
Received: 21 December 2017 | Accepted: 19 March 2018

DOI: 10.1002/cae.21944

SPECIAL ISSUE ARTICLE

A mobile app for teaching formal languages and automata

Carlos H. Pereira | Ricardo Terra

Department of Computer Science, Federal
University of Lavras, Lavras, Brazil

Correspondence
Ricardo Terra, Department of Computer
Science, Federal University of Lavras,
Postal Code 3037, Lavras, Brazil.
Email: terra@dcc.ufla.br

Funding information
FAPEMIG (Fundação de Amparo à
Pesquisa do Estado de Minas Gerais)

Abstract

Formal Languages and Automata (FLA) address mathematical models able to

specify and recognize languages, their properties and characteristics. Although

solid knowledge of FLA is extremely important for a B.Sc. degree in Computer

Science and similar fields, the algorithms and techniques covered in the course

are complex and difficult to assimilate. Therefore, this article presents FLApp,

a mobile application—which we consider the new way to reach students—for

teaching FLA. The application—developed for mobile phones and tablets

running Android—provides students not only with answers to problems

involving Regular, Context-free, Context-Sensitive, and Recursively Enumer-

able Languages, but also an Educational environment that describes and

illustrates each step of the algorithms to support students in the learning

process.

KEYWORDS

automata, education, formal languages, mobile application

1 | INTRODUCTION

Formal Languages and Automata (FLA) is an important area
of Computer Science that approaches mathematical models
able to specify and recognize languages, their properties and
characteristics [14]. Considering the importance of a solid
knowledge of FLA on the profile of a B.Sc. in Computer
Science, and observing a level of failing of almost 50% in the
discipline [15], we propose a platform that can help students
in the learning process.

There are several tools approaching the algorithms studied
in FLA, althoughwe noticed that one of themost popular tools,
JFLAP [7], was created considering the technological
advances of its time [2]. Nowadays, we claim that educators
must invest time and effort in using mobile devices as
educational tools because students always carry smartphones
with themselves, and mobile and tablet usage has exceeded
desktop usage since October 2016 [13]. Therefore, as the main
contribution of this study, we developed an application for
phones and tablets with Android operating system (OS) since
Android is the most used OS by mobile devices [10].

In this article, we present FLApp (Formal Languages and
AutomataApplication), amobile application for teaching FLA
that helps students by solving problems involving Regular,
Context-free, Context-Sensitive, and Recursively Enumerable
Languages (levels 3 to 0, respectively), in addition to create an
Educational environment, a second contribution of this study.
This environment describes and illustrates each stage of the
algorithmexecution to support students in the learning process.
It is worth noting that the application might also be useful in
other areas, for example, Regular and Context-free languages
are widely employed in Compilers [1].

In a previous study [15], we observed that students
presented low performance in algorithms related to grammars
and automata. Thus, we develop a tool that cover most FLA
content, and implemented features of all levels of Chomsky
hierarchy [4]. FLApp contains more features than six of the
seven related tools we compare in this article (see Section 2).
JFLAP contains more features than FLApp, however, we also
implemented some features that are not present in JFLAP.

The remainder of this article is organized as follows.
Section 2 presents the related tools. Section 3 introduces

1742 | © 2018 Wiley Periodicals, Inc. wileyonlinelibrary.com/cae Comput Appl Eng Educ. 2018;26:1742–1752.

http://orcid.org/0000-0002-5824-7087


FLApp, its functionalities and what is expected with its use,
whereas Section 4 describes its design and implementation.
Section 5 conducts an evaluation to ensure the correctness of
the implementation. Section 6 reports how the app is being
practically used from the educational perspective. Finally,
Section 7 concludes by reporting the main contributions.

2 | RELATED TOOLS

There are several tools in the Formal Languages and
Automata area. Regarding automata simulators, Chakraborty
et al. [2] describe the importance of these tools for the
teaching of automaton theory and the way these tools have
been developed for more than 50 years. In the early 1990s, it

was observed a renewed interest in automata simulators. It
occurs due to the technological advance and the easiness to
create better automata simulators [2]. Therefore, our work
considers mobile technology as a new way of creates tools to
aid in the teaching of FLA. In this section, we describe the
most popular related tools whose features are summarized in
Table 1. The symbols in the table indicate a level of support
for the feature. The symbol ✓ indicates full support, ✓*
indicates partial support, and x indicates no support.

2.1 | JFLAP

It is the most used supporting tool in universities for teaching
FLA [7]. Developed in Java for desktops, JFLAP has been
receiving new features and enhancements since 1996. Its last

TABLE 1 Comparative of the existing tools

Features FLApp JFLAP
FADL
toolkit JCT

Language
emulator SCTMF GAM

Webworks
applets

REGEX to NFA conversion ✓ ✓ x x ✓ x x ✓

FSA to REGEX conversion x ✓ x x ✓ x x ✓

FSA operations (complete, union, intersection,
concatenation, complement, Kleene star)

✓* ✓* x ✓ ✓* x x x

NFA to DFA conversion ✓ ✓ ✓ ✓ ✓ x ✓ ✓

DFA minimization ✓ ✓ ✓ ✓ ✓ x ✓ ✓

Simulation FSA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DFA to RG conversion - ✓ x x x x x ✓

PDA to CFG conversion ✓ ✓ x x x x x x

Simulation PDA ✓ ✓ x x x ✓ x x

Simulation LBA ✓ ✓ x x x x x x

Simulation TM ✓ ✓ x ✓ x ✓ x x

Simulation MultiTape TM ✓ ✓ x x x x x x

Simulation TM as Enumerator ✓ ✓ x x x x x x

Grammar type identification ✓ - x x x x x x

RG to DFA conversion ✓ ✓ x x x x x ✓

CFG to PDA conversion ✓ ✓ x x x x x x

Elimination lambda rules ✓ ✓ x x x x x x

Elimination chain rules ✓ ✓ x x x x x x

Removal useless production ✓ ✓ x x x x x x

Leftmost derivation ✓ ✓ x x x x x ✓

Leftmost derivation tree ✓ ✓ x x x x x ✓

String check ✓ ✓ x x x ✓ x ✓

CNF ✓ ✓ x x x x x x

Removal left recursion ✓ x x x x x x x

GNF ✓ x x x x x x x

CYK parse ✓ ✓ x x x x x x

Ambiguity check ✓ x x x x x x x

Mobile ✓ x x x x x x x

Educational environment ✓ ✓* x ✓* ✓* x ✓* ✓*

PEREIRA AND TERRA | 1743



stable version was released in 2009, but a new BETA version
was released in 2015. JFLAP has a graphical editor for
drawing automata, where it is possible to create several
representations of automata (e.g., FSA, PDA, Multitape TM,
Mealy, and Moore Machines), besides using other models to
define languages as Regular Expression (REGEX) and
grammars (RG and CFG). In addition to the mobile
technology, FLApp contains some features–such as convert-
ing CFG to GNF and trying to identify ambiguity in a
grammar–which JFLAP does not.

2.2 | FADL toolkit

Chakraborty et al. [3] have proposed a compiler technologybased
approach to model and simulate finite automata. To accomplish
this approach, they defined the Finite Automaton Description
Language (FADL) that formally models finite automata. They
also created a toolkit to compile and interpret this language, in
addition to tools to visualize and perform conversions in finite
automata. In their toolkit, there are two compilation tools: one
with andonewithout optimization.The only difference is the goal
that the optimized tool minimizes the DFA. Among conversion
tools, you can convert NFAs to DFAs and DFAs to MTs. Note
that this approach is different from the FLApp one, besides the
toolkit only implements FSA related features.

2.3 | JCT

Robinson et al. [12] have created a Java Applet for web
browser that creates and edits automata through a graphic
editor. It is possible to perform the entire set of FSA closure
operations in the application. Therefore, this application
performs simulations of finite automata and Turingmachines.
In comparison to their work, FLApp does not have the
implementation of the set of FSA closure operations, although
FLApp is not limited to FSA and TM models.

2.4 | Language emulator

Vieira et al. [16] have proposed Language Emulator, an
environment focused onRegularLanguages (RL) that supports
the teaching of FLA. It implements algorithms on REGEX,
Regular Grammar (RG), FSAs, and Mealy and Moore
machines. The tool is complete with regard to the class of
RL, implementing the techniques and algorithms of that level.
However, in contrast to FLApp, it does not have implementa-
tion of models referring to other classes of languages.

2.5 | SCTMF

Yandre et al. [5] have proposed the SCTMF (Software for the
Creation andTesting of FormalModels) toolwith the purpose of
assisting the teaching of FLA. This tool consists of the creation

and simulation of formal models in acceptor machines from
Chomsky Hierarchy, such as FSA, PDA, and TM. The main
focus of the tool is on accepting machines, however, different
from FLApp, this tool does not implement conversions between
machine models, besides having no grammars features.

2.6 | GAM

Jukemura et al. [9] have described GAM, a tool that simulates
finite automata to support the teaching of Theory of
Computation. It implements the simulation of FSA, conver-
sion from NFA to DFA, conversion from DFA to REGEX,
and conversion from REGEX to NFA-λ. Different from
FLApp, this tool implements only models and features of the
class of Regular Languages.

2.7 | Webworks applets

Grinder et al. [8] have proposed threeweb-learning applets that
enhance Montana State University's student experience in
computer theory learning. These learning applets on the web
involve features related to the respective areas of theory of
computation: finite state automata, context-free grammar, and
regular expressions. In these applets, students solve exercises
with access to explanations and practice the construction and
simulation of FSA, CFG, and REGEX, among other features.
In FLApp, there are no exercises with explanations, but there
are explanations for every given input.Moreover, FLApp isnot
limited to the FSA, CFG, and REGEX models.

3 | THE PROPOSED ACADEMIC
SUPPORTING TOOL

This section introduces FLApp, a mobile application that
covers most content of the Formal Languages and Automata
course. Our goal is not only to solve the underlying course
problems but also to provide students with the detailed step-
by-step of the solution. In a nutshell, users write a grammar or
draw an abstract machine, and then they can perform
algorithms related to such grammar or machine.

The next subsections describe and illustrate the features
by the language level in the Chomsky hierarchy, except for
Section 3.1 that describes and illustrates common features. A
[G] after the feature namemeans it refers to grammar features,
whereas [M] means it refers to abstract machine features.

3.1 | Common features

3.1.1 | Grammar type identification [G]

This feature identifies at which level of Chomsky hierarchy
the grammar belongs. Basically, the algorithm analyzes the

1744 | PEREIRA AND TERRA



format of grammar rules and classifies it into the most
restricted possible level. To evince that that the outputted
level is the most restricted, FLApp shows an example of a
rule that does not belong to the definition of the higher
level.

3.1.2 | Leftmost derivation tree [G]

This feature performs the leftmost derivation process, that is,
attempts to generate a string from a grammar.When the given
string belongs to the grammar, FLApp displays its derivation
tree. In case it finds two different derivation trees, FLApp
alerts ambiguity.

3.1.3 | Ambiguity check [G]

This feature searches for ambiguity in a grammar. Since
existing algorithms may not halt for unambiguous grammars,
the user can limit the time of searching. Using the method of
Gorn [6], we generate all possible derivations from the initial
symbol. If some derivation results in a previous found string,
FLApp acknowledges the ambiguity and displays the two
derivations for this same word. Otherwise, when time runs
out, FLApp reports that it was not able to find ambiguity in
that time frame.

3.2 | Features of regular languages

Features of Regular Languages include: to generate complete
Deterministic Finite-State Automaton (DFA), to generate
Non-Deterministic Finite-State Automaton (NFA) with
Regular Expression, to convert NFA to DFA, and tominimize
DFA.

3.2.1 | To generate complete DFA [M]

This feature adds an “error” state in an incomplete DFA to
convert it into a complete DFA. An incomplete DFA has a
partial transition function, whereas a complete one has a total
transition function. To complete a DFA, we add an error state,
where all missing transitions go to this state, and all
transitions from this state go to itself.

3.2.2 | To generate NFA with regular
expression [M]

The user provides a regular expression RE and this
feature generates a NFA M where the language accepted
by M is equal to the language described by RE
(L(M) = L(RE)). FLApp relies on Thompson's construc-
tion algorithm, which determines how to convert the
operations of regular sets (union, concatenation, and
Kleene star) to NFA.

3.2.3 | NFA to DFA conversion [M]

This feature converts a NFA into an equivalent DFA. First,
FLApp analyzes if the NFA has lambda transitions; if
confirmed, it converts the NFA-λ to NFA by calculating the
λ-closure (i.e., all reachable states consuming only
the empty string) of the states. Therefore, the states the
λ-closure of a state s reaches consuming a symbol is now an
NFA transition from s. Converting NFA to DFA removes
non-determinism by converting the set of states that a
transition could reach to only one state in DFA. A transition
δ(q0, a) = {q1, q2} in a NFA is converted to δ(q0, a) = <q1,
q2> in the equivalent DFA. In the Educational environment
of this feature, the user can step back and forth on the
conversion process.

3.2.4 | DFA minimization [M]

Given a DFAD, this feature creates a DFAD′, where D′ is the
smallest possible DFA, such that L(D) = L(D′). To minimize
a DFA, it is necessary to find the equivalent pairs of states and
merge them into a single state. We first establish that all pairs
of states are equal andwe try to find information that indicates
that these pairs of states are distinct. Thereupon, the pairs we
cannot differentiate are considered equals. As an illustrative
example, Figure 1a shows a DFA to be minimized and
Figure 1c outputs the minimized DFA. Again, in the
Educational environment of this feature, the user can step
back and forth the algorithm execution, as can be seen in
Figure 1b.

3.2.5 | Simulation of FSA [M]

The user creates a FSA using the editor and simulates it
for an input string. The simulation is demonstrated by the
FSA configurations until the acceptance or rejection of
the input string. The FSA configurations are demon-
strated by the input string, a state, and the position of read
head, similarly as further illustrated on the right side of
Figures 3 and 4.

3.3 | Features of context-free languages

Features of Context-Free Languages includes: removal of
recursion of the start symbol, removal of empty produc-
tions, removal of chain rules, removal of variables that do
not produce terminals, removal of unreachable symbols,
Chomsky Normal Form, removal of direct left recursion,
removal of indirect left recursion, Greibach Normal Form,
CYK (Cocke-Younger-Kasami) recognition algorithm,
Context-Free Grammar (CFG) to Pushdown Automaton
(PDA) conversion, simulation of PDA, and PDA to CFG
conversion. Although most of these algorithms are classic,

PEREIRA AND TERRA | 1745



we implemented our features based on the algorithms
described in [14].

3.3.1 | Elimination of recursion of the start
symbol [G]

When the grammar has a derivation S =>* αSβ, this feature
creates a new non-terminal start symbol S′ and inserts a new
rule S′→ S, which removes the recursion in the start symbol.
Thus, start symbol is limited to initiate derivations.

3.3.2 | Elimination of lambda rules [G]

This feature removes empty productions in a CFG. To
accomplish this conversion, we implemented the λ-rules
algorithm, which makes grammar essentially non-contractile
(or even non-contractile).

3.3.3 | Elimination of chain rules [G]

Rules like A→B, which are called chain rules, do not directly
contribute to form a string and must be removed by an
algorithm that locates and replaces them with the productions
referring to the chain destination variable.

3.3.4 | Remove variables that do not generate
terminal strings [G]

This feature removes usefulness variables that do not
contribute to the generation of strings. It calculates the
TERM set that contains the variables that generate terminal
strings directly or indirectly, and removes the variables that
are not in TERM.

3.3.5 | Removal of unreachable symbols [G]

This feature removes usefulness variables that are not reached
from the start symbol, that is, those variables that never appear
in a derivation S⇒* αAβ. It calculates the REACH set that
contains the reachable variables directly or indirectly from the
start symbol, and removes the variables that are not inREACH.

3.3.6 | Chomsky normal form [G]

This feature standardizes the rules of a grammar in one of the
CNF standards (A→ BC, A→ a, and A→ λ). Basically, it
replaces rules that are not in the CNF standards with new
rules. It is worth noting that this feature requires the input
grammar to have no recursive start symbol, empty produc-
tions, chain rules, and useless symbols (variables that do not
generate terminal strings and unreachable symbols); other-
wise FLApp applies those algorithms in advance.

Figure 2 provides an illustrative toy example from the
grammar input and feature selection (Figure 2a,b), through
the required pre-transformations (Figure 2c–g), until the
resulted grammar in the CNF (Figure 2h). Although FLApp
provides the detailed step-by-step of every feature, we did not
omit only the one for the CNF feature, as can be observed in
Figure 2h.

3.3.7 | Greibach normal form [G]

This feature standardizes the rules of a grammar in one format
of the GNF standards (A→ aA1A2. . .An, A→ a, and A→ λ)
to ensure that there will be no direct or indirect left recursions.
Basically, it replaces rules that are not in the GNF standards
with new rules. It is worth noting that this feature requires the
input grammar to already be in the CNF, otherwise FLApp
automatically performs the previous described feature in
advance.

3.3.8 | CYK recognition algorithm [G]

This feature checks if a given CFG can generate a given
string. The CYK algorithm uses a bottom-up approach to
analyze the sentence by associating it with the rules of the
grammar. If the start symbol is at the top of the CYK
matrix, the string belongs to the grammar; otherwise it
does not.

3.3.9 | CFG to PDA conversion [G/M]

This feature converts a CFG G into a PDA M, such that
L(G) =L(M). Since this feature requires the CFG G to be in the

FIGURE 1 DFA minimization feature. User inputs the DFA to be minimized (a), FLApp executes the algorithm step-by-step (b) and outputs
the minimized DFA (c)

1746 | PEREIRA AND TERRA



GNF, LFApp may automatically perform the GNF feature in
advance.Next, it creates an extendedPDAwith only two states q0
and q1,where q0 is the start and q1 is the accepting states. For each
rule of G, we must create a transition in the extended PDA in
which it reads the terminal rule, pops the variable rule, and pushes
the remainder on the right side of the rule. All transitions are from
and to state q1, except for those obtained by rules of the start
symbol that do not pop and leave from the state q0.

3.3.10 | Simulation of PDA [M]

The user creates a PDA using the editor and simulates it for an
input string. The simulation is demonstrated by the PDA
configurations until the acceptance or rejection of the input
string. PDA configurations are demonstrated by the input
string, its stack, a state, and the position of read head. In case
of non-determinism, we try to find a stack of configurations
that leads to an acceptance, which is limited by a stack size of
100 configurations.

3.3.11 | PDA to CFG conversion [G/M]

This feature converts a PDA M into a CFG G, such that
L(M) = L(G). First, it creates an extended PDA M′ where all
transitions that do not pop, now stack and pop the same
symbol. Next, the variables of G are defined by tuples of the

formula <qi, A, qj>, and the rules are generated from the PDA
transitions using one of the four following strategies:

i. S→<q0, λ, qj>, ∀qj ∊ F;
ii. If [qj, B] ∊ δ'(qi, x, A), then <qi, A, qk>→ x<qj, B, qk>,

∀qk ∊ Q;
iii. If [qj, BA] ∊ δ'(qi, x, A), then <qi, A, qk>→ x<qj, B,

qn><qn, A, qk>, ∀qn,qk ∊ Q;
iv. <qk, λ, qk>→ λ, ∀qk ∊ Q

3.4 | Features of context-sensitive languages

The unique feature exclusive to Context-Sensitive Languages
is the simulation of Linear Bounded Automaton (LBA).

3.4.1 | Simulation of LBA [M]

The user creates a LBA using the editor and simulates it for
an input string. The simulation is demonstrated by the LBA
configurations until the acceptance or rejection of the input
string. LBA configurations are demonstrated by its tape
with its memory delimiters, a state, and the position of read/
write head. Figure 3 illustrates an example where the user
draws a LBA that recognizes language L = {aibici | i>0} and
simulates it with the input “abc”.

FIGURE 2 Chomsky normal form feature. User inputs the grammar (a), he/she chooses CNF feature from the menu (b), and FLApp
executes five required features sequentially (c-g) until it provides the resulted grammar in the CNF form (h)

PEREIRA AND TERRA | 1747



3.5 | Features of recursively enumerable
languages

Features of Recursively Enumerable Languages include:
simulation of Turing Machine (TM), Multitrack TM, Multi-
tape TM, and TM as Language Enumerators.

3.5.1 | Simulation of turing machine [M]

The user creates a TM using the editor and simulates it
for an input string. The simulation is demonstrated by the
TM configurations until the acceptance or rejection of
the input string. TM configurations are demonstrated by
its infinite tape, a state, and the position of read/write
head.

3.5.2 | Simulation of multitrack TM [M]

It is similar to the simulation of TM feature, but theMultitrack
TM configurations are demonstrated by n infinite tracks, a
state, and the position of read/write head.

3.5.3 | Simulation of multitape TM [M]

It is also similar to the simulation of TM feature, but the
Multitape TM configurations are demonstrated by n infinite
tapes, a state, and the positions of n read/write heads, one in
each tape.

3.5.4 | Simulation of TM as language
enumerators [M]

The user creates a Multitape TM as Language Enumerator
using the editor and this feature provides the configuration

of TM afterwards a new enumerated string. Figure 4a
illustrates a TM as Language Enumerator that enumerates
language L = {aibi | i ≥ 0} and Figure 4b illustrates the
output of FLApp after each new enumerated string.

4 | FLApp DESIGN AND
IMPLEMENTATION

FLApp is an educational resource, being publicly
available since the beginning of its development in a
repository in GitHub.1 Basically, the app is divided in
three modules: core, where are the entities and classes
that implement the underlying algorithms; grammar,
where are classes specific to grammar features, and
machine, where are classes specified to machine
features.

4.1 | Core

It contains classes that parse grammars (e.g., class
TextualParser), verify ambiguity (class Ambigui-
tyVerification), and implement general purposes
functionalities.

4.2 | Grammar

The main classes are Grammar and Rule. Grammar
represents a grammar of any level of the Chomsky Hierarchy,
which is composed of a set of Rules, which represents a
rule of type μ→ v.

FIGURE 3 LBA simulation feature. User inputs the LBA to be simulated (a) and FLApp outputs the configurations until the acceptance or
rejection of a given string (b)

1https://github.com/rterrabh/LFApp

1748 | PEREIRA AND TERRA



4.3 | Machine

There are a bunch of classes, but we can highlight the
following interfaces: Machine, which represents an
abstract machine; State, which defines a state in an
abstract machine; TransitionFunction, which
represents a transition function; and Configuration,
which represents a configuration of an abstract machine.
The concrete machine properly realizes these interfaces, for
example, Finite State Automaton has a concrete implemen-
tation of these interfaces inside package fsa. It is worth
noting that, for extensibility and flexibility purposes, there
is a dotlang package since FLApp stores and reads
machines in a well-known and widely used dot graph
language.

5 | THE TOOL EVALUATION

To evaluate FLApp, we conducted a correctness and
didactical evaluation. The former guarantees the correct-
ness of the implemented functionalities and the
latter guarantees the Educational environment of the
functionalities.

5.1 | Correctness evaluation

This evaluation verifies—through unit tests [11]—whether
the results are exactly what users expect. Our goal is to
achieve the correctness that FLApp requires to be widely
employed in universities. We simulate 595 different inputs
where 398 tests are related to grammars and 197 to machines.
These tests cover 90% of the source code, which implicates in
a high level of correctness of the application we are
proposing.

5.2 | Didactical evaluation

This evaluation aims to demonstrate the adequacy of the
Educational environment, which describes and illustrates
each step of the algorithms to support students in the learning
process. Thus, we rely on a well-known course book [14],
which is widely employed in Formal Languages and
Automata courses. As reported in Table 2, for every example
the book provides, we verified whether the steps FLApp
presents to the user are equivalent to those in the book. As
result, FLApp provides the same output for the 37 examples
of the book besides providing equivalent step-by-step
solution.

6 | THE APP AND ITS EDUCATIONAL
GAINS: A CASE STUDY

This section reports how FLApp has been practically
integrated in the FLA classes of a Brazilian university and
what was the outcome. Since 2016, the professor (and also the
second author of this paper) has been employing FLApp as part
of his teaching classes. Since the algorithms and techniques
covered in the course are complex anddifficult to assimilate, he
promotes dynamism on his classes to keep the students
motivated. As illustrated in Figure 5, FLApp has been properly
integrated into three main educational activities, namely
teaching, learning, and assessment, as follows:

6.1 | Teaching

The professor teaches the algorithms and techniques,
giving one or two examples. Next, he writes down up to
three exercises and instructs the students to check the
solution on FLApp only after they finish the exercise.

FIGURE 4 Simulation of TM as language enumerator feature

PEREIRA AND TERRA | 1749



FIGURE 5 Educational application of FLApp

TABLE 2 Result of the didactical evaluation

Feature Page Unit test Result
Step-
by-step Feature Page Unit test Result

Step-
by-step

Leftmost derivation and
ambiguity

91 Sudkamp351Test ✓ ✓ NFA-λ simulator 166 Sudkamp551Test ✓ ✓

92 Sudkamp352Test ✓ ✓ Removing
nondeterminism

171 Sudkamp561Test ✓ ✓

Elimination recursion of
start symbol

105 Sudkamp411Test ✓ ✓ 173 SudkampF54Test ✓ ✓

Elimination of λ-rules 109 Sudkamp421Test ✓ ✓ 174 Sudkamp562Test ✓ ✓

113 Sudkamp423Test ✓ ✓ 175 Sudkamp563Test ✓ ✓

Elimination of chain
rules

115 Sudkamp431Test ✓ ✓ 176 Sudkamp564Test ✓ ✓

Useless symbols—
TERM

118 Sudkamp441Test ✓ ✓ DFA minimization 181 Sudkamp571Test ✓ ✓

Useless symbols—
REACH

120 Sudkamp442Test ✓ ✓ 182 Sudkamp572Test ✓ ✓

Useless symbols 121 Sudkamp443Test ✓ ✓ Create FSA from Regex 192 Sudkamp611Test ✓ ✓

Chomsky normal form 122 Sudkamp451Test ✓ ✓ PDA simulator 225 Sudkamp711Test ✓ ✓

124 Sudkamp452Test ✓ ✓ 231 Sudkamp722Test ✓ ✓

CYK 126 SudkampT41Test ✓ ✓ CFG to PDA 232 Sudkamp730Test ✓ ✓

Removal of direct left
recursion

130 Sudkamp471Test ✓ ✓ PDA to CFG 235 Sudkamp731Test ✓ ✓

Greibach normal form 132 Sudkamp480Test ✓ ✓ TM simulator 257 Sudkamp811Test ✓ ✓

136 Sudkamp481Test ✓ ✓ 260 Sudkamp812Test ✓ ✓

FSA simulator 149 SudkampT52Test ✓ ✓ TM multitape simulator 269 Sudkamp861Test ✓ ✓

150 Sudkamp521Test ✓ ✓ TM nondeterministic
simulator

275 Sudkamp871Test ✓ ✓

Complete DFA 158 Sudkamp539Test ✓ ✓ TM as language
enumerator simulator

283 Sudkamp881Test ✓ ✓

NFA simulator 164 Sudkamp541Test ✓ ✓

1750 | PEREIRA AND TERRA



Meanwhile, he assigns each exercise to a randomly
selected student who should write his/her solution on the
blackboard.

In this context, we noted two benefits of FLApp: (i) since
students can check not only their answers but also their steps
towards it, they try to understand by themselves where they
made a mistake and their doubts are much more specific; and
(ii) FLApp was extremely helpful mainly to those students
who are afraid to publicly write down incorrect solutions, that
is, FLApp ensures that their solution is correct; otherwise they
can see where they fail and correct it before.

6.2 | Learning

The course has three exams (RL; CFL; and CSL and REL).
The professor provides three long lists of preparatory
exercises for each exam. He again instructs the students to
check a solution on FLApp only after they finish that exercise.
Here, we claim the major benefit of FLApp for students
because they can—anywhere—check not only their answers
but also their steps towards it. According to the Teacher's
Assistant (TA) of this course, FLApp reduced the number of
students who demand for tutoring because students try even
harder to understand by themselves where and why theymade
a mistake.

6.3 | Assessment

FLApp supports the task of preparing exercises. The
professor writes a draft of the exercise and FLApp provides
its solution. While the professor finds the solution too easy or
too hard, he modifies the exercise and FLApp again provides
the solution. For an actual example, the transformation of an
arbitrary grammar to the Chomsky Normal Form requires up
to five pre-transformations. The professor wants an exercise
that requires the students to make these five transformations.
The professor can modify the exercise up to reach the
complexity he wants.

7 | CONCLUSION

Formal Languages and Automata (FLA) is an important area
of Computer Science that approaches mathematical models
able to specify and recognize languages, their properties and
characteristics. However, the algorithms and techniques
covered in FLA are complex and difficult to assimilate,
complicating the learning process.

To facilitate and make the learning more interesting, our
study proposes FLApp, a mobile application—what we
consider the new way to reach students—with an
Educational environment that describes and illustrates
each step of the execution of algorithms. FLApp

implements features involving all levels of Chomsky
hierarchy, and have an environment for creating/editing
abstract models that represents languages for all levels.

As the main contributions of FLApp, we (i) provide an
interactive learning environment for students to assist in the
FLA teaching and learning process and (ii) promote its usage
through the mobile technology since, as reported in Section 6,
several students do not carry their laptops and could benefit of
the app during the classes.

ACKNOWLEDGMENT

Our research is supported by FAPEMIG.

ORCID

Ricardo Terra http://orcid.org/0000-0002-5824-7087

REFERENCES

1. A. V. Aho et al., Compilers: Principles, techniques, and tools, 2nd
ed., Addison-Wesley, 2006.

2. P. Chakraborty, P. C. Saxena, and C. P. Katti, Automata simulators:
Classic tools for computer science education, Brit. J. Educ.
Technol. 43 (2012), E11–E13.

3. P. Chakraborty, P. C. Saxena, and C. P. Katti, A compiler-based
toolkit to teach and learn finite automata, Comput. Appl. Eng.
Educ. 21 (2013), 467–474.

4. N. Chomsky, Three models for the description of language, IRE
Trans. Inf. Theory 2 (1956), 113–124.

5. Y. M. e G. da Costa, R. C. de Meneses, and F. R. Uber, Uma
ferramenta para auxílio didático no ensino de Teoria da
Computação. In XVI Workshop sobre Educação em Computação
(WEI), pages 208–217, 2008.

6. S. Gorn, Detection of generative ambiguities in context-free
mechanical languages, J. ACM 10, (1963), 196–208.

7. E. Gramond and S. H. Rodger, Using JFLAP to interact with
theorems in automata theory, ACM SIGCSE Bulletin 31 (1999),
336–340.

8. M. T. Grinder et al., Loving to learn theory: Active learning
modules for the theory of computing, ACM SIGCSE Bulletin 34
(2002), 371–375.

9. A. S. Jukemura, H. A. D. do Nascimento, and J. Q. Uchôa, Uchôa.
GAM: Um simulador para auxiliar o ensino de Linguagens Formais
e de Autômatos. XIII Workshop sobre Educação em Computação
(WEI), pages 2432–2443, 2005.

10. F. Manjoo, A murky road ahead for Android, despite market
dominance. The New York Times, 2015.

11. R. S. Pressman, Software engineering: A practitioner's approach,
7th ed., McGraw-Hill, 2009.

12. M. B. Robinson et al., Java-based tool for reasoning about
models of computation through simulating finite automata
and turing machines, ACM SIGCSE Bulletin 31 (1999),
105–109.

13. R. Simpson. Mobile and tablet Internet usage exceeds desktop for
first time worldwide. Statcounter, 2016.

PEREIRA AND TERRA | 1751

http://orcid.org/0000-0002-5824-7087


14. T. A. Sudkamp, Languages and machines: An introduction to the
theory of Computer Science, 3rd ed., Addison-Wesley, 2005.

15. R. Terra, Data of the discipline Formal Languages and Automata.
Technical report, Universidade Federal de Lavras (UFLA), 2016.

16. L. F. M. Vieira, M. A. M. Vieira, and N. J. Vieira, Language
emulator, a helpful toolkit in the learning process of computer
theory. In 35th Technical Symposium on Computer Science
Education (SIGCSE), pages 135–139, 2004.

C. H. PEREIRA is an undergraduate
student of Computer Science at Fe-
deral University of Lavras, Brazil.
He worked on an undergraduate re-
search project supported by FAPE-
MIG, working on FLApp, a mobile
application for teaching Formal Lan-
guages, and Automata. Currently, he

works on another undergraduate research project sup-
ported by CNPq, researching about techniques to recover
architecture of a software system.

R. TERRA received his PhD degree in
Computer Science from Federal
University of Minas Gerais, Brazil
(2013) with a 1-year internship at the
University of Waterloo, Canada.
Since 2014, he is an assistant
professor in the Department of
Computer Science at Federal Uni-
versity of Lavras, Brazil. His re-

search interests include software engineering, and
computer science education.

How to cite this article: Pereira CH, Terra R.
A mobile app for teaching formal languages and
automata. Comput Appl Eng Educ. 2018;26:
1742–1752. https://doi.org/10.1002/cae.21944

1752 | PEREIRA AND TERRA

https://doi.org/10.1002/cae.21944

