
Applying a Multi-platform Architectural Conformance Solution
in a Real-world Microservice-based System
Elena A. Araujo

elena.araujo@posgrad.ufla.br
Universidade Federal de Lavras

Lavras, MG

Álvaro M. Espíndola
alvaro.espindola@estudante.ufla.br
Universidade Federal de Lavras

Lavras, MG

Vinicius Cardoso Garcia
vcg@cin.ufpe.br

Universidade Federal de Pernambuco
Recife, PE

Ricardo Terra
terra@ufla.br

Universidade Federal de Lavras
Lavras, MG

ABSTRACT
Microservice architectures are composed of a set of independent
microservices that execute well-defined functionalities, allowing
each one to be developed in different programming languages and
data management technologies. The problem, however, is that such
heterogeneity implies in a harder verification process of communi-
cation among microservices and the architectural designs of each
microservice. Although the state-of-the-art provides several archi-
tectural conformance solutions, none formally restricts communica-
tions (e.g., over HTTP) between different systems. Even stable and
industrial solutions—such as Kubernetes, Terraform, and Docker
Compose—provide basic mechanisms to restrict communications
between microservices. Thereupon, this paper proposes and evalu-
ates a multi-platform architectural conformance solution for the
microservice architecture. For this purpose, (i) we specify an ar-
chitectural constraint language, called DCL+—adapted from the
DCL (Dependency Constraint Language) language; (ii) we propose
a multi-platform process that restricts the communication between
the microservices and also verifies the architectural projects of each
one of them; (iii) we develop DCL+check, a tool that implements
the proposed solution; (iv) we apply our process in a medium-size
real-world application composed of eleven microservices, devel-
oped in two different languages (JavaScript and Java). As result,
we found 16 communication and 171 structural design violations.
The communication violations occurred in general due to the lack
of knowledge of the developers about the restrictions of commu-
nication among the modules of the orchestrator system and other
microservices, as well as the evolution of two microservices.

CCS CONCEPTS
• Software and its engineering → Software architectures;
Softwaremaintenance tools;Architecture description languages;
Domain specific languages.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SBCARS ’20, October 19–20, 2020, Natal, Brazil
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8754-5/20/09. . . $15.00
https://doi.org/10.1145/3425269.3425270

ACM Reference Format:
Elena A. Araujo, Álvaro M. Espíndola, Vinicius Cardoso Garcia, and Ricardo
Terra. 2020. Applying a Multi-platform Architectural Conformance Solution
in a Real-world Microservice-based System. In 14th Brazilian Symposium on
Software Components, Architectures, and Reuse (SBCARS ’20), October 19–20,
2020, Natal, Brazil. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3425269.3425270

1 INTRODUCTION
Microservice architecture is an approach to develop a single appli-
cation and a complex and wide-scale ecosystem of applications and
services, each running on its own processes, communicating, tech-
nologies, data schemas among others architectural decisions [2, 8].
Therefore, microservices are fully autonomous, which means they
can be developed in different programming languages, using differ-
ent frameworks, persisting data in different DBMSs, and hosted in
different application servers [3].

Such heterogeneity, however, implies in a harder verification
process of communication between microservices and the architec-
tural designs of each microservice. For instance, we are not aware of
cross-platform solutions whose precise goal is to support develop-
ers in enforcing communication and structural design constraints
in the microservice architecture.

This paper claims that the lack of conformance solutions dis-
regarding communications between microservices can nullify the
benefits provided by such architectural style, such as maintainabil-
ity, scalability, portability, etc. [14, 18]. This phenomenon is known
as software architecture erosion and it is considered a challenging
research problem in the software architecture area [4, 5, 12, 21, 24].

As an example, as illustrated in Figure 1, assume an applica-
tion composed of three microservices: Ms1 is written in JavaScript
through Node.js, stored in a Mercurial repository, and runs in Italy;
Ms2 is written in Java, stored in a Git repository, and runs in Canada;
and Ms3 is written in C#, stored in a SVN repository, and runs in
USA. The problem is how we can restrict the communication be-
tween these microservices?

This paper, therefore, proposes and evaluates an architectural
conformance1 process for themicroservice architecture.We provide
software architects with a multi-platform solution that allows (i) the

1The term architectural conformance refers to the checking if the implemented
architecture (a.k.a., source code architecture) is in accordance with the planned one.

41

https://doi.org/10.1145/3425269.3425270
https://doi.org/10.1145/3425269.3425270
https://doi.org/10.1145/3425269.3425270

SBCARS ’20, October 19–20, 2020, Natal, Brazil Elena A. Araujo, Álvaro M. Espíndola, Vinicius Cardoso Garcia, and Ricardo Terra

Nova York

Ms1

DAOFactory DAO

Controller

Ms2

Toronto

Ms3

Washington

Rome

Figure 1: An example of application composed by microser-
vices.

verification of the structural design of each microservice and (ii) the
restriction of communication between microservices.

As an example of (i), the planned architecture of Ms1 specifies
that only the DAOFactory class can create DAO (Data Access Ob-
ject) objects. If another class instantiates DAO objects, we report
a structural design violation. There are a bunch of architectural
conformance solutions that could detect such violation and our
goal is to provide an integrated and multi-platform solution based
on the DCL language [22, 23] (complementary contribution).

As an example of (ii), a constraint specifies that Ms1 can com-
municate only with Ms2. If Ms1 also communicates with Ms3, our
solution reports a communication violation (our main contribution).
Indeed, there are stable and industrial solutions—such as Kuber-
netes2, Terraform3, and Docker Compose4—that can somehow ad-
dress communications violations, besides Istio5 and Kiali6 that
provide mechanisms to control and visualize the communication
between services. Nevertheless, our approach brings some relevant
advantages when considering architectural aspects:

(1) Granularity. Although the aforementioned solutions can for-
bid communications from a microservice A to B, our pro-
posed solution can specify which classes inside A can or
cannot communicate to B;

(2) Required communications. The aforementioned solutions can
forbid communications but not ensure that a communication
must be established as our proposed solution does;

(3) On-developing checking. When you forbid microservice A
to communicate with B using the aforementioned solutions,
such blocking will occur at runtime. Using our proposed solu-
tion, a forbid communication is presented to the developers
as soon as they write the code down; and

(4) More types of restrictions. Our proposed solution provides
other types of constraints using different semantics such as
“can-communicate-only” that avoids the creation of several
“cannot” constraints.

Our main contribution for the state-of-the-art is the solution for-
mally restricts communications (e.g., over HTTP) between different
systems. Therefore, this paper focuses mainly on communication
aspects. We designed it as multi-platform and also included local

2https://kubernetes.io/
3https://www.terraform.io/
4https://docs.docker.com/compose/
5https://istio.io/
6https://kiali.io/

structural design conformance to promote better applicability in
real-world scenarios.

Our main contribution for the state-of-the-practice is an evalua-
tion in a real-world microservice-based system where our solution
was effectively able to detect 16 deviations in the communication ar-
chitecture, besides 171 in the structural design architecture, which
were unknown by its architects.

The remainder of this work is organized as follows. Section 2
introduces microservices and the constraint language our proposed
language is based on. Section 3 describes our proposed DCL+. Sec-
tion 4 describes our architectural conformance solution. Sections 5
and 6 define the methodology we follow and evaluate the process
in a real-world application composed of one orchestrator system
developed in JavaScript and ten microservices developed in Java.
Section 7 discusses related work and Section 8 concludes.

2 BACKGROUND
2.1 Microservice Architecture
According to Martin Fowler [7], the microservice architecture is
an approach to developing a single application as a suite of small
services, each running in its own process and communicating with
lightweight mechanisms, often an HTTP resource API. The left side
of Figure 2 illustrates themonolithic architecture where UI, business
logic, and data access components are all together. In contrast, the
right side of the figure illustrates the microservices architecture
where the actual system is composed of many fully independent
and autonomous systems, which are named microservices.

Figure 2: Monolithic vs Microservices.

Sam Newman [16], in a short way, defines as autonomous ser-
vices that work together. It means they can be hosted in differ-
ent servers in different countries, developed using different frame-
works or programming languages, share or not the same database,
etc. When someone modifies the implementation of a microser-
vice, it does not impact other microservices since the communi-
cation occurs through well-defined interfaces usually using REST
(REpresentational State Transfer). It allows microservices to be built,
scaled, and tested independently [25].

We can summarize the key benefits as technology heterogeneity,
resilience, scaling, ease of deployment, organizational alignment,
composability, and optimizing for replaceability [16]. Although so
many positive aspects of microservices, there is no way so far to
restrict the communication among microservices.

42

https://kubernetes.io/
https://www.terraform.io/
https://docs.docker.com/compose/
https://istio.io/
https://kiali.io/

Applying a Multi-platform Architectural Conformance Solution in a Real-world Microservice-based System SBCARS ’20, October 19–20, 2020, Natal, Brazil

2.2 Dependency Constraint Language (DCL)
DCL is a statically checked domain-specific language that allows
software architects to restrict the spectrum of structural dependen-
cies, which can be established in object-oriented systems [22, 23].
Particularly, the language provides constraints to capture two
types of architectural violations: divergences (when a dependency
that exists in the source code violates the planned architecture) and
absences (when the source code does not establish a dependency
that is prescribed by the planned architecture) [15, 18]. DCL also
allows specifying the granularity of dependencies (fine-grained
as access, declare, create, throw, extend, implement, and useannota-
tion). To illustrate the use of DCL, assume the following constraints:

1 only Factory can-create DAO
2 Util can-only-depend Util, $API
3 View cannot-access Model
4 Entity must-implement Serializable

These constraints specifies that:
(line #1) only objects frommodule Factory can create objects from

module DAO, i.e., if any other module of the system creates
DAO objects such creation is considered a violation;

(line #2) classes frommodule Util can establish dependencies only
with itself and the language API, i.e., if any class from
Util establishes dependency with any other module such
dependency is considered a violation;

(line #3) classes from module View cannot access classes in mod-
ule Model, i.e., if a class from View accesses any class from
Model such access is considered a violation; and

(line #4) all classes in module Entity must implement the
Serializable interface, i.e., if a class from Entity do
not implement Serializable, this absence is considered
a violation.

3 DCL+

The original DCL, which is currently maintained by our research
group, does not addresses the particularities of the microservice
architecture. Therefore, in this section, we propose DCL+, which is
an adaptation and extension of DCL for the microservice architec-
ture that introduces a new dependency type called communicate
to specify the set of microservices that a particular microservice is
allowed to communicate, as illustrated in Figure 3.

can

can

cannot

only M
O
D
U
L
E

using

 I
N
T
E
R
F
A
C
E

only

must

M
O
D
U
L
E communicate

derive

create

throw depend

access declare

handleextend

implement

useannotation

3

1

1 Set of classes or the entire microservice.

2

2 Module is a microservice in communication constraints.

3 Only for communication constraints.

Figure 3: DCL+ syntax.

Let S be the set of all microservices belonging to the application.
LetA be a microservice, such thatA ∈ S ,MA is the set of all modules
belonging to A, and SMA is a subset ofMA modules. Similarly, let
SB be a set of microservices other than A (SB ⊆ S − {A}). In this
way, the new type of dependency is defined below.

Divergences: To detect wrong communication,DCL+ supports the
following types of restrictions between microservices:

• SMA cannot-communicate SB : modules belonging to the sub-
set SMA cannot communicate with SB microservices. For-
mally, violations are defined as follows:
∃m ∃B [m ∈ SMA ∧ B ∈ SB ∧ communicate(m, B)]

• SMA cannot-communicate SB using I : modules belonging to
the subset SMA cannot communicate with SB microservices
through I. Formally:
∃m ∃B [m ∈ SMA ∧ B ∈ SB ∧ comm_usinд(m, B, I)]

Constraints only-can and can-only are defined based on con-
straint cannot.

• only SMA can-communicate SB : only modules belonging to
the subset SMA can communicate with SB microservices.
Stated differently, any other module of the system except
for SMA is forbidden to communicate with SB microservices.
Formally:

only SMA can−communicate SB =⇒

SMA cannot−communicate SB
• only SMA can-communicate SB using I : only modules
belonging to the subset SMA can communicate with SB
microservices through I. Formally:

only SMA can−communicate SB usinд I →

SMA cannot−communicate SB usinд I

• SMA can-communicate-only SB : modules belonging to the
subset SMA can communicate only with SB microservices.
Stated differently, SMA is forbidden to communicate with any
other microservices of the system except for microservices
defined in SB . Formally:

SMA can−communicate−only SB =⇒

SMA cannot−communicate SB
• SMA can-communicate-only SB using I : modules belonging
to the subset SMA can communicate only with SB microser-
vices through I. Formally:

only SMA can−communicate−only SB usinд I →

SMA cannot−communicate SB usinд I

Absences: To detect missing communication, DCL+ supports the
following type of restriction between microservices:

• SMA must-communicate SB : modules belonging to the subset
SMA must (required) communicate with SB microservices.
Formally:
∀m !∃B [m ∈ SMA ∧ B ∈ SB ∧ communicate(m, B)]

43

SBCARS ’20, October 19–20, 2020, Natal, Brazil Elena A. Araujo, Álvaro M. Espíndola, Vinicius Cardoso Garcia, and Ricardo Terra

• SMA must-communicate SB using I : modules belonging to
the subset SMA must (required) communicate with SB mi-
croservices through I. Formally:

∀m !∃B [m ∈ SMA ∧ B ∈ SB ∧ comm_usinд(m, B, I)]

Alerts: It occurs whenmodules of a properly specified microservice
communicates with a microservice unknown by the microservice
architecture. Therefore, we raise an alert whenever an arbitrary
elementm establishes a communication with an element E < S .

4 THE PROPOSED ARCHITECTURAL
CONFORMANCE SOLUTION

This paper proposes an architectural conformance process for the
microservice architecture, as illustrated in Fig. 4. This process re-
ceives as input an Application composed of microservices (Fig. 4a)
and its Architectural Specification (Fig. 4b). The execution of the
proposed process is supported by the Communication Extractor
and Checker (Fig. 4c), and the Structural Design Extractor and
Checker (Fig. 4d), automated by the DCL+check7 tool. The pro-
cess outputs a set of communication and structural design viola-
tions (Figs. 4e and f).

(e) Communication violation

Ms1 cannot
communicate with Ms3

Verificador de
Comunicações

 (Controller) Ms1 communicates
 Ms2, Ms3

Extractor

(c) Communication

(Ms1) Controller create DAO

CheckerExtractor

(d) Structural design

(a) Application

Ms1Ms1

(f) Structural design violation

(Ms1) Controller
cannot create DAO

Checker

 2: only DAOFactory can-create DAO

(b) Architectural specification

 1: Ms1 ...

 3: …

 4: $system can-communicate-only Ms3

6: …

 5: …

Ms2

Ms3

Figure 4: Microservice architecture conformance process.

4.1 Application
As illustrated in Fig. 4a, the process requires access to the source
code repository of each microservice.

7<hide for blind purposes>

1 [id_ms1]: [url_ms1] ; [repository_ms1] ; [pl_ms1] (a)
2 Constraint DCL #1 from ms1 (b)
3 ... (b)
4 Constraint DCL #N from ms1 (b)
5 Constraint DCL+ communication #1 from ms1 (c)
6 ... (c)
7 Constraint DCL+ communication #N from ms1 (c)
8 ...
9 [id_msn]: [url_msn] ; [repository_msn] ; [pl_msn] (a)
10 Constraint DCL #1 from msn (b)
11 ... (b)
12 Constraint DCL #N from msn (b)
13 Constraint DCL+ communication #1 from msn (c)
14 ... (c)
15 Constraint DCL+ communication #N from msn (c)

Listing 1: Architectural Specification our solution.

4.2 Architectural Specification
The process also requires the architectural specification in the DCL+
language (Fig. 4b). As ilustrated in Listing 1, it is a textual file
that specifies (a) each microservice, (b) the design constraints of
each microservice, and (c) the allowed communications between
microservices.
Microservice:Microservices are specified by an identifier, its URL, its
source code repository, and its underlying programming language,
as shown in lines 1 and 9.
Design constraints: The design constraints (in the DCL language,
refer to Section 2.2) of each microservice come indented immedi-
ately after the specification of each microservice, as presented in
lines 2 to 4 and 10 to 12.
Communication constraints: The communication constraints among
microservices (in the DCL+ language, refer to Section 3) come
indented immediately after the design constraints, as illustrated in
lines 5 to 7 and 13 to 15.

4.3 Communication Conformance
The communication conformance supported by the Communi-
cation Extractor and Checker reports a set of communication
violations.

Communication Extractor: It extracts every communication between
microservices. Our current implementation detects communica-
tions through the static source code analysis technique by using the
Abstract Syntax Tree (AST) for microservices implemented in Java
and JavaScript languages (JavaCommExtractor and JsCommExtrac-
tor, respectively).

Technically, this module extracts from the source-code of
each microservice the invocation of other microservices and
stores such information in a HashMap structure. In the context
of Java-implemented services, this work is restricted to the
identification of the communication between microservices by
means of the @FeignCleint annotation, specified in the Spring
Cloud project [19]. With the application of this kind of client, it is
possible to identify services’ composition by means of coreography
and orquestration when all the services, including the orchestrator,
are implemented in the Java language. On the other hand, in the

44

Applying a Multi-platform Architectural Conformance Solution in a Real-world Microservice-based System SBCARS ’20, October 19–20, 2020, Natal, Brazil

context of microservices created in JavaScript, we developed an
extractor module aimed at the Node.js framework, considering its
vast application in web practices. As an example of the application
of the Communication extractor module, Fig. 4c, shows the
detection of a communication between the Controller module of
the Ms1 microservice with microservices Ms2 and Ms3.

Communication Checker: It verifies whether the extracted communi-
cations are in conformance with the architectural specification. In
the example from Fig.4b, a constraint defines that Ms1 cannot com-
municate with Ms3. Since the extractor has detected such commu-
nication, this module reports a communication violation (see Fig.4e).
This module also reports warnings when microservices communi-
cate with unknown microservice.

4.4 Structural Design Conformance
The architectural conformance is composed of the Structural Design
Extractor and Checker.
Structural Design Extractor: For each microservice, it ex-
tracts the structural dependencies in triples [source-class,
dependency-type, target-class]. Since our process is multi-
platform, we have so far implemented extractors for C#8, Java9,
and JavaScript10. In the example from Fig. 4d, it extracts the triple
[CustomerController, create, CustomerDAO], which indicates
that the Controllermodule from Ms1 is instantiating DAO objects.

Structural Design Checker: It verifies whether internal dependencies
from each microservice—regardless of its language—are in confor-
mance to its planned architecture (i.e., its DCL constraints) using
a platform-independent checker11. In the example from Fig. 4b, a
constraint defines that only DAOFactory can create DAO objects.
Since the extractor has detected an instantiation at the Controller
layer, this module reports a structural design violation.

4.5 Limitation
The main limitations of the proposed solution are centered in:

Communication Extractor. They are tied to the capacity of the
tool to extract communications between microservices. In its cur-
rent implementation, the tool is capable of extracting communi-
cations through the static analysis of source-code in the context
of the libraries FeignClient (Java), and Express and Request
(JavaScript). Thus, communications established by methods that
are detected only during execution time or using external configu-
rations, or through the usage of other libraries are not be detected,
producing false-negatives. On the other hand, there is no occur-
rence of false-positives, i.e., all the communications detected by the
tool are in fact established between microservices.

Structural Design Extractor. There is also the possibility of
false-negatives, given that our implementation is not capable of
capturing and processing dynamic data, such as methods execute
through reflexion. However, we do not report false-positives, i.e.,
all reported violations are indeed violations.

8CsDepExtractor, available at <hide for blind purposes>
9JavaDepExtractor, available at <hide for blind purposes>
10JSDepExtractor, available at <hide for blind purposes>
11piDCLcheck, available at <hide for blind purposes>

We claim that our limitations are acceptable since are related
to implementation issues. Since there are several programming
languages and frameworks, it is not feasible to implement complete
communication and structural design extractors for all of them.

5 METHODOLOGY
This section describe the methodology of seven steps we follow
during our evaluation. Our goal is to demonstrate the applicabil-
ity and usefulness of our proposed solution in a real-world scenario.

Target system choice (Step #1). We sought a proprietary application
composed by microservices implemented in different environments,
specially programming languages. In other words, a real scenario
where our solution must show itself useful. We opt for proprietary
systems since, although harder to obtain the system, it is easy to
schedule talks and discussion with the chief architect. After the
choice of the system, two researchers (the first and second authors
of this paper) will conduct the other six steps inside the company
during a whole week as follows:

Day 1: System overview (Step #2). The chief architect of the sub-
ject system will provide an overview of how the system
works with focus on its functionalities. Our goal is to
obtain an overview of the communication among the
underlying microservices. Thus, the researchers will ex-
tract the source code architecture as an initial view and
will inspect the source code for a better understanding
to have a more solid discussion with the chief architect.

Day 2: Microservices understanding and Constraint specification
(Steps #3 and #4). The chief architect will go deeper in
each microservice, its architecture and allowed, forbid-
den, and required communications. Thus, the researchers
themselves could specify the DCL+ constraints for each
microservice.

Day 3: Constraints validation (Step #5). The chief architect will
revise the DCL+ constraints created by us based on his/her
expertise on the system. Our goal is to obtain a solid and
validated set of DCL+ constraints.

Day 4: Conformance checking (Step #6). The researchers will run
DCL+check on the subject system. First, the extractors
will obtain every single communication and structural
dependency. Next, the verifiers will check the extracted
dependencies against the DCL+ constraints. Our goal is to
obtain a report of communication and structural design
violations (i.e., divergences and absences).

Day 5: Feedback (Step #7). The researchers will present the com-
munication and structural design violations to the chief
architect to collect his/her feedback.

6 EVALUATION
During the whole last week of July 2018, the first two authors of
this paper evaluated a real-world medium-size complex financial
system focused on sales management and conciliation with credit
cards, debit cards, tickets, and other means of online payments. Due
to a nondisclosure agreement, we omit the company’s name in this
paper and refer to this system just as Bank Conciliation.

45

SBCARS ’20, October 19–20, 2020, Natal, Brazil Elena A. Araujo, Álvaro M. Espíndola, Vinicius Cardoso Garcia, and Ricardo Terra

6.1 Application
Bank Conciliation is composed by one orchestrator system (Node-
Middle) and ten microservices (Audit, Authentication, Authoriza-
tion, Conciliation, Dashboard, Entries, FileLoad, FileProcess, Reports,
and Summary). Node-Middle is implemented in JavaScript through
Node.js and is composed by 27 modules. Other microservices are
developed in Java using the Spring Boot framework12. It is worth
noting that our approach also works on choreography and a con-
trolled evaluation can be found in our previous paper [17].

6.2 Architectural Specification
Listing 2 illustrates a subset of the architectural specification of
Bank Conciliation. For a better visualization, this specification
shows only constraints that have violations. The complete
architectural specification of all microservices and their respective
violations are publicly available in our companion website13.

Microservice: It illustrates the DCL+ specification of
all microservices. The first is identified by Node-
Middleware, URL at http://localhost:8099, repository
at /home/microservices/node-middleware/, and is im-
plemented in JavaScript (line 1). The second is identified
by Audit, URL at http://localhost:8085, repository at
/home/microservices/audit, and is implemented in Java (line 24).
The others microservices are specified alike.

Communication constraints: The communication architecture
from this application is based in orchestration. Therefore, only
Node-Middle communicates with the other microservices. The
communication constraints with violations (NM-CC’s) are illus-
trated in lines 15 to 22. For example, NM-CC3 restricts modules
Assignment, BankStatement, OccurrenceReport, ConciliationReport,
and FinancialMovements to communicate only with the Reports
microservice (line 15); NM-CC9 limits module ConciliationSum-
mary as the only one allowed to communicate with the Summary
microservice (line 18); NM-CC10 requires ConciliationSummary
to communicate with Summary (line 19); and NM-CC22 forbids
ProcessedFiles to communicate with any microservice (line 22).

Structural Design Constraints: It also illustrates the specification of
violated structural design constraints (SC’s) in the DCL language
for all microservices. For instance, for the Node-Middle system, its
structural design through NM-SC8 restricts files from AuditLog to
depend only on files of its own module and modules Node_module,
Config, and TransfData (line 3); For the Audit microservice, for ex-
ample, a constraintAudit-SC5 restricts classes of theMainmodule
to access only classes from Controller, MainAnnotations, Logger,
Apache, and Java API (line 26).

6.3 Communication Conformance
Communication Extractor: Our solution extracted communications
between 27 modules of the Node-Middle system and the applica-
tion’s microservices. These modules accomplishes 101 communica-
tions with the microservices, ranging from two communications
with the Summary microservice and 45 with the Entries one.

12https://projects.spring.io/spring-boot/
13https://github.com/anonymoussoftwareengineering/2020_sbcars_

microservices/releases

Communication Checker: After extracting the communications, our
solution analyzes each communication constraint defined in the
architectural specification (lines 15 to 22 of Listing 2) and verifies
whether the communications established are allowed or not. Fig. 5
presents the graph of the communication violations detected by
our solution. Microservices are represented by circles and modules
of Node-Middle are represented by squares, where an arrow from a
module A to a microservice B indicates that A communicates with
B, and its label indicates the number of detected violations (if none,
the label is omitted). The squares—which represent modules of
the orchestrator system—has an ID inside instead of the name for
visualization purposes.

The mapping ID → name we use is reported in the
table on the right of the figure. As an example, mod-
ule ConcilliationSummary (identified by number 23) communi-
cates with microservices Entries and Reports, which both com-
munications are considered violations (divergence), and it also
communicates with microservice Summary, which is considered a
violation (absence). As another example, module Assignment (iden-
tified by number 13) communicates with microservices Reports
and Entries, which the latter is counted as two violations (diver-
gences).

In the entire application, our solution detected 16 communi-
cation violations, 15 caused by divergent and one by an absent
communications.

When our solution verified whether the extracted communi-
cations are in conformance to the architectural specification, it
detected the following communication issues:

• Divergences:

(1) Modules OccurrenceReport (1), FinancialMovements (11),
Assignment (13), ConciliationReport (17), and AuditLog (22)
established forbidden communications with the Entries
microservice, violating constraints NM-CC3 and NM-CC5;

(2) ConcilationSummary (23) communicates with Reports, vio-
lating constraint NM-CC8;

(3) ConciliationReport (17) also communicates with the Sum-
mary microservice, violating constraint NM-CC9;

(4) ManualConciliation (7) performs communications that are
not provided in the architectural specification with the
Entries service, which violates constraint NM-CC18; and

(5) Module ProcessedFiles (12) communicates with the Reports
microservice, violating NM-CC22 constraint.

• Absence:

(1) Module ConciliationSummary (23) did not establish ex-
pected communications with the Summary microservice,
violating constraint NM-CC10.

According to the architect, the violations occurred due to the
lack of knowledge on the part of the developers and also due to the
evolution of the application. Although we have not sought for any
evidence using surveys or experiments, we believe in the architect’
statement since he has been also the project team leader since its
beginning. As usual in IT companies, there was no architectural

46

https://github.com/anonymoussoftwareengineering/2020_sbcars_microservices/releases
https://github.com/anonymoussoftwareengineering/2020_sbcars_microservices/releases

Applying a Multi-platform Architectural Conformance Solution in a Real-world Microservice-based System SBCARS ’20, October 19–20, 2020, Natal, Brazil

1 Node−Middleware: http://localhost:8099; /home/microservices/node−middleware/; JavaScript
2 #Structural Design Constraints SC's
3 AuditLog can-access-only AuditLog, Node_module, Config, TransfData "#NM-SC8"[4]
4 BankStatement can-access-only BankStatement, Node_module, Config, TransfData "#NM-SC10"[4]
5 ConciliationReport can-access-only ConciliationReport, Node_module, Config, TransfData "#NM-SC15"[4]
6 ConciliationSummary can-access-only ConciliationSummary, Node_module, Config, TransfData "#NM-SC16"[2]
7 Dashboard can-access-only Dashboard, Node_module, Config, TransfData "#NM-SC17"[4]
8 FinancialMovements can-access-only FinancialMovements, Node_module, Config, TransfData "#NM-SC21"[4]
9 ManualConciliation can-access-only ManualConciliation, Node_module, Config, TransfData "#NM-SC23"[8]
10 OccurrenceReport can-access-only OccurrenceReport, Node_module, Config, TransfData "#NM-SC25"[6]
11 Operator can-access-only Operator, Node_module, Config, TransfData "#NM-SC26"[2]
12

13 #Communications Constraints NM-CC's
14 Assignment, BankStatement, OccurrenceReport, ConciliationReport, FinancialMovements
15 can-communicate-only Reports "#NM-CC3"[6]
16 AuditLog can-communicate-only Audit "#NM-CC5"[1]
17 ConciliationSummary can-communicate-only Summary "#NM-CC8"[3]
18 only ConciliationSummary can-communicate Summary "#NM-CC9"[2]
19 ConciliationSummary must-communicate Summary "#NM-CC10"[2]
20 ManualConciliation can-communicate-only Conciliation "#NM-CC18"[2]
21 ProcessedFiles cannot-communicate Audit, Authentication, Authorization, Conciliation,
22 Entries, Reports, Dashboard, Summary, FileProcess, FileLoad "#NM-CC22"[2]
23

24 Audit: http://localhost:8085; /home/microservices/audit/; Java
25 only Service can-depend Jndi "#Audit-SC3"[3]
26 Main can-access-only Controller, MainAnnotations, Logger, Apache, API "#Audit-SC5"[4]
27

28 Authentication: http://localhost:8082; /home/microservices/authentication/; Java
29 only Service can-depend MyBatis "#Authentication-SC5"[2]
30 Service must-useannotation ServiceAnnotation "#Authentication-SC9"[2]
31

32 Authorization: http://localhost:8083; /home/microservices/authorization/; Java
33 only Service can-depend Jndi "#Authorization-SC3"[6]
34 Main can-depend-only API, MainAnnotations, Apache "#Authorization-SC5"[5]
35

36 Conciliation: http://localhost:8093; /home/microservices/conciliation/; Java
37 Util can-depend-only Util, API, Logger "#Conciliation-SC7"[24]
38

39 Dashboard: http://localhost:8095; /home/microservices/dashboard/; Java
40

41 Entries: http://localhost:8092; /home/microservices/entries/; Java
42 only Main can-depend BCMultitenancy "#Entries-SC4"[3]
43 Util can-depend-only Util, API "#Entries-SC5"[2]
44 Controller cannot-access DAO "#Entries-SC7"[6]
45 Model, Serializer must-implement Serializable "#Entries-SC11"[11]
46 Service must-useannotation ServiceAnnotation "#Entries-SC9"[7]
47 Controller must-useannotation CtlrAnnotations "#Entries-SC8"[2]
48

49 FileLoad: http://localhost:8075; /home/microservices/fileLoad/; Java
50 Main cannot-depend DAO, Model, BCDAO, JPA "#FileLoad-SC6"[4]
51 Model must-implement Serializable "#FileLoad-SC10"[6]
52

53 FileProcess: http://localhost:8076; /home/microservices/fileProcess/; Java
54 only DAO, Model can-depend JPA "#FileProcess-SC4"[8]
55 Util can-depend-only Util, BCUtil, API, Logger "#FileProcess-SC6"[22]
56 Model must-implement Serializable "#FileProcess-SC11"[1]
57

58 Reports: http://localhost:8094; /home/microservices/reports/; Java
59 Controller must-useannotation CtlrAnnotations "#Reports-SC7"[1]
60 Controller must-extend BCController "#Reports-SC8"[1]
61 Serializer must-depend JSONSerializer "#Reports-SC10"[4]
62

63 Summary: http://localhost:8096; /home/microservices/summary/; Java
64 Service must-useannotation ServiceAnnotation "#Summary-SC7"[1]
65 Controller must-useannotation CtlrAnnotations "#Summary-SC8"[1]

Listing 2: Subset of the architectural specification of Bank Conciliation.

47

SBCARS ’20, October 19–20, 2020, Natal, Brazil Elena A. Araujo, Álvaro M. Espíndola, Vinicius Cardoso Garcia, and Ricardo Terra

ID Name ID Name ID Name

1 OccurrenceReport 10 FileUpload 19 BankAccounts

2 Categories 11 FinancialMovements 20 Client

3 EstablishmentGroups 12 ProccedFiles 21 Dashboad

4 Operator 13 Assignment 22 AuditLog

5 AccesProfile 14 Home 23 ConciliationSummary

6 Task 15 BankStatement 24 User

7 ManualConciliation 16 Establishment 25 AttributesSet

8 ConciliationPlan 17 ConciliationReport 26 Cities

9 States 18 OccurrenceReason 27 Tregrid

Figure 5: Communication violations of Bank Conciliation.

artifacts for developers, but only transferal of knowledge from an-
other project team member. Divergences 1 and 4 occurred due to
the lack of knowledge of the developers regarding the restriction
that each module in the Node-Middle system could only communi-
cate with microservices. In other words, modules OccurrenceReport,
FinancialMovements, Assignment, ConciliationReport, and Manual-
Conciliation can establish communications with the Reports and
Conciliation microservices, but not with the Entries service. Sim-
ilarly, divergence 5 refers again to the lack of knowledge of the
developers since module ProcessedFile—which should keep a his-
tory of the processed files and it cannot communicate with any
microservice—communicates with the Reports service.

Divergences 2 and 3 and the absence detected occurred due to the
evolution of the application from the Reports to the Summary mi-
croservice. Consequently, the ConciliationReport module has being
moved to ConcilationSummary. This evolution justifies the detected
violations since the complete evolution of the system is taking place
in the next releases.

It is worth noting that theConciliationReportmodule has the high-
est number of detected violations, being responsible for 26,6% of the
divergences (four out of 15). Next, modules ConciliationSummary,
ProcessedFiles, Assignment, and ManualConciliation represent each
13,3% of the divergences. Modules AuditLog, FinancialMovements,
and OccurrenceReport represent each 6,66% of the divergences (only
one each). With regards to the absence of communication, module
ConciliationSummary is fully responsible for this violation type.
In total, among the 27 specified modules, violations occurred in
only eight, corresponding to 29,6% of the modules. These results
show that, although there was no previous specification of the
application, the team members showed themselves committed to
conducting the development following the standards defined by
the architect.

6.4 Structural Design Conformance
Structural Design Extractor: Our solution successfully ran JSDepEx-
tractor and JavaDepExtractor to extract the structural dependencies
of the Node-Middle system and ten microservices, respectively.

Structural Design Checker: When our solution applied piDCLcheck
to verify whether internal dependencies from each microservice
were in conformance to their planned architecture (in DCL con-
straints) or not, it detected structural design violations, which the
number n of respective violations is indicated in front of the con-
straint in Listing 2 as [n]. As it can be observed, our solution
detected 162 structural design violations of the application’s mi-
croservices, more specifically 125 divergences and 37 absences. In
general, these violations were caused due to the lack of knowledge
on the part of the developers regarding the concepts of software ar-
chitecture, specifically in the correct application of the Spring MVC
framework and the expected dependencies of the Util modules.

Regarding the unknown dependencies to the Spring MVC frame-
work, our solution detected 45 divergences and five absences which
represent 36% and 10.8% of the violations, respectively. For viola-
tions detected through dependency implementations for the Util
module, our solution reported 48 divergences, corresponding to
38.4% of those violations. Listing 2 reports that the Entries and
FileProcess services are responsible for the largest number of viola-
tions (31) respectively, representing 38.2% of the total number of
violations. According to the architect, this is possibly due to the fact
that this service is the largest—in number of lines of code—among
the others. In contrast, the Dashboard microservice have not had
any structural design violation.

48

Applying a Multi-platform Architectural Conformance Solution in a Real-world Microservice-based System SBCARS ’20, October 19–20, 2020, Natal, Brazil

6.5 Threats to Validity
At least three threats may affect the validity of our findings:

First, one could argue that the two researchers specified the
DCL+ constraints for the evaluated system. Nevertheless, they
worked together to specify what the chief architect described in
natural language. Moreover, the chief architect validated not only
the constraints but the violations detected by them.

Second, one could argue that there could be false negatives due
to limitations of our current implementation. Although it could
indeed occur for structural design checking, we ensure—by manual
inspection—that all communications between microservices have
been considered. During such inspection, we detected some missing
communications and implemented support for Request (JavaScript).

Third, although we cannot extrapolate our results to other sys-
tems (external validity), we argue that our evaluationwas conducted
in a real development scenario.

7 RELATEDWORK
The microservices architecture is a new and underexplored
research area, being most proprietary applications and therefore
not easily accessible to the academic community [1, 27]. Since
currently there is a small amount of work that seeks solutions
for conformance verification in the microservices architecture,
this section also discusses studies on the concepts related to
microservices usage and benchmarks for application evaluation.

Microservices usage: Alshuqayran et al. [3] point out the main
research interests in microservices are establishment of communi-
cation, integration and composition of microservices, deployment,
architectural discovery, performance, security, APIs, and containers
technologies.

Francesco et al. [9] argue that most recurring problems in this
architectural style are relate to complexity, flexibility, management,
and composition. In a nutshell, the good level of flexibility this
style brings (with low service coupling and greater maintainability),
come together with greater complexity mainly because it implies
in a high number of distributed services to operate.

Granchelli et al. [10, 11] propose an architectural discovery ap-
proach to address complexity problems of such architectural style.
Basically, using the MicroART tool, the authors come up with a
logical architecture model from the physical one, which is reviewed
manually by the architects. Our work could complement this one
by enforcing architect reviews through DCL+ contraints.

Mayer and Weinreich [13] also propose a discovery approach to
identify microservices using static and dynamic analysis, which is
very similar to the communication extractor we use as part of our
solution. Although our extractor does not rely on dynamic analysis,
our proposed solution is multiplatform (theirs is Java only) and our
evaluation is stronger (theirs is in a controlled environment).

In another research line, Engel et al. [6] propose an approach to
evaluate the architecture of microservices-based systems. Again,
they developed a communication extractor based on dynamic
analysis only called MAAT (Microservice Architecture Analysis
Tool). In short, the authors calculate metrics on the extracted
communications to assess several design principles microservices
development should follow. Our solution has a more flexible scope

since the constraints can be used in a generic way to assess any
design principles, not only pre-defined ones.

Benchmarks: Although the solution proposed in this paper was
evaluated in a real scenario, academic research in microservice
architecture is still limited, in part due to the lack of reference
applications that reflect the characteristics of microservice appli-
cations developed in Industry [27]. There are at least three stud-
ies that aim to solve this gap. Aderaldo et al. [1] evaluated four
benchmarks and—based on twelve requirements for microservices
architectures—recommending the Socks Shop benchmark because
it satisfies 10 out of twelve requirements.

Zhou et al. [27] evaluated seven benchmarks on microservices
and identified four main issues: (i) misuse of different modes of
interaction as mechanisms of synchronous and asynchronous
communication, (ii) the small number of microservices present in
applications, (iii) the inadequacy of benchmarks to the principles
of this architectural style, not being structured around their
respective business capacity, and (iv) the insufficient generation
of unit test cases or cases of integration test. Thereupon, the
authors developed TrainTicket, a benchmark for the context of
rail ticket sales, which contains 24 Spring Boot or Node.js-based
microservices.

Architecture conformance: So far, only one work has been found
that provides a conformance check on microservices architectures.
Although it does not have a broader scope like the proposed in this
paper, it focuses on the conformance to microservices patterns [20].
Zdun et al. [26] suggested a set of constraints to check andmetrics to
assess architecture conformance to thosemicroservice patterns. The
authors argue that conformance to those patterns is hard to ensure
and assess automatically, leading to problems such as architectural
drift and erosion, especially in the context of continued software
evolution or large-scale microservice systems. Thus, they suggest
a set of constraints to check and metrics to assess architecture
conformance to microservice patterns. In comparison to expert
judgment derived from the patterns, a subset of these constraints
and metrics shows a good relative performance and potential for
automation.

8 FINAL REMARKS
We proposed and evaluated an architectural conformance process
for the microservice architecture. Given a microservice-based sys-
tem and its architectural specification, the process extracts and
checks the communications between microservices and the struc-
tural design of each microservice. As a result, the process points out
communication violations between the microservices and structural
design violations of each microservice. As our main contribution
for the state-of-the-art is our solution formally restricts communica-
tions (e.g., over HTTP) between different systems, which none of
the existing architectural conformance solutions does.

We applied the proposed process in a real-world system com-
posed of eleven microservices developed in two different program-
ming languages (JavaScript and Java). This evaluation consists of
our main contribution for the state-of-the-practice since so far there
are no studies conducting a case study from the communication

49

SBCARS ’20, October 19–20, 2020, Natal, Brazil Elena A. Araujo, Álvaro M. Espíndola, Vinicius Cardoso Garcia, and Ricardo Terra

point of view. As the result, our process reported a set of 16 commu-
nication violations and 162 structural design violations. In general,
such violations occurred due to the lack of knowledge by the devel-
opers about communication restrictions between the orchestrator
system modules and other microservices, as well as the evolution of
two microservices in the analyzed version of the application. These
violations were caused by only eight modules out of 27 specified
modules (29.6%). Regarding the project’s architectural specifications
of each microservice, our solution detected 162 structural design
violations of the application’s microservices with 125 divergences
and 37 absences. In general, these violations were caused due to
the lack of knowledge on the part of the developers regarding the
concepts of software architecture, specifically in the correct applica-
tion of the Spring MVC and expected dependencies of module Util.
These results show that although there was no prior specification of
the application, team members were mostly committed to conduct
development following the standards defined by the architect.

Last but not least, we conclude that the our proposed solution
was effectively able to detect deviations in the communication archi-
tecture and the architectural design of a real-world microservice-
based system written in two different programming languages,
which until then were unknown by its architects. Besides restrict-
ing communication, our solution was designed it as multi-platform
and also included local structural design conformance to promote
better applicability in real-world scenarios. This is one of our con-
tributions aiming to reduce the gap between Industry and Academy.

Further work includes (i) the development of communication
extractors and structural design extractors to other commonly-used
languages in microservices’ development, such as C#, PHP, and
Python; (ii) the evaluation of the our process in other real-world
ecosystems; and (iii) the investigation of the cost and effort to
maintain DCL constraints during system evolution.

ACKNOWLEDGMENTS
This work is partially supported by INES (www.ines.org.br), CNPq
grants 465614/2014-0 and 305829/2018-1, FAPEMIG grant APQ-
03513-18, FACEPE grants APQ-0399-1.03/17 and APQ/0388-1.03/14,
and CAPES grant 88887.136410/2017-00.

REFERENCES
[1] Carlos M. Aderaldo, Nabor C. Mendonça, Claus Pahl, and Pooyan Jamshidi.

2017. Benchmark requirements for microservices architecture research. In 1st
International Workshop on Establishing the Community-Wide Infrastructure for
Architecture-Based Software Engineering (ECASE). 8–13.

[2] Sascha Alpers, Christoph Becker, Andreas Oberweis, and Thomas Schuster. 2015.
Microservice based tool support for business process modelling. In 19th Interna-
tional Enterprise Distributed Object Computing Workshop (EDOCW). 71–78.

[3] Nuha Alshuqayran, Nour Ali, and Roger Evans. 2016. A systematic mapping study
in microservice architecture. In 9th International Conference on Service-Oriented
Computing and Applications (SOCA). 44–51.

[4] Jens Borchers. 2011. Invited Talk: Reengineering from a Practitioner’s View – A
Personal Lesson’s Learned Assessment. In 15th European Conference on Software
Maintenance and Reengineering (CSMR). 1–2. https://doi.org/10.1109/CSMR.2011.
63

[5] Jan Bosch. 2004. Software Architecture: The Next Step. In First EuropeanWorkshop
(EWSA). 194–199. https://doi.org/10.1007/978-3-540-24769-2_14

[6] Thomas Engel, Melanie Langermeier, Bernhard Bauer, and Alexander Hofmann.
2018. Evaluation of Microservice Architectures: A Metric and Tool-Based Ap-
proach. In 30th International Conference on Advanced Information Systems Engi-
neering (CAiSE). 74–89.

[7] Martin Fowler. 2014. Microservices Resource Guide. https://martinfowler.com/
microservices/.

[8] Martin Fowler and James Lewis. 2014. Microservices: a definition of this new ar-
chitectural term. Disponível em: https://martinfowler.com/articles/microservices.
html.

[9] Paolo Di Francesco, Ivano Malavolta, and Patricia Lago. 2017. Research on
architecting microservices: trends, focus, and potential for industrial adoption.
In 4rd International Conference on Software Architecture (ICSA). 21–30.

[10] Giona Granchelli, Mario Cardarelli, Paolo Di Francesco, Ivano Malavolta, Lu-
dovico Iovino, and Amleto Di Salle. 2017. MicroART: A Software Architecture
Recovery Tool for Maintaining Microservice-based Systems. In 1st International
Conference on Software Architecture (ICSA). 298–302.

[11] Giona Granchelli, Mario Cardarelli, Paolo Di Francesco, Ivano Malavolta, Lu-
dovico Iovino, and Amleto Di Salle. 2017. Towards Recovering the Software
Architecture of Microservice-Based Systems. In 1st International Conference on
Software Architecture Workshops (ICSAW). 46–53.

[12] Jens Knodel, Dirk Muthig, Uwe Haury, and Gerald Meier. 2008. Architecture
Compliance Checking - Experiences from Successful Technology Transfer to
Industry. In 12th European Conference on Software Maintenance and Reengineering
(CSMR). 43–52. https://doi.org/10.1109/CSMR.2008.4493299

[13] Benjamin Mayer and Rainer Weinreich. 2018. An Approach to Extract the
Architecture of Microservice-Based Software Systems. In 12th Symposium on
Service-Oriented System Engineering (SOSE). 21–30.

[14] Gail Murphy, David Notkin, and Kevin Sullivan. 1995. Software Reflexion Models:
Bridging the Gap Between Source and High-Level Models. In 3rd Symposium on
Foundations of Software Engineering (FSE). 18–28. https://doi.org/10.1145/222124.
222136

[15] Gail C. Murphy, David Notkin, and Kevin Sullivan. 1995. Software reflexion mod-
els: Bridging the gap between source and high-level models. In 3rd International
Symposium on Foundations of Software Engineering (FSE). 18–28.

[16] Sam Newman. 2015. Building microservices: designing fine-grained systems (1 ed.).
O Reilly Media.

[17] <omitted>. <omitted>. <omitted>. In Workshop on Software Visualization, Evolu-
tion and Maintenance (VEM). <omitted>.

[18] Leonardo Passos, Ricardo Terra, Renato Diniz, Marco Tulio Valente, and Nabor
Mendonça. 2010. Static Architecture-Conformance Checking: An Illustrative
Overview. IEEE Software 27, 5 (2010), 82–89.

[19] Pivotal. 2018. Spring Cloud Netflix. https://cloud.spring.io/spring-cloud-netflix.
[20] Chris Richardson. 2017. A pattern language for microservices. http:

//microservices.io/patterns/index.html.
[21] Santonu Sarkar, Shubha Ramachandran, G. Sathish Kumar, Madhu K. Iyengar, K.

Rangarajan, and Saravanan Sivagnanam. 2009. Modularization of a Large-Scale
Business Application: A Case Study. IEEE Software 26 (2009), 28–35. https:
//doi.org/10.1109/MS.2009.42

[22] Ricardo Terra and Marco Tulio Valente. 2008. Verificação Estática de Arquiteturas
de Software utilizando Restrições de Dependência. In II Simpósio Brasileiro de
Componentes, Arquiteturas e Reutilização de Software (SBCARS). 24–37.

[23] Ricardo Terra and Marco Tulio Valente. 2009. A dependency constraint lan-
guage to manage object-oriented software architectures. Software: Practice and
Experience 39, 12 (2009), 1073–1094.

[24] Ricardo Terra, Marco Tulio Valente, Krzysztof Czarnecki, and Roberto S. Bigonha.
2015. A Recommendation System for Repairing Violations Detected by Static
Architecture Conformance Checking. Software: Practice and Experience 45, 3
(2015), 315–342. https://doi.org/10.1002/spe.2228

[25] Johannes Thönes. 2015. Microservices. IEEE Software 32, 1 (2015), 116–126.
[26] Uwe Zdun, Elena Navarro, and Frank Leymann. 2017. Ensuring and Assessing

Architecture Conformance to Microservice Decomposition Patterns. In 15th
International Conference on Service-Oriented Computing (ICSOC). 411–429.

[27] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chenjie Xu, Chao Ji, and Wenyun Zhao.
2018. Poster: Benchmarking Microservice Systems for Software Engineering
Research. In 40th International Conference on Software Engineering (ICSE). 323–
324.

50

https://doi.org/10.1109/CSMR.2011.63
https://doi.org/10.1109/CSMR.2011.63
https://doi.org/10.1007/978-3-540-24769-2_14
https://martinfowler.com/microservices/.
https://martinfowler.com/microservices/.
https://martinfowler.com/articles/microservices.html.
https://martinfowler.com/articles/microservices.html.
https://doi.org/10.1109/CSMR.2008.4493299
https://doi.org/10.1145/222124.222136
https://doi.org/10.1145/222124.222136
https://cloud.spring.io/spring-cloud-netflix.
http://microservices.io/patterns/index.html.
http://microservices.io/patterns/index.html.
https://doi.org/10.1109/MS.2009.42
https://doi.org/10.1109/MS.2009.42
https://doi.org/10.1002/spe.2228

	Abstract
	1 Introduction
	2 Background
	2.1 Microservice Architecture
	2.2 Dependency Constraint Language (DCL)

	3 DCL+
	4 The Proposed Architectural Conformance Solution
	4.1 Application
	4.2 Architectural Specification
	4.3 Communication Conformance
	4.4 Structural Design Conformance
	4.5 Limitation

	5 Methodology
	6 Evaluation
	6.1 Application
	6.2 Architectural Specification
	6.3 Communication Conformance
	6.4 Structural Design Conformance
	6.5 Threats to Validity

	7 Related Work
	8 Final Remarks
	References

