
Are you still smelling it?
A comparative study between Java and Kotlin language.

Matheus Flauzino
Federal University of Lavras

Lavras-MG, Brazil
matheus.flauzino@posgrad.ufla.br

Júlio Veríssimo
Federal University of Lavras

Lavras-MG, Brazil
julio.santos@posgrad.ufla.br

Ricardo Terra
Federal University of Lavras

Lavras-MG, Brazil
terra@dcc.ufla.br

Elder Cirilo
Federal University of São João del Rei

São João del Rei-MG, Brazil
elder@ufsj.edu.br

Vinicius H. S. Durelli
Federal University of São João del Rei

São João del Rei-MG, Brazil
durelli@ufsj.edu.br

Rafael S. Durelli
Federal University of Lavras

Lavras-MG, Brazil
rafael.durelli@dcc.ufla.br

ABSTRACT
Java is one of the most widely used programming languages. How-
ever, Java is a verbose language, thus one of the main drawbacks of
the language is that even simple tasks often entail writing a signifi-
cant amount of code. In some cases, writing too much code might
lead to certain code smells, which are violations of fundamental de-
sign that can negatively impact the overall quality of programs. To
allow programmers to write concise code, JetBrains created a new
language named Kotlin. Nevertheless, few studies have evaluated
whether Kotlin leads to concise and clearer code in comparison to
Java. We conjecture that due to Java’s verbosity, programs written
in Java are likely to have more code smells than Kotlin programs.
Therefore, we set out to evaluate whether some types of code smells
are more common in Java programs. To this end, we carried out a
large-scale empirical study involving more than 6 million lines of
code from programs available in 100 repositories. We found that on
average Kotlin programs have less code smells than Java programs.

CCS CONCEPTS
• Software and its engineering → Software maintenance
tools;

KEYWORDS
Code Smell, Bad Smell, refactoring, Kotlin Language

ACM Reference Format:
Matheus Flauzino, Júlio Veríssimo, Ricardo Terra, Elder Cirilo, Vinicius
H. S. Durelli, and Rafael S. Durelli. 2018. Are you still smelling it?: A
comparative study between Java and Kotlin language.. In XII Brazilian
Symposium on Software Components, Architectures, and Reuse (SBCARS ’18),
September 17–21, 2018, Sao Carlos, Brazil.ACM, NewYork, NY, USA, 10 pages.
https://doi.org/10.1145/3267183.3267186

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SBCARS ’18, September 17–21, 2018, Sao Carlos, Brazil
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6554-3/18/09. . . $15.00
https://doi.org/10.1145/3267183.3267186

1 INTRODUCTION
It is a widely accepted fact among the developer community whose
maintenance activities take up a large portion of software develop-
ment time. code smells (also known as “code smells” or just “smells”)
compromise the evolution and maintenance of a software system,
which can slow down development or increase the propensity for
immediate or future failure [7, 39]. Smells are indicators of quality
problems that make a software hard to maintain and evolve. Given
the importance of smells in the source code’s maintainability, many
studies have explored the characteristics of smells and analyzed
their effects on the software quality. Another fact is related to the
growing number of studies that present techniques and tools for
detecting smells in the most varied contexts [3, 19, 27].

The majority of the research on code smells is geared towards
Java source code. Undoubtedly, Java is an extremely popular lan-
guage, ranking first for a long time in the TIOBE1 Programming
Community Index. However, there are several JVM-based languages
that have Java-like evolutionary features, such as Groovy, Scala,
JRuby, Jython, Kotlin, etc.

Lots of inspiration was drawn from these JVM-based language
during the development of Kotlin. Kotlin has been devised by Jet-
Brains to help programmers write concise and crisp code to help
save ample time and decrease the clustering and boilerplate code.
According to JetBrains, Kotlin understands the code and can infer
the type of variable declaration as well as getters/equals/hashcode
generated by the compiler. It helps the programmer to get rid of
hassling task. Therefore Kotlin aims to save time as well as helps
in increasing productivity. Kotlin’s syntax focuses on removing
verbosity, i.e., rough estimates indicate approximately a 40% cut
in the number of LOC [28]. Kotlin is concise, safe, and focused on
interoperability with Java code. It can be used almost everywhere
Java is used today: for server-side development, Android apps, and
much more. Kotlin works great with all existing Java libraries and
frameworks, and runs with the same level of performance as Java.
Just like Java, Kotlin is a statically typed programming language.
This means the type of every expression in a program is known
at compile time. Ever since Google announce Kotlin as the official
language many repositories in GitHub seems to migrate to Kotlin.

As stated before, nowadays it is possible to find a set of re-
search based on code smells for different domain and perspectives.

1https://www.tiobe.com/tiobe-index/

https://doi.org/10.1145/3267183.3267186
https://doi.org/10.1145/3267183.3267186
https://www.tiobe.com/tiobe-index/

SBCARS ’18, September 17–21, 2018, Sao Carlos, Brazil Flauzino et al.

There are diverse types of tools to detect code smells such as PMD,
JDeodorant [31, 32], Checkstyle, etc. These tools use alternatives ap-
proaches, graph-based techniques [33], mining of code changes [23],
metrics-based detection [14–16], textual-based technique [24], us-
ing machine learning techniques to detect smells [18], vector ma-
chine learning technique [9], etc. There are also recent researches
investigating how relevant code smells are for programmers [20, 41]
and how code smells evolve over time [34]. However, to the best of
our knowledge there is none research comparing Java and Kotlin
regarding code smells. Dealing with the aforementioned issue, our
main motivation is to find out if Kotlin contains less code smells
when compared to Java. Note that, in the context of this paper,
verbosity means how much code developers can see and parser in a
single glance—“developers need to use too many words making the
code noise”. On the other hand, excessive terseness in a language
also can cost mental energy [29].

We present details of our approach in Section 4. Summing up,
we investigated more than 6 million of lines on code (LOC)
in 100 open-source repositories (50 Kotlin/50 Java), selected
by order of popularity (stargazers count) in GitHub2. After
choosing the repositories, we downloaded the source codes and
executed smells analysis tools separately for each language and we
focused in five well-known and common smells. Although Kotlin
is a relatively new language, it was created with the intention of
being used in conjunction with the Java language. For example,
Kotlin allows migration from Java to Kotlin and vice-versa. That
way, 100% compatible codes and libraries between Java and Kotlin
can be used. In addition, according to GitHub, nowadays, there are
approximately 27,797 projects that are already using Kotlin. Thus,
for our experiment, we tried to be as unbiased as possible when
selecting repositories. For instance, during the “stargazers count”
filter, we tried to balance projects in domains such as desktop and
mobile.

The contributions of this work are fourfold:
(1) A large-scale empirical study involving 100 open-

source repositories and two programming languages
(Kotlin and Java), aiming to report quantitative and quali-
tative evidence on which language presents less code smells.

(2) The first study that evaluates the incidence of code
smell in the Kotlin language to our knowledge;

(3) This is also the first study comparing code smells inci-
dences between the Java and Kotlin languages;

(4) Apublicly available dataset3 to allow other researchers to
conduct similar studies on code smells and the relationship
between the two languages (or simply reproduce our results).

Paper Structure. Section 2 presents the concept of code smells and
we detail the types of smells analyzed in this paper. We also present
in Section 3 a brief comparison of the Java and Kotlin languages.
Sections 4 and 5 address the experiment setup and the experiment
results, respectively. Section 6 presents the discussion. Section 7
presents the related works. Section 8 describes the concluding re-
marks, lessons learned, and future work.

2https://github.com
3https://github.com/matheusflauzino/smells-experiment-Kotlin-and-Java

2 CODE SMELLS
Code smells are clusters of negative decisions made by developers
in software design that do not directly affect the execution flow of
a program, but are potential causes of future problems, increasing
the complexity, maintainability, and even the cost of software [4].
Fowler et al. [4] described 22 smells and incorporated them into
refactoring strategies to improve design quality, they highlighted
the fundamental role of human judgment, but in the last few years
detection algorithms have emerged automated [14]. A simple ex-
ample of metric-based detection is the Long Parameter List smell,
whose unique metric is the Number Of Parameters (NOP). Other
detection strategies use more concepts and explore the more exten-
sive metrics, combining several metrics and logical expressions in
order to obtain specific characteristics of code smells with greater
precision [11, 12, 17].

In addition to the Long Parameter List, there are several many
other smells and always increasing [1]. This paper, nevertheless,
focuses on the following:Data Class: This smell refers to a class
that contains only raw fields and methods to access them, usually
consisting of getters and setters without any behavior (methods).
It is nothing more than a container for data used by other classes.
LargeClass:Classes that are trying to do toomuch often have large
numbers of instance variables. Sometimes groups of variables can
be clumped together. Sometimes they are only used occasionally.
Over-large classes can also suffer from code duplication. Long
Method: It is a method that contains too many lines of code. They
are bad because longmethods are hard to understand. Longmethods
should be decomposed for clarity and ease of maintenance. Long
Parameter List: It occurs when methods contain an excessive
number of parameters. They are bad because they are difficult to
understand and use, and can become easily inconsistent. You do
not need to pass in everything a method needs, just enough so
it can find all it needs. Too Many Methods: Classes that have
many methods violating the principle of responsibility. It would be
preferable to extract functionalities that clearly belong together in
separate parts of the code.

We selected this group of smells because, in addition to being
the most reported in current researches [29]. Furthermore, another
important factor that led us to choose the aforementioned code
smells is that these five smells are very common smells for both
PMD and Detekt. Therefore, we claim that they allows us to draw
a comparison between Java and Kotlin programs.

3 JAVA VERSUS KOTLIN LANGUAGE
Java is an extremely popular and widely used language. It has been
designedwith the goal of having platform independence, i.e., having
portability, working with network resources, and being secure.

Kotlin is a concise language, with estimates of being less verbose
than Java. Although it is a new language (the project started in 2010,
with the first version launched in 2016), the language is behind big
companies such as JetBrains (by developer) and Google, which has
joined as recommended language for Android (because it is 100%
compatible with Java). Kotlin shows greater security (i.e., support
for non-nullable types makes applications less prone to null point
dereference (a.k.a., NullPointerException). It also includes smart
casting, higher-order functions and extension functions.

https://github.com
https://github.com/matheusflauzino/smells-experiment-Kotlin-and-Java

Are you still smelling it? SBCARS ’18, September 17–21, 2018, Sao Carlos, Brazil

To understand a little more this comparison between the two
languages, we show two snippets of code comparing the two lan-
guages, where we implement a declaration of a Book class with the
attributes title and author and their accessor methods (getters
and setters). Listings 1 and 2 demonstrate the respective implemen-
tation in Java and Kotlin. We can note a large difference in the
number of LOC for the same implementation, Java requires 16 lines
whereas Kotlin just one.� �

1 class Book {
2 private String title;
3 private Author author;
4 public String getTitle () {
5 return title;
6 }
7 public void setTitle(String title) {
8 this.title = title;
9 }
10 public Author getAuthor () {
11 return author;
12 }
13 public void setAuthor(Author author) {
14 this.author = author;
15 }
16 }� �

Listing 1: Java example� �
1 data class Book(var title:String ,var aut:Author)� �

Listing 2: Kotlin example

4 EXPERIMENT SETUP
In this section, we describe our experiment.We set out to investigate
which programming language contains more code smells: Java or
Kotlin? We conjecture that Kotlin contains less bad smell once it
has been created to be a programming language where one writes
less source code.

We pose the following research question (RQ): Do Java and
Kotlin differ in the occurrence of code smells such as: Data Class,
Large Class, Long Method, Long Parameter List, and Too Many
Methods?

4.1 Scope
Defining the scope of an experiment comes down to setting its goals.
We used to organization proposed by the Goal/Question/Metric
(GQM) [38] template to do so. Therefore, the scope of this study
can be summed up as follows:

Analyze whether Kotlin contains less bad smell when
compared to Java
For the purpose of evaluation
With respect to reusability and maintainability
From the point of view of the researcher
In the context of software engineering.

4.2 Hypotheses Formulation
The RQ was translated into the following hypotheses:

Null Hypothesis, H0DC : there is no difference between
bad smell Data Class in Kotlin and in Java.

Alternative Hypothesis, H1DC : there is a significant dif-
ference between bad smell Data Class in Kotlin and in
Java.

Then, the hypotheses can be formally stated as:

H0DC : µ javaDC = µkotlinDC

and

H1DC : µ javaDC > µkotlinDC

Null Hypothesis, H0LC : there is no difference between
bad smell Large Class in Kotlin and in Java.

Alternative Hypothesis, H1LC : there is a significant dif-
ference between bad smell Large Class in Kotlin and in
Java.

H0LC : µ javaLC = µkotlinLC

and

H1LC : µ javaLC > µkotlinLC

Null Hypothesis, H0LM : there is no difference between
bad smell Long Method in Kotlin and in Java.

Alternative Hypothesis, H1LM : there is a significant dif-
ference between bad smell Long Method in Kotlin and in
Java.

H0LM : µ javaLM = µkotlinLM

and

H1LM : µ javaLM > µkotlinLM

Null Hypothesis, H0LPL : there is no difference between
bad smell Long Parameter List in Kotlin and in Java.

Alternative Hypothesis, H1LPL : there is a significant
difference between bad smell Long Parameter List in
Kotlin and in Java.

H0LPL : µ javaLPL = µkotlinLPL

and

H1LPL : µ javaLPL > µkotlinLPL

SBCARS ’18, September 17–21, 2018, Sao Carlos, Brazil Flauzino et al.

NullHypothesis,H0TMM : there is no difference between
bad smell Too Many Methods in Kotlin and in Java.

Alternative Hypothesis, H1TMM : there is a significant
difference between bad smell Too Many Methods in
Kotlin and in Java.

H0TMM : µ javaTMM = µkotlinTMM

and
H1TMM : µ javaTMM > µkotlinTMM

Our main goal is to investigate which programming language
contains less code smells. Therefore, this experiment has one fac-
tor (number of code smells) and two treatments (Java and Kotlin).
Let µ the average of code smells, thus µ java and µkotlin denote the
averages of code smells in Java and in Kotlin, respectively.

4.3 Variables Selection
Asmentioned, the purpose of this experiment is to evaluate whether
Kotlin contains less code smells than Java. Thus, we are particularly
interested in the following dependent variable—identified code
smells—and the three following independent variables: (i) results
from PMD (Java); (ii) results from Detekt (Kotlin); and (iii) open-
source systems as reported in the first columns of Tables 1 and 2.

PMD and Detekt are static code analysis tools for Java and Kotlin,
respectively. Herein we have used the latest version currently avail-
able for both tools. PMD uses styles rules for the identification of
smells. Similarly, the authors of Detekt performed an extension of
the PMD. This extension is strongly based on the same styles rules.

4.4 Sample Selection
To perform this experiment, we divided the population of open-
source systems from GitHub into two groups: Java projects and
Kotlin projects. We tried to include a wide range of systems that
differ in size, complexity, and category.

We selected 100 open-source systems from GitHub—50 Java and
50 Kotlin. We have selected and downloaded the top 50 Java and the
top 50 Kotlin repositories ordered by popularity (stargazers count)
in GitHub. We followed the guidelines proposed by Kalliamvakou
et al. [8] during the construction of our sample.

4.5 Operation
First, we selected the top 100 repositories3—50 Java and 50 Kotlin—
ordered by popularity in GitHub (stargazers count). From this initial
list, we discarded the lower quartile ordered by number of commits,
to focus the study on repositories with more maintenance activity.
The final selection consists of well-known projects, such as: spring-
boot, RxJava, and JetBrains/kotlin-native. As shown in Tables 1
and 2, the size of the projects ranges from 131 to 1,055,917 lines of
code. On average, the projects contain around 61,877 lines of code.
More details about the lines of code can be seen in Figure 1.

Figure 2 shows line plots with the distribution of the of number
of commits. It can be observed that some projects have the amount
of commits relatively similar. However, it can also be observed that

Java contains more commits when compared to Kotlin. We believe
that this happens since Kotlin is relatively a new language when
compared to Java. The same holds when comparing the project’s
lifespan. Figure 3 describes the project’s lifespan (in days).

0

200000

400000

600000

800000

1000000

1200000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Line	of	Code	 (LOC)

Java Kotlin

Figure 1: Distribution of project’s LOC.

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

#Commits

Java Kotlin

Figure 2: Distribution of project’s #Commits.

0

500

1000

1500

2000

2500

3000

3500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Project	Lifespan

Java Kotlin

Figure 3: Distribution of project’s lifespan.

Are you still smelling it? SBCARS ’18, September 17–21, 2018, Sao Carlos, Brazil

Table 1: Java projects we analyzed in our experiment. The entries in the table are in ascending order by the total of identified
bad smells.

Bad Smell
Program Name DC LC LM LPL TMM Total #Commits LOC Lifespan
CircleImageView 0 0 0 0 0 0 122 356 1593
Material-Animations 0 0 0 0 1 1 76 992 1178
RxAndroid 0 0 0 0 1 1 461 1181 1379
PhotoView 0 0 1 0 0 1 427 1589 2142
interviews 0 0 1 0 0 1 390 7300 469
AndroidSwipeLayout 0 1 1 0 1 3 175 2667 1373
ViewPagerIndicator 0 0 1 0 3 4 241 3072 2490
SlidingMenu 0 0 2 0 3 5 723 3212 2159
Android-CleanArchitecture 3 0 0 0 3 6 243 2777 1379
leakcanary 2 0 1 0 5 8 454 4243 1126
EventBus 2 0 0 0 10 12 480 5333 2143
BaseRecyclerViewAdapterHelper 7 1 1 0 3 12 908 5672 779
android-async-http 3 1 3 0 7 14 874 3446 2655
material-dialogs 0 2 4 0 8 14 1560 7584 1303
Android-Universal-Image-Loader 3 1 1 0 11 16 1025 5276 2375
butterknife 0 2 8 1 7 18 836 10653 1911
picasso 0 1 1 2 16 20 1198 9632 1841
SmartRefreshLayout 1 1 9 2 10 23 723 17064 361
stetho 2 0 2 0 19 23 528 18214 1223
lottie-android 11 0 3 4 11 29 925 11214 600
retrofit 1 3 2 0 23 29 1572 19419 2822
java-design-patterns 31 0 1 0 5 37 2060 27426 1389
plaid 12 1 9 6 16 44 453 16921 942
AndroidUtilCode 6 8 5 2 28 49 863 22481 668
MPAndroidChart 5 3 25 2 15 50 1983 24910 1495
androidannotations 16 0 5 1 45 67 2774 37211 2335
greenDAO 30 0 0 5 33 68 844 19663 2411
zxing 18 0 21 9 26 74 3431 105107 2421
jadx 22 1 9 0 46 78 662 44942 1898
tinker 8 2 35 16 26 87 295 31826 630
iosched 18 9 25 2 53 107 1548 57854 1519
Hystrix 17 5 23 23 44 112 2106 50510 2017
okhttp 7 11 6 4 88 116 3159 56228 2136
fresco 6 1 5 10 98 120 1657 428112 1184
selenium 8 2 8 2 110 130 22349 85807 1961
glide 1 3 7 9 117 137 2211 70355 2411
Signal-Android 25 9 10 17 79 140 3543 80634 2357
zheng 75 3 4 0 76 158 1222 30057 602
incubator-dubbo 89 11 40 4 146 290 2308 103349 2170
ExoPlayer 48 19 35 58 149 309 4788 113451 1446
RxJava 0 54 55 8 364 481 5366 271036 1967
spring-boot 276 10 2 2 245 535 16829 247388 2048
netty 22 35 84 26 485 652 8797 250399 2758
fastjson 490 19 89 5 80 683 2705 149361 2399
druid 297 44 209 1 176 727 5812 295170 2399
Telegram 54 72 523 62 192 903 311 325744 1677
libgdx 70 37 141 266 462 976 13254 274702 2118
spring-framework 362 53 81 17 818 1331 16597 602324 2729
guava 10 82 49 34 1167 1342 4725 381338 1461
elasticsearch 351 86 415 214 1266 2332 39203 1055917 3032

4.6 Execution
We have created an script to download these 100 repositories. After
that, we needed to apply tools to identify the code smells in these 100
repositories. Herein we have used two tools: (i) PMD and (ii) Detekt.
We have created twomore scripts - one to execute PMD and another
one to execute Detekt. Herein, we analyzed five well-known code
smells detected by these tools. The analyzed code smells are: (i) Data
Class (DC), (ii) Large Class (LC), (iii) Long Method (LM), (iv) Long
Parameter List (LPL), and (v) Too Many Methods (TMM). As result,
we have get all identified code smells in these repositories. We also
have created a script to count the line of codes. All information can
be seen in Tables 1 and 2.

5 EXPERIMENTAL RESULTS
In this section we first discuss some descriptive statistics (see Sub-
section 5.1), present the hypothesis testing for the 100 projects we
analyzed(see Subsection 5.2) , and then we present the threats to
validity in subsection 5.3.

5.1 Descriptive Statistics
As shown in Tables 1 and 2, Java has presented more code smells
than Kotlin. Elasticsearch is the Java project that contains more
code smells. This project contains 39,203 commits and its lifespan
is 3,032 days. Table 1 reports that PMD could not find any bad smell
to project CircleImageView. We argue that this is a reflection of

SBCARS ’18, September 17–21, 2018, Sao Carlos, Brazil Flauzino et al.

Table 2: Kotlin projects we analyzed in our experiment. The entries in the table are in ascending order by the total of identified
bad smells.

Bad Smell
Program Name DC LC LM LPL TMM Total #Commits LOC Lifespan
awesome-kotlin 0 0 0 0 0 0 814 35825 1016
Design-Patterns-In-Kotlin 0 0 0 0 0 0 101 405 610
GankClient-Kotlin 0 0 0 0 0 0 46 894 553
gradle-play-publisher 0 0 0 0 0 0 357 915 1391
kotlin-examples 0 0 0 0 0 0 154 1545 1898
Kotlin-for-Android-Developers 0 0 0 0 0 0 22 685 1057
Kotlin-Tutorials 0 0 0 0 0 0 118 10398 597
profile-summary-for-github 0 0 0 0 0 0 194 350 170
SdkSearch 0 0 0 0 0 0 450 2488 166
transitioner 0 0 0 0 0 0 33 131 172
android-architecture-components 0 0 0 0 1 1 168 6174 385
android-clean-architecture-boilerplate 0 0 0 0 1 1 65 2181 293
Colorful 0 0 0 1 0 1 53 264 602
JellyToolbar 0 0 0 0 1 1 20 425 427
kotlin-koans 0 0 0 0 1 1 214 1696 1531
kotterknife 0 0 0 0 1 1 82 251 1317
Android-TextView-LinkBuilder 0 0 0 0 2 2 111 703 1070
sqldelight 0 0 0 0 2 2 860 11024 951
Bandhook-Kotlin 0 0 0 1 2 3 107 3167 1165
dexcount-gradle-plugin 0 2 1 0 1 4 300 1177 1090
Fuel 0 0 0 0 5 5 423 5581 1090
TourGuide 0 1 0 0 4 5 190 1760 1152
mapdb 0 0 0 0 6 6 2100 2190 2111
SearchFilter 0 2 1 0 3 6 23 1381 579
kotlinconf-app 0 1 0 0 6 7 6 3879 215
Fotoapparat 0 0 0 0 9 9 582 5703 432
kotlinpoet 0 2 0 1 6 9 1111 10398 454
p3c 0 0 0 4 5 9 172 5302 340
android-topeka 0 1 0 0 9 10 239 4077 1117
shadowsocks-android 0 1 2 1 8 12 2412 5354 1990
flexbox-layout 0 2 9 1 2 14 329 8206 755
RxDownload 0 1 0 0 13 14 456 2723 578
spek 0 0 0 5 11 16 586 3819 2031
okio 0 4 0 1 12 17 663 5733 1534
android-ktx 0 2 2 0 14 18 438 5894 182
Exposed 0 2 0 2 14 18 951 8333 1764
SuperSLiM 0 3 0 11 7 21 177 4338 1258
muzei 0 5 3 3 13 24 1496 12153 1573
kotlin-dsl 0 0 0 8 17 25 1902 15207 762
intellij-rust 0 5 0 1 21 27 5495 60348 553
kotlinx.coroutines 0 6 1 0 21 28 804 31567 706
RxKotlin 0 0 0 30 5 35 211 1850 1379
tachiyomi 0 9 1 2 58 70 1417 24902 965
ktor 0 5 1 32 34 72 2013 38172 1030
tornadofx 0 9 0 37 37 83 2535 21082 874
anko 0 1 0 8 125 134 994 38169 1349
corda 0 27 13 66 88 194 5814 106854 600
Twidere-Android 0 37 45 66 94 242 2888 69499 1426
arrow 0 0 0 294 51 345 3672 22829 431
kotlin-native 0 55 200 251 208 714 3771 178650 743

the few LOC (356) that have been evaluated in this project. It also
contains just 122 commits.

Table 3 illustrates descriptive statistics of all code smells identi-
fied in Java projects in the 50 repositories. On one hand, the bad
smell that has been most identified was TMM (6,597). On the other
hand, the one that has been less identified was LC (593). Regarding
the others, DC was identified 2,409, LM 1,962, and LPL 814 times.

As can be seen in Table 3, the mean (µ) of all identified code
smells are DC = 7, LC = 1.5, LM = 5, LPL = 2, and TMM = 26. Due
to the outliers in our data concerning the amount of code smells
identified by PMD in Java projects, we consider the trimmed mean
and the median values in Table 3 to be more accurate measures of
central tendency than the mean. The purpose is to calculate a mean

Table 3: Descriptive statistics summarizing the characteris-
tics of all code smells identified in Java projects.

DC LC LM LPL TMM
Total 2,409 593 1,962 814 6,597

Mean (µ) 7 1.5 5 2 26
Average 48.18 11.86 39.24 16.28 131.94

Trimmed 15.825 6.15 14.625 4.5 59.925
STDEV 108.016 22.086 97.548 48.275 270.746
MAD 7 1.5 4 2 24

that represents most of the values well and is not unduly influenced
by extreme values.

Are you still smelling it? SBCARS ’18, September 17–21, 2018, Sao Carlos, Brazil

Additionally, also due to aforementioned outliers, the median
absolute deviation (MAD) is a more robust measure of statistical
dispersion than the standard deviation (refer to Table 3). Figure 4
shows a set of box-plot with the distribution of all code smells
identified in Java and Kotlin projects. We provide plot for all the
columns DC, LC, LM, LPL, and TMM in Tables 1 and 2.

As the age of a project can be an indicator of project maturity,
we also looked into the lifespan of the projects. As can be seen in
Table 1, the most mature project is elasticsearch and—as stated
earlier—it is the project with more code smells, more LOC, and
more commits. This may indicate that the more commits are per-
formed, the more code smells are added [22, 23], i.e., smells are
generally the result of continuous maintenance activities. On the
other hand, the project that has the lowest level of maturity is the
SmartRefreshLayout, which we have identified 23 code smells.

The Kotlin project that contains more code smells is
kotlin-native. It contains 3,771 commits and its lifespan is 743
days. Detekt could not find any code smells in ten projects (re-
fer to Table 2). We believe this is due to their LOC, e.g., project
transitioner contains only 131 LOC and only 33 commits, and
project Kotlin-forAndroid-Developers contains just 685 LOC
and 22 commits.

Table 6 illustrates descriptive statistics of all code smells iden-
tified in Kotlin projects. Similar to the Java language, the most
identified bad smell was TMM (918). However, as can also be noted
in Table 6, Detekt could not find any bad smell DC in the 50 Kotlin
projects. We believe that this is because DC refers to a class that
contains only fields and accessor methods. As illustrated in Listing
2, Kotlin does not need to syntactically create such methods, i.e.,
getters and setters. The second most-identified bad smell was LPL
with a total of 826, followed by LM (279) and LC (183).

Also due to the outliers in our data in the Kotlin projects, we
consider the trimmed mean and the median values in Table 6 to be
more accurate. We also measure the MAD for Kotlin data. Figure 4
also contains the distribution of identified code smells in Kotlin
projects.

The most mature Kotlin project in this experiment is mapdb and
Detekt was able to identify an amount of six code smells (TMM).
Corda is the project that most contains maintenance activities (5,814
commits). However, this is quite a surprising findings, considering
that it contains only 194 code smells and its lifespan is 600 days.
On the other hand, kotlinconf-app owns only six commits and a
total of seven code smells.

5.2 Test of the Hypotheses
After data collection, we applied statistical tests to the experiment
results. As reported in Table 4, we checked whether or not our
data follow a normal distribution applying the Shapiro-Wilk test.
As every p-value was greater than 0.05, it can be stated, with a
confidence level of 95%, that all data follow a normal distribution.

Given that our data follow a normal distribution, we applied
the paired t-test to verify our hypotheses. As shown in Table 5,
all code smells had p-values < 0.05. Therefore, we could reject
four null hypotheses and therefore we could find significant
results, i.e., we conclude that there is a statistically significant
difference between the four code smells when comparing

Java and Kotlin languages. Note that except for LPL, we can
statistically conclude that Kotlin contains less code smells than Java.

Summary for RQ. In general, Kotlin contains less code
smells when compared to Java according to descriptive
statistics. Since all data follow a normal distribution, results
of paired t-tests assign to Java the higher number for four
out of five code smells analyzed in this paper.

5.3 Threats to Validity
In this section, we consider the study of [6] as a template to discuss
the threats that might jeopardize the validity of our experiment.
Internal validity is concerned with the confidence that can be placed
in the cause-effect relationship between the treatments and the
dependent variables in the experiment. External validity has to
do with generalization, namely, whether or not the cause-effect
relationship between the treatments and the dependent variables
can be generalized outside the scope of the experiment. Conclusion
validity focuses on the conclusions that can be drawn from the
relationship between treatment and outcome. Finally, construct
validity is about the adequacy of the treatments in reflecting the
cause and the suitability of the outcomes in representing the effect.
We categorized all threats to validity according to this classification.

5.3.1 Internal Validity. We mitigated the selection bias issue by
using randomization. However, since we assumed that all types
of projects have the same characteristics, no blocking factor was
applied to minimize the threat of possible variations in, for instance,
the complexity of the projects. Thus, we cannot rule out the possi-
bility that some variability in how end users perceive the quality of
the chosen project stems from other quality factors as opposed to
the amount of fault-related problems in the chosen project.

5.3.2 External Validity. The sample might not be representa-
tive of the target population. As mentioned, we randomly selected
projects for the treatment. However, we cannot rule out the threat
that the results could have been different if another sample had
been selected. Another potential threat to the external validity of
our results is that our analysis includes only projects from GitHub.
Although, GitHub is a web-based hosting service for version control
using git, further investigation involving more project from another
git hosting service is required before we can determine whether
our findings can be generalized for different projects and different
developer populations. Consequently, we cannot be confident that
the results hold for a more representative sample of the general
population. Yet, in spite of that, we believe that the insights gained
from this study can be generalized to similar settings.

5.3.3 Conclusion Validity. The main threat to conclusion valid-
ity has to do with the quality of the data collected during the course
of the experiment. More specifically, the quality of code smells is
of key importance to the interpretation of our results. Given that
all code smells have been identified by third tools that might not
always reflect the true amount code smells (false negative and false
positive). Thus, it is possible that some data is not correct due to

SBCARS ’18, September 17–21, 2018, Sao Carlos, Brazil Flauzino et al.

1 2

0
10
0

20
0

30
0

40
0

50
0

1 2

0
20

40
60

80

1 2

0
10
0

20
0

30
0

40
0

50
0

1 2

0
50

10
0

15
0

20
0

25
0

30
0

1 2

0
20
0

40
0

60
0

80
0

10
00

12
00

Java Kotlin

Data Class Large Class Long Method Long Parameter List Too Many Method

Java Kotlin Java Kotlin Java Kotlin Java Kotlin

Figure 4: Distribution of the code smells in Java and Kotlin.

Table 4: Results of the Shapiro-Wilk test.

Data Class Large Class Long Method Long Parameter List Too Many Methods
w p-value w p-value w p-value w p-value w p-value

0.33372 2.20E-16 0.4998 2.20E-16 0.33292 2.20E-16 0.34484 2.20E-16 0.3973 2.20E-16

Table 5: Results of the Paired T-Test.

code smells T p-value Mean of the diff. Result
Data Class 3.154 0.001375 48.18 H0DC is refuted due less significance than 5%
Large Class 2.7114 0.004606 8.2 H0LC is refuted due less significance than 5%
Long Method 2.4605 0.008723 33.66 H0LM is refuted due less significance than 5%
Long Parameter List -0.0337 0.5134 -0.24 H0LPL is refuted due less significance than 5%
Too Many Methods 3.0443 0.001873 113.58 H0TMM is refuted due less significance than 5%

Table 6: Descriptive statistics summarizing the characteris-
tics of all code smells identified in Kotlin projects.

DC LC LM LPL TMM
Total 0 183 279 826 918

Mean (µ) 0 0 0 0 5
Average 0 3.66 5.58 16.52 18.36

Trimmed 0 1.15 0.225 2.8 8.625
STDEV 0 9.878 28.834 54.978 37.735
MAD 0 0 0 0 5

misguided or ill-identified code smells or even fabricated informa-
tion. It is worth noting, however, that data inconsistencies were
filtered out during the experiment.

5.3.4 Construct Validity. The measures used in the experiment
may not be appropriate to quantify the effects we intend to inves-
tigate. If the measures we used do not properly match the target
theoretical construct, the results of the experiment might be less
reliable.

6 DISCUSSION
Results show that Kotlin tend to contain less code smells when
compared to Java.We claim this happens because usually developers
do not like to write tons of lines of code, responsible for most smells.
Kotlin tries to help developers write more concise and crisper code
to gain time, and decrease the clustering and boilerplate code. Kotlin
was devised to understand the code and infer the type of variable
as well as getters and setters generated by the compiler. Kotlin
also tries to help developers to get rid of tedious tasks in hopes of
improving productivity.

As mentioned in Section 3, Kotlin is a relatively new language
that brings the better of two paradigms, Object-Oriented (OO) and
Functional Programming (FP), i.e., it allows the developer to use
OO and FP, or simply to combine them. This also allows developers
to focus on making code more readable and less verbose. Kotlin
has been designed to minimize many problems that developers
have with Java. We believe that these are some of the key factors
to support our results, since Kotlin contains less code smells when
compared to Java.

We have also seen in this study that the vast majority of the
analyzed smells are directly related to the number of lines of code
(LOC) [39–42]. We know that Kotlin by nature has a significant
reduction when writing these code. For instance, Section 3 brought

Are you still smelling it? SBCARS ’18, September 17–21, 2018, Sao Carlos, Brazil

up a comparison between Java and Kotlin where it is possible to
perceive (see Listing 2) how Kotlin is concise and straightforward
to declare a class with its getters and setters. Conversely, we see
that we have the same result as the Java example (see Listing 1)
with only one single line of code in Kotlin (Listing 2). We know that
some smells like DC, LC, and LM naturally have a lower incidence
of smells when compared to Java, we can state that these charac-
teristics of Kotlin may be one of the great factors for these smells
to have had less incidence when compared with Java. Another fact
that supports this assertion is that in the repositories analyzed in
Kotlin - see Table 2 - the number of DC was zero.

We also observed that the LPL was the only smell that in Kotlin
presented a greater number of incidents than in Java. We believe
that this is due to the fact that the parameter number is more related
to good practices performed by the developer than a characteristic
of the language itself. However, we cannot rule out the fact that
the agreement between the detectors is low [2], i.e., different tools
can identify the smelliness of different code elements.

7 RELATEDWORK
As far as we know, there is no research that directly correlates the
presence of code smells with Java and Kotlin. There is a strong
growing interest in the use of the Kotlin programming language in
scientific and engineering applications [10, 26]. While Java is one
of today’s most popular languages and also the official language
of Android developers, its use is not always the best option [13].
Due to the lack of smells correlations between the two languages,
we brought an overview of code smells and smells detection ap-
proaches, and how important it is for developers to understand and
identify smells in their software.

Many approaches and tools have been proposed to analyze smells
in Java [3, 30, 35–37]. However, there are still few tools that detect
smells in Kotlin, highlighting Detekt4 and Ktlint5.

Walter and Alkhaeir [37] present a study that analyzes separately
the impacts of smells and design patterns on the quality of the code,
evaluating the correlation with the lack of design pattern and the
presence of code smells. The authors analyzed nine design patterns
and seven code smells in two open-source Java systems in which
they came to the conclusion that classes with design patterns appear
to display code smells less often than other classes. Among these
seven smell only one (Data Class) was used in our study - once
PMD and Detekt tools do not provide style rules for the other six
smells.

Similarly, Palomba et al. [22] describe a large-scale empirical
investigation on the diffuseness on code smells in open-source Java
projects and their impact on code change and susceptibility to fail-
ure. The study was conducted in 395 versions on 30 projects, in
which it considered 17,350 instances on 13 different types on code
smells, doing an analysis based initially on metrics and then vali-
dating manually. They show how code smells should be monitored
by programmers, since they are related to maintainability aspects
such as propensity for changes and failures. Another important
factor on this paper is the importance on developing new tools to

4https://arturbosch.github.io/detekt/
5https://ktlint.github.io/

automate the identification and removal of smells. Herein, we have
used 100 projects, 50 Kotlin’s projects and 50 Java’s projects.

Understanding the useful life of code smells over a software
project has also been the focus of some researchers [5, 21]. Peters
and Zaidman [25] point out the useful life of code smells in a
particular group of software systems. They evaluated seven open-
source systems in order to investigate the code smells lifespan and
the refactoring behavior of the developers involved in these projects,
based on information about the behavior of these developers in
relation to the code smells resolution. The authors concluded that
the developers involved in the projects are aware of the presence
of code smell in the system, but are not very concerned about
the impacts that can cause such smells, giving low importance in
refactoring activities.

Understanding the impacts of smells regarding maintainabil-
ity can help to prevent them. According to several studies, smells
are heavily influenced by code size, i.e., LOC. In the same way, as
carried out in our experiment, we can highlight two empirical stud-
ies related to maintenance and LOC. Yamashita and Moonen [42]
pointed out the importance of understanding the extent to which
maintenance problems influence the prediction of code smells. The
authors investigate to which extent problems concerning mainte-
nance can be predicted by the detection of currently known code
smells.

Following the same line of study, Yamashita and Counsell [40]
carry out an empirical study to investigate whether the code smells
are manifestations of design flaws that can degrade code main-
tainability. The authors evaluated four medium-sized Java systems
using code smells and compared the results against previous evalu-
ations on the same systems based on expert judgment. As a result,
the authors claim that most code smells are strongly influenced
by LOC. In the context of our experiment this seems to proceed (see
Section 5). In addition, LOC seems to suggest a major influencer in
some smells for Kotlin’s language.

8 CONCLUDING REMARKS
We present a large-scale empirical study comparing two languages
(Java and Kotlin), statistically evidencing the incidences of code
smells between these languages. We investigated 50 Java and 50
Kotlin projects—it was intended to understand if Kotlin contains
fewer smells than Java. Our findings support the hypothesis that
Kotlin presents less code smells than Java according to descriptive
statistics — except for LPL. We validate these results based on the
paired t-test, we refuted four null hypotheses with a confidence
level of 95%. In addition, we believe that since Kotlin is a more
concise and easy-to-understand language developers can create
programming artifacts with a significant reduction in the number
LOC. This may have been responsible for the result, where we have
seen that the smells that are directly bound to this metric (LOC)—
such as DC, LC, and LM—presented a considerable difference in
Kotlin when compared to Java.

As future work, we plan to analyze and understand the evolu-
tion of code smells between Kotlin and Java throughout the life
cycle of the repositories, evaluating their commits over time to
understand each language, when smells are introduced, why they
are introduced, how much time they survive, and how developers

https://arturbosch.github.io/detekt/
https://ktlint.github.io/

SBCARS ’18, September 17–21, 2018, Sao Carlos, Brazil Flauzino et al.

remove them. Another future work we plan to discuss in details
how Kotlins’ features could be useful to reduce a set of smells. In
addition, we plan to expand the search for comparisons with other
JVM-based language, such as Groovy or Scala, which are languages
before Kotlin and hence to understand the incidence of smells in
languages that have been designed to be an evolution and less ver-
bose than Java. Finally, we plan to compare JavaScript and Kotlin to
better assess and characterize whether Kotlin contains less smells
in other domains, such as web.

ACKNOWLEDGMENT
This research is supported by CAPES and FAPEMIG.

REFERENCES
[1] Luis Cruz, Rui Abreu, and Jean-Noël Rouvignac. 2017. Leafactor: Improving

Energy Efficiency of Android Apps via Automatic Refactoring. In 4th International
Conference on Mobile Software Engineering and Systems (MOBILESoft). 205–206.

[2] Francesca Arcelli Fontana, Pietro Braione, and Marco Zanoni. 2012. Automatic
detection of bad smells in code: An experimental assessment. Journal of Object
Technology 11, 2 (2012), 5–10.

[3] Francesca Arcelli Fontana, Marco Zanoni, Alessandro Marino, and Mika V.
Mäntylä. 2013. Code Smell Detection: Towards a Machine Learning-Based Ap-
proach. In 29th International Conference on SoftwareMaintenance (ICSM). 396–399.

[4] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. 1999.
Refactoring: Improving the Design of Existing Code. Addison-Wesley.

[5] Shizhe Fu and Beijun Shen. 2015. Code Bad Smell Detection through Evolutionary
Data Mining. In 9th International Symposium on Empirical Software Engineering
and Measurement (ESEM). 1–9.

[6] Ray Hyman. 1982. Quasi-Experimentation: Design and Analysis Issues for Field
Settings. Journal of Personality Assessment 46, 1 (1982), 96–97.

[7] Fehmi Jaafar, Yann-Gaël Guéhéneuc, Sylvie Hamel, and Foutse Khomh. 2013.
Mining the relationship between anti-patterns dependencies and fault-proneness.
In 20th Working Conference on Reverse Engineering (WCRE). 351–360.

[8] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.
German, and Daniela Damian. 2014. The Promises and Perils of Mining GitHub.
In 11th Working Conference on Mining Software Repositories (MSR). 92–101.

[9] Amandeep Kaur, Sushma Jain, and Shivani Goel. 2017. A Support Vector Machine
Based Approach for Code Smell Detection. In International Conference on Machine
Learning and Data Science (MLDS). 9–14.

[10] P V Kulkarni and Mayur K Jadhav. 2018. Exploring Kotlin’s Enhancements for
multiplatform projects. International Education and Research Journal 4, 3 (2018).

[11] Michele Lanza, Radu Marinescu, and Stéphane Ducasse. 2005. Object-Oriented
Metrics in Practice. Secaucus.

[12] Jörg Lenhard, Martin Blom, and Sebastian Herold. 2018. Exploring the suitability
of source code metrics for indicating architectural inconsistencies. Software
Quality Journal (March 2018), online.

[13] Pranita Maldikar, San-Hong Li, and Kingsum Chow. 2016. Java Performance
Mysteries. ITM Web of Conferences 7 (2016), 09015.

[14] Radu Marinescu. 2004. Detection strategies: metrics-based rules for detecting
design flaws. In 20th International Conference on Software Maintenance (ICSE).
350–359.

[15] B. M. Merzah and Y. E. Selçuk. 2017. Metric based detection of refused bequest
code smell. In 9th International Conference on Computational Intelligence and
Communication Networks (CICN). 53–57.

[16] Matthew James Munro. 2005. Product metrics for automatic identification of"
bad smell" design problems in java source-code. In Software Metrics, 2005. 11th
IEEE International Symposium. IEEE, 15–15.

[17] M J Munro. 2005. Product Metrics for Automatic Identification of “Bad Smell”
Design Problems in Java Source-Code. In 11th International Software Metrics
Symposium (METRICS). 15–15.

[18] D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, and A. De Lucia. 2018.
Detecting code smells using machine learning techniques: Are we there yet?. In
25th International Conference on Software Analysis, Evolution and Reengineering
(SANER). 612–621.

[19] Thanis Paiva, Amanda Damasceno, Eduardo Figueiredo, and Cláudio Sant’Anna.
2017. On the evaluation of code smells and detection tools. Journal of Software
Engineering Research and Development 5, 1 (2017), 7.

[20] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and An-
drea De Lucia. 2014. Do they really smell bad? a study on developers’ perception
of bad code smells. In 30th international conference on Software maintenance and
evolution (ICSME). 101–110.

[21] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrea
De Lucia, and Denys Poshyvanyk. 2013. Detecting Bad Smells in Source Code
Using Change History Information. In 28th International Conference on Automated
Software Engineering. 268–278.

[22] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco
Oliveto, and Andrea De Lucia. 2018. On the diffuseness and the impact on
maintainability of code smells: a large scale empirical investigation. Empirical
Software Engineering 23, 3 (2018), 1188–1221.

[23] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, D. Poshyvanyk, and A. De Lucia.
2015. Mining Version Histories for Detecting Code Smells. IEEE Transactions on
Software Engineering 41, 5 (May 2015), 462–489.

[24] F. Palomba, A. Panichella, A. De Lucia, R. Oliveto, and A. Zaidman. 2016. A
textual-based technique for Smell Detection. In 24th International Conference on
Program Comprehension (ICPC). 1–10.

[25] R Peters and A Zaidman. 2012. Evaluating the Lifespan of Code Smells using Soft-
ware Repository Mining. In 16th European Conference on Software Maintenance
and Reengineering (CSMR). 411–416.

[26] K Siva Prasad Reddy. 2017. Spring Boot with Groovy, Scala, and Kotlin. In
Beginning Spring Boot 2: Applications and Microservices with the Spring Framework.
Apress, Berkeley, 259–278.

[27] Ghulam Rasool and Zeeshan Arshad. 2015. A review of code smell mining
techniques: Code Smell Mining Techniques. Journal of Software: Evolution and
Process 27, 11 (2015), 867–895.

[28] PATRIK SCHWERMER. 2018. Performance Evaluation of Kotlin and Java on
Android Runtime.

[29] Tushar Sharma and Diomidis Spinellis. 2018. A survey on software smells. Journal
of Systems and Software 138 (2018), 158–173.

[30] Ashish Sureka. 2016. Parichayana: An Eclipse Plugin for Detecting Excep-
tion Handling Anti-Patterns and Code Smells in Java Programs. (Dec. 2016).
arXiv:cs.SE/1701.00108

[31] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou. 2008. JDeodorant: Identification
and Removal of Type-Checking Bad Smells. In 12th European Conference on
Software Maintenance and Reengineering (CSMR). 329–331.

[32] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou. 2018. Ten years of JDeodorant:
Lessons learned from the hunt for smells. In 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER). 4–14.

[33] Nikolaos Tsantalis and Alexander Chatzigeorgiou. 2009. Identification of move
method refactoring opportunities. IEEE Transactions on Software Engineering 35,
3 (2009), 347–367.

[34] Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto, Massimiliano
Di Penta, Andrea De Lucia, and Denys Poshyvanyk. 2017. When and why your
code starts to smell bad (and whether the smells go away). IEEE Transactions on
Software Engineering 43, 11 (2017), 1063–1088.

[35] M Tufano, F Palomba, G Bavota, R Oliveto, M D Penta, A De Lucia, and D
Poshyvanyk. 2017. When and Why Your Code Starts to Smell Bad (and Whether
the Smells Go Away). IEEE Transactions on Software Engineering 43, 11 (2017),
1063–1088.

[36] E van Emden and L Moonen. 2002. Java quality assurance by detecting code
smells. In 9th Working Conference on Reverse Engineering (WCRE). 97–106.

[37] Bartosz Walter and Tarek Alkhaeir. 2016. The relationship between design pat-
terns and code smells: An exploratory study. Information and Software Technology
74 (2016), 127–142.

[38] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén. 2012.
Experimentation in Software Engineering. Springer. 236 pages.

[39] Aiko Yamashita. 2014. Assessing the capability of code smells to explain mainte-
nance problems: an empirical study combining quantitative and qualitative data.
Empirical Software Engineering 19, 4 (2014), 1111–1143.

[40] Aiko Yamashita and Steve Counsell. 2013. Code smells as system-level indicators
of maintainability: An empirical study. Journal of System and Software 86, 10
(2013), 2639–2653.

[41] Aiko Yamashita and Leon Moonen. 2013. Exploring the impact of inter-smell
relations on software maintainability: An empirical study. In 35th International
Conference on Software Engineering (ICSE). 682–691.

[42] Aiko Yamashita and Leon Moonen. 2013. To what extent can maintenance
problems be predicted by code smell detection? – An empirical study. Information
and Software Technology 55, 12 (2013), 2223–2242.

http://arxiv.org/abs/cs.SE/1701.00108

	Abstract
	1 Introduction
	2 Code Smells
	3 Java versus Kotlin language
	4 Experiment Setup
	4.1 Scope
	4.2 Hypotheses Formulation
	4.3 Variables Selection
	4.4 Sample Selection
	4.5 Operation
	4.6 Execution

	5 Experimental Results
	5.1 Descriptive Statistics
	5.2 Test of the Hypotheses
	5.3 Threats to Validity

	6 Discussion
	7 Related Work
	8 Concluding Remarks
	References

