype, Extract, Extract and
Move, and Inline.

3.2.1 General algorithm to find relationships
Our approach employs the algorithm described in Figure 3
to find the relationships (i.e., to compute the set R). The
procedure FINDRELATIONSHIPS has two parameters, t1 and
t2, which are the root nodes of the CST’s of both revisions.
Initially, we define R ← ∅ as the set of relationships found
so far (line 2). Additionally, we also define M ← ∅ as the set
of pairs of matching nodes found so far (line 3). Then, we
execute four subroutines:

1) In FINDMATCHINGSBYID, we recursively look for
matching nodes that have the same identifier and
parent, i.e., we assume that code elements with the
same identifier and parent are the same. In the case
of top-level nodes, which do not have parents, their
namespace should be the same. Such assumption
allows us to match many code elements at this step,
reducing the number of possibilities that need to be
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1: procedure FINDRELATIONSHIPS(t1, t2)
2: R← ∅
3: M ← ∅
4: FINDMATCHINGSBYID(t1, t2)
5: FINDMATCHINGSBYSIM
6: FINDMATCHINGSBYCHILDR
7: RESOLVEMATCHINGS
8: FINDNONMATCHINGREL
9: return R

10:
11: procedure FINDMATCHINGSBYID(p1, p2)
12: for each (n1, n2) ∈ childr(p1)× childr(p2) do
13: if id(n1) = id(n2) ∧ ns(n1) = ns(n2) then
14: ADDMATCH(n1, n2)
15: end if
16: end for
17: end procedure
18:
19: procedure FINDMATCHINGSBYSIM
20: for each (n1, n2) ∈ sortBySim(N− ×N+) do
21: if findMatchRel(n1, n2) 6= ∅ then
22: ADDMATCH(n1, n2)
23: end if
24: end for
25: end procedure
26:
27: procedure FINDMATCHINGSBYCHILDR
28: for each (n1, n2) ∈ sortBySim(N− ×N+) do
29: if matchingChildr(n1, n2) > 1 ∧

nameSim(n1, n2) > 0.5 then
30: ADDMATCH(n1, n2)
31: end if
32: end for
33: end procedure
34:
35: procedure RESOLVEMATCHINGS
36: for each (n1, n2) ∈M do
37: R← R ∪ findMatchRel(n1, n2)
38: end for
39: end procedure
40:
41: procedure FINDNONMATCHINGREL
42: for each (n1, n2) ∈M1 ×N+ do
43: R← R ∪ findExtractSupertype(n1, n2)
44: R← R ∪ findExtract(n1, n2)
45: R← R ∪ findExtractMove(n1, n2)
46: end for
47: for each (n1, n2) ∈ N− ×M2 do
48: R← R ∪ findInline(n1, n2)
49: end for
50: end procedure
51:
52: procedure ADDMATCH(n1, n2)
53: if n1 ∈ N− ∧ n2 ∈ N+ then
54: M ←M ∪ {(n1, n2)}
55: FINDMATCHINGSBYID(n1, n2)
56: end if
57: end procedure
58:
59: end procedure

Fig. 3. Algorithm to find relationships

checked in the next steps. The procedure consists of
a loop that pairs the children of the nodes received
as arguments and calls the procedure ADDMATCH
whenever a matching is found (line 13). On its turn,
ADDMATCH (lines 46-51) adds a pair of matching
nodes to M and calls FINDMATCHINGSBYID again
to look for matchings on their children, completing
the recursion. The matching pairs found in this step
will be resolved to Same and Convert type relation-
ships later (see step 4).

2) In FINDMATCHINGSBYSIM, we look for matching
nodes based on code similarity. The goal is to find
Change Signature, Pull Up, Push Down, Move, Rename,
and Move and Rename relationships. The procedure
iterates over the unmatched pairs of nodes sorted
by similarity in descending order. We use the no-
tation N− to denote the set of unmatched nodes
from t1 (presumably deleted) and N+ to denote
the set of unmatched nodes from t2 (presumably
added). For each pair (n1, n2), the procedure checks
if it meets the conditions (specified in the second
column of Table 3) for any matching relationship by
calling findMatchRel(n1, n2). This function returns
a singleton containing a matching relationship or an
empty set if none of the conditions are met. Last,
the ADDMATCH subroutine is called in the case of
a matching (line 24). The conditions to find those
relationships and the sortBySim function rely on a
code similarity metric, which is described in details
in Section 3.3.

3) In FINDMATCHINGSBYCHILDR, we look for match-
ing nodes based on matchings of their children and
name similarity. Once again, the procedure iterates
over the unmatched pairs of nodes sorted by sim-
ilarity in descending order. For each pair (n1, n2),
if n1 has more than one children that match with
n2’s children and their names are similar, then we
consider it a match. The nameSim function, used to
compute the similarity between names, is described
in details in Section 3.3.1. This heuristic is intended
to cover the cases when a code element (e.g., a class)
is moved (and/or renamed) and it is also subjected
to many additions or removals of its members,
so that its similarity with its matching pair is not
enough to yield a match in the previous step. Failing
to detect that a class has been moved (or renamed)
may yield several incorrect Move relationships be-
tween its members before and after the change.

4) In RESOLVEMATCHINGS, we add the relationships
corresponding to the matching pairs found at
steps 1, 2, and 3 to R. The procedure iterates over
the elements of M and calls findMatchRel to find
which relationship type holds between n1 and n2
(according to the conditions defined in Table 3).
By the end of this step, R contains all matching
relationships found. The rationale for postponing
the resolution of the relationship type is discussed
in Section 3.2.2.

5) In FINDNONMATCHINGREL, we look for non-
matching relationships. First, we iterate over the
pairs of matched/unmatched nodes, i.e., M1 ×N+,
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to look for Extract Supertype, Extract and Extract
and Move relationships. Similarly, we also iter-
ate over the pairs of unmatched/matched nodes
(N− × M2) to search for Inline relationships. The
functions findExtractSupertype, findExtract,
findExtractMove, and findInline check the pre-
conditions for the corresponding relationship types,
according to Table 3. After this last step, R con-
tains all matching and non-matching relationships
between CST nodes of both revisions.

Figure 4 shows the relationships we find after running
RefDiff in the example from Figure 1. Each relationship
is represented by an edge connecting nodes from the left
and right CSTs. There are three relationships of the type
Same, involving the code elements whose identifiers do not
change: the class Main and the methods main and sum .
Two of the relationships are of type Rename, indicating that
the class Calculator is renamed to FpCalculator , and
the method min is renamed to minimum . Moreover, there
is an Extract relationship indicating that the method print
is extracted from main . Finally, we can also note that two
nodes, n8 and n12, are not involved in matching relation-
ships. Thus, we classify them as added code elements. In
this example, as every node on the left side is matched, there
are no deleted code elements.

n12 

n3 

n6 my.calc.Main 

n7 main(String[]) 

maximum(double,double) 

CST for revision 1 CST for revision 2 

n1 is parent of n2 n1 n2 

n1 uses n2 n1 n2 

matching relationship n1 n2 

non-matching relationship n1 n2 

Same 

Same 

Same 

Extract 

Rename 

Rename 

n9 my.calc.FpCalculator 

n10 sum(double,double) 

n11 minimum(double,double) 

print(double) 

n1 my.calc.Main 

n2 main(String[]) 

my.calc.Calculator 

n4 sum(double,double) 

n5 min(double,double) 

n added node 

n8 

Fig. 4. Relationships found in the example from Figure 1

3.2.2 Dependent and conflicting relationships
In some cases, correctly finding a relationship depends
on finding a prior relationship. For example, consider the
relationship (n5, n11, Rename) in Figure 4 (method min
renamed to minimum ). The conditions for this relationship
includes the clause π(n5)′ = π(n11), which means that the
matching node of the parent of n5 should be equal to the
parent of n11 (see Table 3, Rename row). This clause only
yields true after the matching pair (n3, n9) is added to M ,
i.e., after we find out that Calculator is renamed to
FpCalculator . In fact, if we call findMatchRel(n5, n11)
before M contains (n3, n9), we would incorrectly classify it
as a Move and Rename relationship. To address this issue, we

only resolve the actual relationship types in steps 4 and 5,
after all matching pairs are found (note that in steps 1, 2, and
3 we record the matching pairs inM , purposely ignoring the
type of relationship).

Another issue which we may face when looking for
relationships are conflicts, i.e., two or more matching re-
lationships hold for the same code element (according to
conditions from Table 3). For instance, in the example from
Figure 4, the conditions for Rename yield true for the pair
of methods min and minimum because their source code
are similar and their parents match. However, this is also
the case for the pair of methods min and maximum ,
whose bodies are also similar. We cannot match the same
node twice, thus, we must decide upon which relationship
we will accept and discard the other one. This issue is
addressed in procedures FINDMATCHINGSBYSIM and FIND-
MATCHINGSBYCHILDR by using the sortBySim function to
sort the potential matching pairs, enforcing that we take
first the most likely matches. The sortBySim function relies
on a similarity metric, which we discuss in details in Sec-
tion 3.3. After a matching pair (n1, n2) is added to M , no
more matchings involving n1 or n2 are accepted, because
ADDMATCH procedure checks that n1 ∈ N− ∧ n2 ∈ N+

(line 47).

3.3 Code Similarity

A key element of our approach to find relationships, as
previously mentioned, is computing the similarity between
code elements (i.e., CST nodes). The first step to compute
this similarity is to represent their source code as a multiset
(or bag) of tokens. A multiset is a generalization of the
concept of a set, but it allows multiple instances of the
same element. The multiplicity of an element is the number
of occurrences of that element within the multiset. This
representation provides two advantages for our approach.
First, it makes the CST simpler and less coupled to the
syntax of programming languages, because we do not need
to represent each statement (or AST node) from the source
code. Second, we can apply set operations to the bag of
tokens, such as subtraction, which is important to detect
Extract relationships, as we will discuss in Section 3.3.2.

Formally, a multiset can be defined in terms of a mul-
tiplicity function m : U → N, where U is the set of all
possible elements. In other words, m(t) is the multiplicity
of the element t in the multiset. Note that the multiplicity of
an element that is not in the multiset is zero. For example,
Figure 5 depicts the transformation of the source code
of three methods ( sum , min , and power ), of the class
Calculator , into multisets of tokens. In this figure, the
multiplicity function m for each method is represented in
a tabular form. For example, the multiplicity of the token
y in method min is two (i.e., mmin(y) = 2), whilst the
multiplicity of the token if in method power is zero (i.e.,
mpower(if) = 0).

After extracting a multiset of tokens, we also compute
a weight for each token of the source code. In fact, some
tokens are more important than others to discriminate a
code element. For example, in Figure 5, all three methods
contain the token return . In contrast, only one method
( power ) contains the token Math . Therefore, the later is
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TABLE 2
Definitions used in the Algorithm from Figure 3 and in the conditions from Table 3

M1 the set of nodes from N1 that matches with a node from N2

M2 the set of nodes from N2 that matches with a node from N1

N− the set of unmatched nodes from N1 (N1 \M1)
N+ the set of unmatched nodes from N2 (N2 \M2)
n′ the code element that matches with n in the other revision
π(n) parent of a node n (it may be a namespace or a CST node)
ns(n) namespace of the code element n
childr(n) set of children of n in the CST

name(n) simple name of the code element n
id(n) identifier of the code element n
nType(n) node type of the code element n
subtype(n1, n2) n1 is subtype of n2

uses(n1, n2) n1 uses n2

sim(n1, n2) code similarity between n1 and n2

nameSim(n1, n2) name similarity between n1 and n2

simx(n1, n2) extract similarity between n1 and n2

sortBySim(S) elements of S sorted by sim descending

TABLE 3
Relationship types and the conditions to find them

Relationship type Conditions

(n1, n2) ∈ N− ×N+, such that:
Same nType(n1) = nType(n2) ∧ id(n1) = id(n2) ∧ π(n1)′ = π(n2)

Convert Type nType(n1) 6= nType(n2) ∧ id(n1) = id(n2) ∧ π(n1)′ = π(n2)

Pull Up nType(n1) = nType(n2) ∧ id(n1) = id(n2) ∧ subtype(π(n1)′, π(n2))

Push Down nType(n1) = nType(n2) ∧ id(n1) = id(n2) ∧ subtype(π(n2), π(n1)′)

Change Signature nType(n1) = nType(n2) ∧ id(n1) 6= id(n2) ∧ name(n1) = name(n2) ∧ π(n1)′ = π(n2) ∧ sim(n1, n2) > 0.5

Move nType(n1) = nType(n2) ∧ name(n1) = name(n2) ∧ π(n1)′ 6= π(n2) ∧ sim(n1, n2) > 0.5

Rename nType(n1) = nType(n2) ∧ name(n1) 6= name(n2) ∧ π(n1)′ = π(n2) ∧ sim(n1, n2) > 0.5

Move and Rename nType(n1) = nType(n2) ∧ name(n1) 6= name(n2) ∧ π(n1)′ 6= π(n2) ∧ sim(n1, n2) > 0.5

(n1, n2) ∈M1 ×N+, such that:
Extract Supertype ∃(n3, n4,PullUp) ∈ R (n1 = π(n3) ∧ n2 = π(n4))

Extract uses(n′1, n2) ∧ π(n1)′ = π(n2) ∧ simx(n2, n1) > 0.5

Extract and Move uses(n′1, n2) ∧ π(n1)′ 6= π(n2) ∧ simx(n2, n1) > 0.5

(n1, n2) ∈ N− ×M2, such that:
Inline uses(n1, n′2) ∧ simx(n1, n2) > 0.5

a better indicator of similarity between methods than the
former.

In order to take this into account, we employ a variation
of the TF-IDF weighting scheme [26], which is a well-known
technique from information retrieval. TF-IDF, which is the
short form of Term Frequency–Inverse Document Frequency,
reflects how important a term is to a document within a
collection of documents. In the context of code elements,
we consider a token as a term, and a code element as a
document. Let E be the set of all code elements and nt be
the number of elements in E that contains the token t. The
Inverse Document Frequency (idf ), is defined as:

idf (t) = log(1 +
|E|
nt

) (1)

Note that the value of idf (t) decreases as nt increases,
because the more frequent a token is among the collection
of code elements, the less important it is to distinguish them.
For example, in Figure 5, the token y occurs in two methods
( sum and min ). Thus, its idf is:

idf (y) = log(1 +
|E|
nt

) = log(1 +
3

2
) = 0.398

On the other hand, the token else occurs in one
method (min), and therefore its idf is:

idf (else) = log(1 +
|E|
nt

) = log(1 +
3

1
) = 0.602

Last, to compute the similarity between two code ele-
ments e1 and e2, we use a generalization of the Jaccard
coefficient, known as weighted Jaccard coefficient [27]. Let
U be the set of all possible tokens and mi : U → N be the
multiplicity function representing the multiset of tokens of
a code element ei. We define the similarity between e1 and
e2 by the following formula:

sim(e1, e2) =

∑
t∈U min(m1(t),m2(t))× idf (t)∑
t∈U max(m1(t),m2(t))× idf (t)

(2)

The rationale behind this formula is that the similarity is
at maximum (1.0) when the multiset of tokens representing
e1 and e2 contain the same tokens with the same cardinality.
In contrast, if the multisets contain no tokens in common,
the similarity is zero. Additionaly, tokens with higher idf
will have a higher weight.
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Source code of a class

public class Calculator {

public int sum(int x, int y) {
return x + y;

}

public int min(int x, int y) {
if (x < y) return x;
else return y;

}

public double power(int b, int e) {
return Math.pow(b, e);

}
}

⇒

Multiset of tokens for each method
Token t msum(t) mmin(t) mpower(t)

return 1 2 1
x 1 2 0
+ 1 0 0
y 1 2 0
; 1 2 1
if 0 1 0
( 0 1 1
< 0 1 0
) 0 1 1
else 0 1 0
Math 0 0 1
. 0 0 1
pow 0 0 1
b 0 0 1
, 0 0 1
e 0 0 1

nt

3
2
1
2
3
1
2
1
2
1
1
1
1
1
1
1

Fig. 5. Transformation of the body of methods into a multiset of tokens

3.3.1 Name similarity

Besides relying on the code similarity, our algorithm also de-
pends on the function nameSim(n1, n2) in Step 3. This func-
tion denotes the similarity between the names of the code el-
ements n1 and n2. For computing nameSim, we first decom-
pose the identifiers of n1 and n2 into their composing words.
Specifically, we split camel case (e.g., myIdentifier ) or
snake case patterns (e.g., my_identifier ) . For example,
SomeLong_Name yields three terms: Some , Long , and
Name . Then, we compute nameSim using the same formula
from sim (see Equation 2), but in this case, each multiset of
tokens contains the terms composing the identifiers of n1
and n2.

3.3.2 Extract similarity

While the similarity function sim presented previously is
suitable to compute whether two code elements are similar,
it is not appropriate to assess whether a code element is
extracted from another one, because their source code may
be significantly different on their entirety. However, if a
method e2 is extracted from e1, we expect that part of the
code of e1 is moved to e2. Therefore, the source code of the
body of e2 should be similar to the source code removed
from e1. Additionally, not all code removed from e1 may
have been moved to e2, i.e., some parts of the code may
have been extracted to other locations or simply deleted.
To be less susceptible to this issue, our similarity index for
Extract relationships rely on the following assumption: the
code from the body of e2 should be mostly contained in the
code removed from e1.

Thus, to compute the extract similarity, first we need to
compute the code removed from e1. As we represent the
source code as multisets of tokens, we are able to use the
subtract operation to achieve this goal. Let m1 be the multi-
set of tokens of e1 before the change and m′1 be the multiset
of tokens of e1 after the change. The subtract operation
between both multisets, which we denote by m′1\m1, yields

a new multiset m−1 defined by the following multiplicity
function:

m−1 (t) = max(0,m′1(t)−m1(t)) (3)

Besides computing the code removed from e1, we need
to measure if it is contained within e2. Thus, we employ
a variation of the weighted Jaccard coefficient introduced
previously (see Equation 2), which is defined as:

sim⊆(m1,m2) =

∑
t∈U min(m1(t),m2(t))× idf (t)∑

t∈U m1(t)× idf (t)
(4)

where m1 and m2 are multisets (defined by their multiplic-
ity functions). In this variation, we change the denominator
of Equation 2 to include only the multiplicity of the tokens
from the first multiset (not their union). This way, the simi-
larity is at maximum (1.0) when m1 is a subset of m2, even
if both multisets are not identical. In contrast, the similarity
is zero when the intersection between m1 and m2 is empty.

Given these definitions, we are able to define the extract
similarity index, simx, as:

simx(e1, e2) = sim⊆(m2,m
−
1 ) (5)

where m−1 is the multiset representing the code removed
from e1 (m1 \ m′1) and m2 is the multiset representing the
source code of the body of e2. The rationale behind this
formula is that the similarity is at maximum when m2 is a
subset ofm−1 , addressing the previously described heuristic.

3.3.3 Inline similarity
The similarity index for computing Inline relationships is
analogous to the Extract similarity index. If a code element
e1 is inlined into a code element e2, we expect that the
code from the body of e1 should be mostly contained in the
code added to e2. Specifically, we define the inline similarity
index, simi, as:

simi(e1, e2) = sim⊆(m1,m
+
2 ) (6)

where m1 is the multiset representing the source code of
the body of e1 and m+

2 is the multiset representing the code
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added to e2 (m′2 \m2). Such similarity index is at maximum
(1.0) when m1 is a subset of the added code (m+

2 ).

3.3.4 Ignoring parameters and return keywords
When retrieving the tokenized source code of the body
of a code element, some tokens are ignored to avoid that
syntactical constructs necessary to its declaration introduce
noise when computing the Extract or Inline similarity index.
For example, suppose we take the refactoring operation
#1 depicted in Figure 1: print is extracted from main .
The body of the new method print contains a single
statement:

System.out.printf("%.2f", res);

All the tokens within this method are present in main
before the extraction, except the identifier res , which is
a declared parameter of print . In fact, in the original
statement, a variable r is used in place of res . To be
less susceptible to such differences, we omit all occurences
of parameters in the tokenized source code of the body.
Similarly, occurences of return keywords are also ignored
because they may be introduced when turning the extracted
code into a method. It is worth noting that discarding such
tokens is of responsability of the source analysis module.
Thus, specific rules may be implemented according to the
peculiarities of the programming language.

3.4 Implementation details
RefDiff implementation consists of a core module and lan-
guage plugins:

• refdiff-core: implements our core algorithm and
contains common data types to represent CSTs and
interfaces to implement source code analysis (i.e.,
generation of CSTs) for each programming language.
Currently, this module contains 3,103 lines of code,
implemented in Java.

• refdiff-java: language plugin for Java, which
relies on the Eclipse JDT library for parsing and
analyzing Java code.2 This module contains 1,137
lines of code.

• refdiff-c: language plugin for C, using the Eclipse
CDT library.3 This module contains 615 lines of code.

• refdiff-js: language plugin for JavaScript, using
the Babel parser4 and with 689 lines of code.

To add support to a new programming language, one must
implement the LanguagePlugin interface, which defines
two methods: parse , which builds the CST given a set
of source files, and getAllowedFilesFilter , which re-
turns an object with a list of allowed file extensions and
an optional list of ignored file name suffixes. For example,
refdiff-js ignores file names that end with .min.js,
which are usually generated code.

When compared to existing refactoring detection ap-
proaches, RefDiff’s design has the advantage of being loosed
coupled to the syntax of Java (and of any other program-
ming language). For example, RMiner, which is a Java-based

2. https://www.eclipse.org/jdt/
3. https://www.eclipse.org/cdt/
4. https://babeljs.io/docs/en/babel-parser

approach, relies on a statement matching algorithm and ap-
plies two techniques to enable matching of statements that
are not textually identical: Abstraction and Syntax-aware
replacements of AST nodes [15]. Both techniques manipu-
late syntactic constructs of the Java language, such as return
statements, variable declarations, assignments, method in-
vocations, conditional statements, class instantiations, types,
literals, operators, and others. Thus, when adapting these
techniques to other programming language, tool builders
should carefully consider its particular syntactic constructs.
On the other hand, RefDiff’s similarity comparison is based
on tokenized code. Therefore, it does not depend on the
AST nodes of any given language. As another example, Java
code is structured with classes, which contains methods and
attributes, and RMiner detection rules are tightly based on
this structure. In contrast, JavaScript code contains functions
inside functions with arbitrary levels of nesting. RefDiff is
able to deal with both languages because CSTs do not as-
sume any particular hierarchical structure between different
types of nodes.

In summary, we do not claim that existing approaches
cannot not be extended to other languages, but that would
require a non-trivial effort. By making fewer assumptions
about the syntax of the target language we facilitate multi-
language support. Note that the implemented language
plugins have small code bases (between 615–1137 lines of
code).

4 EVALUATION WITH JAVA PROJECTS

In this section, we evaluate the precision and recall of our
approach using a recently proposed dataset of refactorings
performed in real-world Java open-source projects. We also
compare its precision and recall with RMiner—the current
state-of-the-art tool for detecting refactorings in Java—and
RefDiff 1.0, the previous version of our tool. First, we
present our evaluation design (Section 4.1) and then we
present the results (Section 4.2).

4.1 Evaluation Design

To evaluate the precision and recall of RefDiff 2.0 in Java
we initially use an oracle proposed by Tsantalis et al. [15].
This oracle includes 3,188 manually-validated refactoring
instances, detected in 538 commits from 185 open-source
projects, and covering 15 refactoring types. It is important
to emphasize that most commits contain non-refactoring
changes interleaved with refactorings, which is the most
challenging scenario for refactoring detection tools. In our
evaluation, we also compare RefDiff’s precision and recall
against RMiner (version 1.0). For the purpose of the com-
parison, we restricted the oracle to 11 refactoring types
supported by both tools. Specifically, we excluded Change
Package, Move Field, Push Down Field and Pull Up Field from
the analysis as they are not supported by RefDiff. Moreover,
Convert Type and Change Signature, although supported by
RefDiff, are not evaluated because they are not covered
by the oracle. In total, our modified oracle contains 3,031
confirmed refactoring instances. Additionally, it also con-
tains 704 refactoring instances classified as false positives
in the process of manual validation performed by Tsantalis

https://www.eclipse.org/jdt/
https://www.eclipse.org/cdt/
https://babeljs.io/docs/en/babel-parser


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST XXXX 11

Fig. 6. Illustrative diff of an Extract Method refactoring considered as true positive by the validators, taken from commit ce4f629 from infinispan
project.

TABLE 4
Java precision and recall results

RefDiff 1.0 RefDiff 2.0 RMiner 1.0

Refactoring Type # Precision Recall Precision Recall Precision Recall

Move Class 1100 0.999 0.881 0.999 0.970 1.000 0.925
Move Method 319 0.322 0.746 0.871 0.803 0.955 0.658
Move and Rename/Rename Class 95 0.897 0.642 0.922 0.874 0.983 0.621
Rename Method 350 0.855 0.811 0.946 0.694 0.978 0.771
Extract Interface 24 0.769 0.417 0.875 0.875 1.000 0.833
Extract Superclass 70 1.000 0.157 1.000 0.743 0.958 0.971
Pull Up Method 91 0.806 0.593 0.974 0.824 1.000 0.791
Push Down Method 40 0.950 0.475 0.950 0.950 1.000 0.825
Extract/Extract and Move Method 1037 0.904 0.833 0.962 0.663 0.985 0.768
Inline Method 122 0.842 0.787 0.957 0.721 0.990 0.795

Total 3248 0.792 0.802 0.964 0.804 0.988 0.813

et al. [15]. These instances are used to detect false positives
reported by RefDiff, as described in the next paragraph.

First, we run RefDiff on each commit of the oracle.
For each detected refactoring r we checked whether r is
in the oracle, which may yield three outcomes: (i) if r is
a confirmed refactoring from the oracle, then it is a true
positive; (ii) if r is a false refactoring from the oracle, then
it is a false positive; (iii) otherwise, r was inspected by two
authors of this paper to assess whether it is a false positive
or a true positive not covered by the oracle. This extra
manual validation is needed because the initial oracle must
not be granted as complete, i.e., including all refactorings
performed in the set of analysed commits. Specifically, it
was constructed using a triangulation approach, based on

an initial list of refactorings produced by RMiner 1.0 and
RefDiff 1.0. For this reason, it might miss true refactorings
only detected by RefDiff 2.0.

After following this procedure, RefDiff 2.0 detected 263
new refactoring instances (i.e., not listed in the initial ora-
cle), which were validated by two paper’s authors, called
here validators. In the case of 175 refactorings (66%), the
validators agreed on their classification, including 138 refac-
torings labelled as true positives by both validators and
37 labelled as false positives. After this initial and inde-
pendent validation, the validators discussed together the
remaining 88 cases (34%), to reach an agreement. As a
result, 79 refactorings were considered true positives and
9 refactorings were classified as false positives. Figure 6
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shows an example of a refactoring identified by RefDiff that
both validators classified as true positive. In this case, a de-
veloper extracted method createPrepareRpcOptions
from method prepareOnAffectedNodes .

In total, after completing the manual validation, 217
new refactorings instances were classified as true positives
and therefore included in the oracle. The expanded oracle
includes 3,248 refactoring instances (7.19% more than the
initial one) and it is publicly available at RefDiff’s GitHub
repository.5

4.2 Results and discussion
Table 4 shows the precision and recall results for RefDiff 2.0
and RMiner 1.0 using the oracle described in the previous
section. The overall precision and recall of RefDiff 2.0 is
96.4% and 80.4%, respectively. Precision ranges from 87.1%
(Move Method) to 100.0% (Extract Superclass), and it is above
90% for 8 out of 10 refactoring types. Recall ranges from
66.3% (Extract Method) to 97.0% (Move Class), and it is above
80% for 6 out of 10 refactoring types.

4.2.1 Comparison with RefDiff 1.0
We also show in Table 4 the results obtained with RefDiff 1.0
in this oracle. Note that overall precision is significantly
improved (from 79.2% to 96.4%). Moreover, RefDiff 2.0 has
less variation on recall across refactoring types. We can list
five improvements over RefDiff 1.0 that justify such results.

• In RefDiff 2.0, we find moved/renamed types (e.g.,
classes) based on matched members (step 3 of our
algorithm). This heuristic was introduced aiming
to reduce the number of false negatives for class
moves/renames, which also reduces the number of
false positives for Move Method.

• We compute the removed and added code using
set operations to improve Extract and Inline simi-
larity functions. For example, our Extract similarity
function compares the body of an extracted method
with the code removed from the original method,
strengthening the preconditions to detect Extract re-
lationships. Similarly, our Inline similarity function
compares the body of an inlined method with the
code added to its destination.

• Ignoring parameters/arguments and return key-
word (Section 3.3.4) is also an improvement over
RefDiff 1.0, making Extract and Inline similarity less
sensitive to code changes related to the mechanics of
the refactoring.

• Pull Up and Push Down rules no longer include body
similarity comparison. Additionally, Extract Super-
type also drops similarity comparison and it was
rewritten based on Pull Up rule. These changes im-
proved both precision and recall of these refactoring
types.

• While RefDiff 1.0 relied on a set of thresholds, which
were calibrated for each refactoring type, in RefDiff
2.0 we use a single similarity threshold, defined as
0.5 by default. We acknowledged that relying on
user-defined thresholds or thresholds calibration is

5. https://github.com/aserg-ufmg/RefDiff

not ideal, as advocated by Tsantalis et al. [15]. Thus,
in RefDiff 2.0 we emphasized the aforementioned
improvements to our algorithm, making it is less
sensitive to similarity thresholds. In fact, we achieved
better precision for all refactoring types, even with-
out calibration. We only lost recall for Rename Method,
Extract Method and Inline Method. We attribute this
fact to the very low thresholds set for these refactor-
ing types (between 0.1 and 0.3).

4.2.2 Comparison with RMiner 1.0
Table 4 also shows the results of RMiner 1.0, which achieves
98.8% of overall precision (ranging from 95.5% to 100.0%)
and 81.3% of overall recall (ranging from 64.1% to 97.1%).
When we analyze individual refactoring types, RefDiff’s
precision is lower in all but one refactoring type (Extract
Superclass). However, recall is higher in 6 refactoring types.
In summary, both tools have very similar total recall, but
RMiner’s precision is slightly higher. We can list at least
three differences between RefDiff and RMiner that might
explain the differences in the results.

• Unlike RefDiff, we believe RMiner does not account
for methods moved to added classes, nor meth-
ods moved from deleted classes, as RMiner’s de-
tection rule for Move Method includes the clauses
(tda, td

′
a) ∈ TD= and (tdb, td

′
b) ∈ TD= [15]. Many

of the false negatives for Move Method involve such
scenarios, which explains the lower recall for RMiner.

• Both approaches find moved/renamed types (e.g.,
classes) based on matched members (step 3 of our al-
gorithm). However, ReffDiff’s detection rule requires
that a pair of candidate types (t1, t2) have more than
one children in common, while RMiner’s rule is more
strict, requiring that either all members of t1 are in t2,
or all members of t2 are in t1. Additionally, RefDiff
also finds moved/renamed types by similarity. These
might be the reasons for RMiner’s lower recall for
Move and Rename/Rename Class.

• They use very different approaches for computing
code similarity. While RefDiff relies on tokenized
code and a TF-IDF based similarity function, RMiner
relies on a statement matching algorithm and syntax-
aware replacement of AST nodes. Such difference
potentially impacts precision and recall for several
refactoring types, and might be an advantage factor
for RMiner.

Despite the aforementioned differences, we emphasize
that RefDiff and RMiner have much in common:

• Both approaches match elements by full name/sig-
nature in their first step.

• Many of the refactoring detection rules are similar.
• Both approaches enforce an order of detection be-

tween refactoring types and use a best match strategy
to choose between conflicting refactoring candidates.

• RefDiff 2.0 included an heuristic to find moved/re-
named types (e.g., classes) based on matched mem-
bers, which is similar to RMiner’s detection rule.

• Ignoring parameters/arguments and return key-
word (Section 3.3.4) serves a similar purpose to

https://github.com/aserg-ufmg/RefDiff
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the argumentization and abstraction techniques pro-
posed by RMiner.

4.3 Execution time
Besides comparing precision and recall, we also compared
the execution time of both RefDiff 2.0 and RMiner 1.0. For
this purpose, we ran both tools using the same computer (an
Intel Core i5-750 with 8GB of RAM and a 7200 RPM HDD)
and measured the time spent in the analysis of each of the
538 commits from our oracle.6 Figure 7 shows a violin plot
of the execution time per commit for both tools, using a log-
10 scale. We can note that the median is lower for RMiner
(109 ms vs. 157 ms), but RefDiff has less variation in the
execution times. For example, the maximum execution time
for RMiner was 85s, at commit ab98bca from java-algorithms-
implementation, whilst RefDiff spent 10s at maximum, in
commit 4baf0a4 from aws-sdk-java. Nevertheless, both tools
analyze the majority of the commits in less than one second
and are viable for practical use. It is worth noting that we
executed both RefDiff and RMiner using their file-based
API, which reads a list of files directly from disk. This
means that the time to clone or checkout revisions from git
repositories is not included in our measurements. However,
we do not expect significant differences between both tools
when using their git-based API, which includes services
from mining refactorings directly from git repositories. The
reason is that both tools retrieve only the necessary files
using the jgit library, therefore avoiding checking out the
entire project on disk.
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Fig. 7. Violin plot of execution time per commit in log-10 scale

4.4 Threats to Validity
There are at least two threats to the validity of the eval-
uation with Java projects. The first one is the subjectiv-
ity inherent to the manual classification of the reported
refactorings as true/false positives, which directly impact
the computed precision. Different validators may have a

6. We repeated the experiment three times and discarded the times
collected in the first run, which was considered as a warm up.

different interpretation of the code change under analysis,
which is demonstrated by the fact that in 34% of the cases
the validators initially disagreed. We mitigated this threat by
having each refactoring assessed by two validators indepen-
dently. Second, as discussed in Section 4.1, our oracle can not
be granted as complete, i.e., there might exist refactorings
in the analyzed revisions that are not detected by any of
the tools. Thus, the actual recall might be lower than the
computed recall. Unfortunately, it is not feasible to assure
the completeness of an oracle at this scale with manual
inspection. A single commit usually contains hundreds of
changed lines of code, making such task extremely time
consuming and error prone. Nevertheless, the computed
recall serves the purpose of comparison between tools, and
it should also be a fair approximation of actual recall, as
our oracle is based on refactorings found by three tools:
RMiner 1.0, RefDiff 1.0, and RefDiff 2.0.

5 EVALUATION WITH JAVASCRIPT AND C
Besides the Java evaluation, we also evaluated precision and
recall of RefDiff in JavaScript and C. Unfortunately, we did
not find a dataset with detailed information about real refac-
torings performed in these languages that we could use as
an oracle. Therefore, we had to adopt a different strategy. To
evaluate precision, we manually validated the refactorings
detected by RefDiff in a set of GitHub repositories, in both
languages (Section 5.1). Then, to evaluate recall, we searched
for documented refactoring operations in commit messages
of the same set of repositories (Section 5.2). After that, in
Section 5.3, we report the precision and recall achieved by
RefDiff. We are not aware of any other tool for detecting
refactorings in these languages. Therefore, in this second
evaluation, it was not possible to compare RefDiff’s results
with competitor tools.

5.1 Evaluation Design: Precision
To compute RefDiff’s precision when detecting refactorings
in JavaScript and C, we followed these steps:

1) We selected the 20 most popular GitHub repos-
itories of each language. For this, we queried
the GitHub API for repositories, sorting by stars
count—which is a reliable indicator of popularity
in GitHub [28], [29] —and filtering by program-
ming language. The resulting list of repositories was
manually inspected to discard the ones that are not
actual software projects, e.g., tutorials or code sam-
ples. Then, we forked each selected repository, to
preserve their version histories from future changes
pushed to the original project. Table 5 shows the
name, short description, and number of commits of
each selected repository, both for JavaScript and C.

2) We ran RefDiff in the version history of each reposi-
tory. To select the commits, we navigate the commit
graph backwards, starting from the most recent
commit in the master branch. We also discarded
merge commits, i.e., commits which have two pre-
decessors. The rationale is that comparing a merge
commit with their predecessors results in dupli-
cated reports of refactorings applied in the commits
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TABLE 5
JavaScript and C repositories used in the evaluation

Repository Description Commits

react A declarative, efficient, and flexible JavaScript library for building user interfaces. 10,964
vue Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web. 3,014
d3 Bring data to life with SVG, Canvas and HTML. 4,148
react-native A framework for building native apps with React. 16,875
angular.js AngularJS - HTML enhanced for web apps. 8,963
create-react-app Set up a modern web app by running one command. 2,233
jquery A fast, small, and feature-rich JavaScript library. 6,403
atom The hackable text editor. 36,752
axios Promise based HTTP client for the browser and node.js. 847
three.js JavaScript 3D library. 27,762
socket.io Realtime application framework (Node.JS server). 1,715
redux Predictable state container for JavaScript apps. 2,819
webpack A bundler for javascript and friends. 7,852
Semantic-UI Semantic is a UI component framework based around useful principles from natural language. 6,684
reveal.js The HTML Presentation Framework. 2,341
meteor Meteor, the JavaScript App Platform. 21,966
express Fast, unopinionated, minimalist web framework for node. 5,555
material-ui React components for faster and easier web development. 9,449
Chart.js Simple HTML5 Charts using the canvas tag. 2,739

linux Linux kernel source tree. 839,761
netdata Real-time performance monitoring, done right! 8,338
redis Redis is an in-memory database that persists on disk. 8,158
git Git is a free and open-source distributed version control system. 55,723
ijkplayer Android/iOS video player based on FFmpeg n3.4, with MediaCodec, VideoToolbox support. 2,584
php-src The PHP Interpreter. 112,847
wrk Modern HTTP benchmarking tool. 76
the silver searcher A code-searching tool similar to ack, but faster. 2,016
emscripten Emscripten: An LLVM-to-Web Compiler. 19,468
vim The ubiquitous text editor. 9,875
jq Command-line JSON processor. 1,287
FFmpeg A complete, cross-platform solution to record, convert and stream audio and video. 93,898
tmux A terminal multiplexer: it enables a number of terminals to controlled from a single screen. 7,618
nuklear A single-header ANSI C gui library. 1,646
obs-studio Free and open-source software for live streaming and screen recording. 6,727
libuv Cross-platform asynchronous I/O. 4,319
swoole-src Coroutine-based concurrency library for PHP (like Golang). 9,938
curl A command line tool and library for transferring data with URL syntax. 24,339
toxcore The future of online communications. 3,771
darknet Convolutional Neural Networks. 436

prior to the merge operation. Moreover, to avoid
over-representing projects with longer histories, we
established a limit of 500 commits per repository.
For each selected commit, we compared its source
code with its predecessor using RefDiff, to detect
refactoring operations.

3) Given the list of refactorings detected by RefDiff, we
randomly selected 10 instances of each refactoring
type to manually assess whether they correspond
to actual refactorings (true positives), or incorrect
reports (false positives). When applying the random
selection, we enforced the constraint that we should
not select two refactoring instances performed in
the same commit. In this way, we avoid selecting
similar refactorings which were performed in batch,
e.g., multiple classes or functions moved together.
To confirm each refactoring operation, one of the

authors manually inspected the diff of the code
changes in the corresponding commit.

After following the three steps, we compute precision
as P = TP/(TP + FP), where TP is the number of true
positives and FP is the number of false positives.

5.2 Evaluation Design: Recall
To compute RefDiff’s recall when detecting refactorings in
JavaScript and C, we followed three steps:

1) We used GitHub API to find refactorings docu-
mented in commits from the repositories selected
for evaluating precision (Section 5.1). Such queries
consist in searching for keywords denoting a par-
ticular type of refactoring in the commit message,
as described in Table 6. For example, when looking
for Rename Function refactoring instances, we built
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a query that looks for commits which contain the
keywords rename and function in their messages,
among other combinations.

2) Given the list of results of a query, one of the authors
manually inspected each item to assess whether
it really contains a refactoring. He started by an-
alyzing the commit message. In many cases, the
keywords are found in the text, but they are not re-
ferring to a refactoring operation. For example, one
of the messages was: “The routeToRegExp() function,
introduced by 840b5f0, could not extract path params if
the path contained question mark or hash.” This mes-
sage contains the keywords extract and function, but
clearly does not describe an Extract Function refac-
toring. In these situations, he discarded the commit
with no further analysis. When the commit mes-
sage described a refactoring, he checked the code
diff to confirm it. Each confirmed refactoring was
recorded in a normalized textual format compatible
with the output of RefDiff. Inspecting the code
diff is also necessary to locate the code elements
involved in the operation. For example, the message
“Extract commit phase passes into separate functions”
documents a Extract Function refactoring, but does
not specify the name of the extracted functions. He
repeated this procedure until he found 10 instances
of each refactoring type or when there were no more
results to inspect. We found less than 10 instances
when looking for Move and Rename File, Move and
Rename Function, and Inline Function for JavaScript.
Additionally, although modern JavaScript contains
classes, we did not find documented refactorings
instances of Move and/or Rename Class.

3) We ran RefDiff in the commits that contain docu-
mented and manually-validated refactorings to as-
sess whether they are reported (true positives) or
missed (false negatives).

After following these steps, we compute recall as R =
TP/(TP + FN ), where TP is the number of true positives
and FN is the number of false negatives.

TABLE 6
Search queries for each refactoring type

Change Signature add parameter, remove parameter, add
argument

Move/Rename File move file, rename file, move folder,
move rename file, move rename

Move/Rename Function move function, rename function, move
and rename

Extract Function extract, duplicate, extract function, fac-
tor out

Inline Function inline, inline into, remove indirection,
indirect functions, remove wrapper

5.3 Results for JavaScript and C

Table 7 shows the precision and recall results for JavaScript.
The overall precision is 91%. There are three refactorings

with precision of 80%: Rename Function, Move and Rename
Function, and Inline Function. For the remaining refactoring
types, RefDiff has a precision of 90% (two refactoring types)
or a precision of 100% (five refactoring types). Table 7
also shows the recall results, which reach 88% when all
refactoring types are considered together. Inline function has
the lowest recall (40%); however, our dataset has only five
instances of this operation. There are three refactoring types
with recall of 100%: Move File, Move Function, Move and
Rename File. For the other ones, recall ranges between 80%
and 90%.

TABLE 7
JavaScript precision and recall results

Refactoring Type # Precision # Recall

Move File 10 1.00 10 1.00
Move Class 2 1.00 0
Move Function 10 0.90 10 1.00
Rename File 10 1.00 10 0.80
Rename Class 5 1.00 0
Rename Function 10 0.80 10 0.90
Move and Rename File 10 1.00 3 1.00
Move and Rename Function 10 0.80 7 0.86
Extract Function 10 0.90 10 0.90
Inline Function 10 0.80 5 0.40

Total 87 0.91 65 0.88

Table 8 shows the precision and recall results for C. The
overall precision is 88%. Inline Function is the refatoring
for which precision is lower (50%). Besides, there are two
refactorings with precision of 80%: Move Function and Move
and Rename Function. For the remaining refactoring types,
RefDiff has a precision of 90% (one refactoring type) or
a precision of 100% (four refactoring types). We did not
find any instance of Move and Rename File, thus we could
not compute precision for this refactoring type. Table 8
also shows the recall results, which is 91% overall. Extract
Function (70%) and Move Function (80%) are the ones with
lowest recall. For the remaining refactoring types, RefDiff
has a recall of 90% (three refactoring types) or a recall of
100% (four refactoring types).

TABLE 8
C precision and recall results

Refactoring Type # Precision # Recall

Change Signature 10 1.00 10 0.90
Move File 10 1.00 10 1.00
Move Function 10 0.80 10 0.80
Rename File 10 1.00 10 1.00
Rename Function 10 0.90 10 1.00
Move and Rename File 0 10 1.00
Move and Rename Function 10 0.80 10 0.90
Extract Function 10 1.00 10 0.70
Inline Function 10 0.50 10 0.90

Total 80 0.88 90 0.91
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5.4 Threats to Validity

One threat to validity of the evaluation with JavaScript and
C projects is its smaller scale. For example, we computed
precision for JavaScript using 87 refactorings, and recall
using 65 refactorings, while the evaluation in Java used an
oracle with 3,249 refactorings. Particularly, we restricted the
analysis to 10 instances per refactoring type. First, we ac-
knowledge this limit does not express the frequency of each
refactoring in practice. Second, as a result of this decision,
our evaluation dataset for JavaScript and C is not complete
with respect to true positives. In fact, the evaluation with
JavaScript and C is a complement to the evaluation with
Java aiming to show that RefDiff 2.0 provides similar results
when used to detect refactorings in other programming
languages. Last, we should also note that, similarly to the
evaluation with Java projects, the subjectivity inherent to
the manual classification of the reported refactorings is also
a threat to validity.

6 CHALLENGES AND LIMITATIONS

Low-level refactorings: RefDiff does not detect local refac-
torings, such as rename, extract or inline a local variable,
because the syntactical structure of the source code within
a CST node is not represented. While it is theoretically
possible to extend the CST to include finer-grained code
elements such as statements, local variables, and others,
this would also make it harder to port RefDiff to other
programming languages.
Generating call graphs: In our modular architecture, the
generation of the CST, which includes information from a
call graph and a type hierarchy graph, is delegated to a
language-specific plugin. For languages such as Java, there
are reliable parsers and static analyzers that aid in this
task (e.g., Eclipse JDT). However, we acknowledge that
generating precise call graphs for untyped languages, such
as JavaScript, might be a challenging problem. Nevertheless,
we provided evidences that our approach works well even
when the information encoded in the CST is not completely
precise. For example, in our JavaScript implementation—
which contains only 689 lines of code in total—we used a
simple strategy in which we assume a node n1 uses n2 if
n1 contains a function call with the same identifier as n2
and both are defined in the same file. However, to detect
a Extract relationship between n1 and n2, we need two
other conditions: (i) n2 should be a new method and (ii)
the body of n2 should be similar to the code removed from
n1 between revisions. In other words, an incorrect edge in
the call graph only leads to an incorrect Extract relationship
in the unlikely scenario in which a function n2 is introduced,
the content of such function is similar to code removed from
n1 and n1 calls a function with the same identifier of n2 after
the change, but that function is not actually n2. A similar
reasoning applies to Inline relationships, which also depends
on information from call graphs. In summary, although
generating precise call graphs is non trivial for untyped
languages, we argue that it is not needed in practice to
achieve acceptable precision, specially in the light of the
results of our evaluation using JavaScript systems (91% of
precision).

JavaScript class syntax: Our JavaScript implementation
only considers classes defined with the new ES6 syntax, i.e.,
classes emulated by functions definitions and prototype-
based inheritance are just treated like regular functions
when generating the CST.
Field-related refactorings: As our refactoring detection al-
gorithm is centered around code similarity and fields do
not have a body, we did not implement the detection of
Move/Pull Up/Push Down Field in RefDiff 2.0. Unrestricted
detection of Move Field based solely on fields’ types and
names is prone to find many false positives. However, we
plan to add support for field-related refactorings in future
work by using stricter detection rules, similarly to RMiner
(e.g., requiring a dependency between their source and
destination classes).

7 CONCLUSION

To the best of our knowledge, RefDiff 2.0 is the first refactor-
ing detection approach that supports multiple programming
languages. We made this possible with two main design
decisions. First, our refactoring detection algorithm relies
only on information encoded in CSTs, a data structure that
represents the source code but abstracts the specificities
of each programming language. Second, we compute code
similarity at the level of the tokenized source code, using
techniques from information retrieval. In summary, RefDiff
is loosely coupled to the syntax of the target programming
language, which makes it easier to extend it to other lan-
guages. Our evaluation using a dataset of real refactorings
in Java showed that RefDiff’s precision is 96.4% and recall
is 80.4%. Although we were not able to surpass RMiner’s
precision of 98.8%, we argue that we achieved satisfactory
results for a language-neutral approach. In one hand, spe-
cialized tools can use more advanced techniques to improve
refactoring detection. On the other hand, the higher the
coupling with the syntax of a particular language, the harder
it becomes to port the approach to other programming
languages. Last, our evaluation in JavasScript and C also
showed promising results. RefDiff’s precision and recall are
respectively 91% and 88% for JavaScript, and 88% and 91%
for C. These results show the viability our approach for
languages other than Java. Thus, we claim that RefDiff 2.0
can pave the way for important advances in refactoring
studies in JavaScript, C, and other languages in the future.
Moreover, it can be employed in practical tasks, such as
improving diff visualization, automatically documenting
refactorings in commits, keeping track of the history of
refactored code elements, and others.
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