
Journal of the
Brazilian Computer Society

Rocha et al. Journal of the Brazilian Computer
Society (2017) 23:12
DOI 10.1186/s13173-017-0061-z

RESEARCH Open Access

DCL 2.0: modular and reusable
specification of architectural constraints
Henrique Rocha1* , Rafael Serapilha Durelli2, Ricardo Terra2, Sândalo Bessa1 and Marco Túlio Valente1

Abstract

Background: Due to the abstract nature of software architecture concepts, ensuring the correct implementation of
architectural decisions is not a trivial task. Divergences between the planned architecture and source code may occur
in the early stages of the software development, which denotes a phenomenon known as software architecture
erosion. Architectural conformance checking techniques have been proposed to tackle the problem of divergences
between the planned architecture and source code. Among such techniques, we can note the DCL (dependency
constraint language), which is a domain-specific language that has interesting results in architectural conformance
contexts. However, the current version of DCL has some limitations, such as lack of modularity and low degree of
reuse, which may prevent its adoption in real software development scenarios. In this article, we extend DCL with a
reusable, modular, and hierarchical specification.

Method: We propose and evaluate DCL 2.0—an extension of the original DCL—and its tool in a real-world
development scenario of a large system used by a government branch of Minas Gerais, Brazil.

Result: We were able to detect 771 architectural violations where 74% of them could only be detected due to the
new violation types proposed in DCL 2.0.

Conclusion: By using DCL 2.0 herein presented, it was possible to conclude the following: (i) DCL 2.0 proved
importance in helping the development team consistently address violations, and (ii) after using DCL 2.0 for months,
the number of architectural violations being committed into the system branches was reduced to zero. Therefore, we
argue that DCL 2.0 can have a positive impact on the architectural conformance of systems.

Keywords: Architecture conformance, Hierarchical specification, Architecture reuse, Structural violation

Introduction
Software architecture is commonly considered a set of
decisions and conventions that determine how to build a
system, i.e., the architecture states the software’s funda-
mental parts as well as the responsibilities and interaction
of those parts. The concept of software architecture is
well discussed for some time [1]. There are studies that
associate important software aspects (e.g., cost, evolution,
performance, security, maintainability, etc.) to correct
architectural decisions [2, 3]. There is also evidence that
good architectural decisions can have positive impacts
on software maintenance and evolution [4]. Another evi-
dence that highlights the importance of architectural

*Correspondence: henrique.rocha@dcc.ufmg.br
1Department of Computer Science, Federal University of Minas Gerais, Belo
Horizonte, Brazil
Full list of author information is available at the end of the article

decisions is how several development and maintenance
processes started to consider architectural decisions for
their projects by creating techniques, models, and specifi-
cations to capture the architecture [5]. Therefore, we can
decrease fault risks in software projects if we assure that
architectural decisions are followed.
Due to the abstract nature of software engineering

concepts, it is not a trivial task to assure the correct
implementation of architectural decisions. Some studies
indicate that divergences between source code and the
planned architecture can occur in the beginning stages of
the development process [4, 6]. Other studies present sce-
narios where software source code, during its evolution,
gradually loses its adherence to the architecture; this phe-
nomenon is known as software architecture erosion [7–9].
In other words, after several maintenance and evolution

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-017-0061-z&domain=pdf
http://orcid.org/0000-0002-9154-0277
mailto: henrique.rocha@dcc.ufmg.br
http://creativecommons.org/licenses/by/4.0/

Rocha et al. Journal of the Brazilian Computer Society (2017) 23:12 Page 2 of 25

tasks, architectural rules and decisions are ignored lead-
ing to architectural violations. Architectural violations are
classified into two groups: (i) structural violations, which
refer to inconsistencies related to component creation, i.e.,
violations occur when the component location, naming,
or characterization diverge from the planned architecture;
and (ii) relational violations, which refer to inconsisten-
cies in the relations among components.
In object-oriented systems, the relations among compo-

nents are accessing attributes, calling methods, inheriting
types, and instantiating objects. Figure 1 shows two types
of violations occurring in a hypothetical scenario. On the
left side, we can see the planned architectural model. On
the right side, we see a source code projection of such
system. Violation #1 is a structural violation because com-
ponent Baz did not exist in the planned architecture’s
hierarchical structure.Violation #2 is a relational violation
because, in the planned architecture, Foo should not make
method calls to Bar.
There are architectural conformance verification

techniques proposed to tackle the problem of finding
divergences between the source code and the planned
architecture [10–12]. Dependency constraint language
(DCL) is a declarative language to verify the dependencies
among modules in object-oriented systems [12]. DCL
was designed to model architecture components as well
as the constraints among such components. DCL has the
following positive points: (i) expressiveness, DCL supports
a wide variety of architectural constraints; (ii) abstraction
level, DCL provides a limited support to associate specific
source code parts (low level) with abstract elements (high
level) by using a module definition; and (iii) applicability,
once it is an easy to learn language. Although its many
advantages, DCL also has some characteristics that
may hinder its adoption in real software development
scenarios, as follows:

Fig. 1 Structural and relational violations. The planned architecture
(left) and the implemented architecture with violations (right)

• Coupling: the DCL architectural specification is
stored in a text file placed in the target project
structure, which complicates reuse of the
specification to other projects.

• Monolithic: the architectural specification is created
in a monolithic manner and hence difficult to
maintain, especially in larger and modularized
systems.

• Non-hierarchical modeling: DCL does not support
the creation of hierarchical relations among
architectural elements. Since architectural models are
inherently hierarchical, this limits capturing these
models with better accuracy.

• Structure constraints: even though DCL has a variety
of constraints to control architectural violations, it
still lacks some structure constraints to better specify
the system’s architecture.

• Limited of conceptual traceability: DCL provides
limited support to model relations among conceptual
elements from a system and its source code. These
conceptual elements are important to provide
context for the architecture.

In this context, this paper proposes an extension of
DCL, called DCL 2.0, which we implemented the follow-
ing features and concepts to fill the gaps from the previous
version and to increase reusability:

• Hierarchical modeling: to allow a more faithful
capture of the architectural logical models. It also
facilitates the architectural visualization in different
formats. Moreover, DCL 2.0 architecture models can
be composed of any type of artifact found in a
software development project, e.g., classes, projects,
packages, documentations, etc.

• New constraints and traceability: the new constraints
provide more options to tackle structural violations.
We also provide traceability among conceptual
constraints and source code artifacts.

• Decoupling: the modeled specification is completely
decoupled from the target project, which promotes
reuse and evolution of the architectural specification.

• Modularization: the specifications are modular which
favors reuse among components by using references.

• Tool support : facilitates common activities to specify
and to design the architecture, such as editing
specifications, and validating and visualizing the
architecture.

We evaluated DCL 2.0 by checking the architectural
conformity of a large system from the Minas Gerais state
government in Brazil. The results show that DCL 2.0 can
precisely capture the system’s architectural model. More-
over, the language inhibited the creation of new architec-
tural violations by developers during the analyzed period.

Rocha et al. Journal of the Brazilian Computer Society (2017) 23:12 Page 3 of 25

We detected 771 architectural violations on the analyzed
system; 74% of those violations were only detected by the
new constraints proposed in DCL 2.0. After the study,
our architectural conformance tool was incorporated to
the software development process of the company that
maintains the evaluated system.
The three main contributions of this paper are sum-

marized as follows: (i) the DCL 2.0 language, which was
designed for a better usability and reuse than other archi-
tectural conformance techniques; (ii) our experimental
process used for the evaluation, whichmonitors architects
and developers on tasks related to handling architec-
tural violations; (iii) the implemented tool with features to
improve the user’s usability and facilitate the adoption of
DCL 2.0 in development teams.
This paper is an extended version of our first work on

DCL 2.0 [13] where we highlight the following improve-
ments: (i) new section comparing architectural confor-
mance techniques and their main characteristics; (ii) new
section detailing our implemented tool for DCL 2.0; (iii) a
more complete and detailed evaluation section; and (iv) a
more exhaustive related work.
The remainder of this paper is organized as follows.

The “Background” section presents basic concepts to bet-
ter understand our proposed solution. The “Proposed
language: DCL 2.0” section presents DCL 2.0, the lan-
guage’s extension with modular specification, hierarchi-
cal relations, and better reusability. The “Tool support:
DCL2Check” section shows DCL2Check, a tool that
implements our proposed solution. In the “ Evaluation”
section, we evaluated the use of DCL 2.0 in a large sys-
tem developed for the Minas Gerais government state.
The “Related work” section presents the related work.
Finally, the “Conclusion” section concludes the paper and
outlines future work.

Background
In this section, we present all concepts required to fully
understand our approach. The “Architectural confor-
mance checking” section briefly describes the theory on
architectural conformance checking. The “Conformance
techniques comparison” section performs a general com-
parison on architectural conformance techniques. Finally,
the “DCL” section presents DCL, the language we have
extended in this paper.

Architectural conformance checking
Software architecture is usually the main artifact designed
during software development for reasoning about soft-
ware properties either functional or non-functional such
as availability or modifiability. Design and architectural
decisions have large influence on several implementa-
tion artifacts. When developers mistakenly violate these
decisions, this leads to the software architecture erosion

phenomenon. This gap between implementation and
architecture causes the system to fail to satisfy some of the
intended nonfunctional properties [14].
Architectural conformance checking is a process that

investigates consistency between different artifacts in a
wide scope. The main use is to ensure that the software
is implemented according to the planned architecture,
which is the foremost high-level artifact. Architectural
compliance can be performed in several ways, such as
from a high-level model to the source code, and between
models at similar abstraction levels. It can also be clas-
sified as (i) static and (ii) dynamic. Static means that the
source code is statically compared to the software’s archi-
tecture view. On the other hand, dynamic means that the
source code is analyzed at runtime. Architectural verifica-
tion evaluates dependencies between components and are
divided into:

• Convergence: when a relation prescribed by the
high-level model is followed by the source code.

• Divergence: when a relation not prescribed by the
high-level model exists in the source code.

• Absence: when a relation prescribed by the high-level
model does not exist in the source code.

After the dependencies have been checked, the next step
is to fix the architectural violations found by the verifica-
tion process. The correction must be consistent with the
system architecture. On the other hand, this correction
task is time-consuming, especially when the violations
have been accumulated for a long time period. Therefore,
the task of correcting architectural violations is important
to prevent and to reverse architectural erosion [15].
There are several techniques that aim to support archi-

tectural conformance tasks; each one has its positive and
negative aspects. In the “Conformance techniques com-
parison” section, we conduct a brief comparison of the
main techniques.

Conformance techniques comparison
In this section, we present an overview of related archi-
tectural conformance techniques to summarize their
main characteristics for an easy comparison. Table 1
presents the main techniques according to our study
and seven characteristics (modularity, abstraction, depen-
dency, structure, reuse, visualization, and easy to learn)
each one supports. If the paper describing the technique
explicitly stated, the characteristic we marked “Yes.” If the
paper does not describe a characteristic but in our analy-
sis, we found some alternative feature that could be used
in the same context, then we marked “Partial.” Otherwise,
we marked “No.”
Modularity analyzes if the technique supports modu-

lar architectural specifications or modeling. This is an

Rocha et al. Journal of the Brazilian Computer Society (2017) 23:12 Page 4 of 25

Table 1 Related techniques comparison

Technique
Characteristic

Modularity Abstraction Dependency Structure Reuse Visualization Easy to learn

DCL [12] No Partial Yes No No No Yes

Reflection models [11] Partial Yes Yes No No Yes Yes

Vespucci [8] Yes Yes Yes No Partial Partial Partial

DSM [21] No Yes Yes No No Partial Yes

SCQL [23] Partial No Yes Partial No No Partial

Design tests [24] Partial No Yes Partial Partial No Yes

FSML [25] No Yes No Partial Yes Yes No

ArchLint [9] No Yes Yes No No No No

OCL [27] Partial Yes Yes No Partial No No

ADL [28] Partial Yes Yes No No No Partial

important aspect because it allows the specification of
independent and flexible models. Abstraction verifies if
the technique provides different abstraction levels when
specifying architectural components. Lack of abstraction
features may over complicate the architectural specifi-
cation of systems with a large amount of lower level
components. Dependency checks whether the technique
provides some way to specify dependencies between com-
ponents. Most architectural conformance techniques rely
on dependencies definitions because they are intuitive.
Structure refers to whether the technique captures struc-
tural violations (i.e., inconsistencies related to component
creation) or not. We claim (and we further empirically
demonstrate) that techniques that capture structural vio-
lations are likely to uncover more violations. Reuse checks
if there are features specifically designed to reuse architec-
tural specifications for other systems. This decouples the
architecture specification and decreases the effort in spec-
ifying architectures for other systems. Visualization can
be used to assess if the technique provides a tool support
to visualize the intended architecture. It can help users to
better understand the system architecture. Easy to learn
analyzes the learning curve required for understanding
the technique and for specifying the intended architec-
ture. Techniques that are easier to learn facilitate their
adoption.

Dependency constraint language (DCL)
DCL [12] major advantage consists in how easy it is to
learn the language and how easy it is to be used for archi-
tectural conformance check. DCL relies on simple con-
cepts, which requires few keywords combined to create
architectural restrictions. The language favors expressive-
ness, which allows to model several types of restrictions.
There is another important point, DCL is non-intrusive
and does not require any source code modification. DCL
is a feasible solution to monitor and control dependen-
cies on object-oriented systems. However, DCL is not a

complete language for architectural specification. DCL
main focus is on dependencies control that may not cap-
ture all architectural aspects, such as structural charac-
teristics [16]. In DCL, the architectural definitions are
monolithic and lack modularity, which can cause prob-
lems for the architectural specification [8]. For example,
DCL does not support a way to specify components in
a hierarchical manner, which is a common occurrence
when modeling object-oriented systems [17, 18]. Finally,
DCL does not explicitly show architectural convergences,
which are an important factor to understand the system
architecture [11].

Reflectionmodel
Reflection model [11] is a popular technique for archi-
tectural conformance since there are many studies on
this particular topic. A strong positive point on adopting
reflection models is that their concepts are intuitive and
easily adaptable to different scenarios [4, 19, 20]. On the
other hand, this technique does not show explicit concern
for reusability, and trying to reuse reflection models in
different system with similar architectures is not a simple
task. Therefore, this lack of reusability can be a barrier to
adopt this technique for architectural conformance [19].

Vespucci
Vespucci [8] has many interesting features, such as
modular architectural definition and components reuse.
Vespucci also allows the modeling of different abstrac-
tion levels by using ensembles and slices. The tool support
is a negative point for this technique, which has a sub-
par documentation and it appears to be inactive. We also
found very few studies to assess the applicability of this
technique in real scenarios.

Dependency structurematrix (DSM)
DSM [21] is easy to employ on architectural conformance
tasks due to its inherent simplicity. Architects require

Rocha et al. Journal of the Brazilian Computer Society (2017) 23:12 Page 5 of 25

little effort to acquire a general overview of the system
architecture, which also shows the dependencies between
components [7, 22]. Unlike other techniques, DSM can
create a dependency matrix without relying on mapping
higher level components. On the other hand, this char-
acteristic undermines the reuse to other systems, since
there is not a formalization on higher level concepts. DSM
also does not support explicit architectural specification,
which also hinders reuse.

Source code query languages (SCQL)
There are source code query languages adapted to archi-
tectural conformance, for example the SCQL [23]. This
technique is very flexible in searching for undesirable
code pattern (i.e., architectural violations). SCQL similar-
ity to SQL facilitates its adoption, although the features
design for object-oriented adds a significant complexity to
the language. The language is counter-intuitive to model
architectural definitions since every aspect of SCQL is
expressed by source code queries. Another problem is
that SCQL does not support abstraction for higher level
components; it only works at source code level.

Design tests
Design tests [24] employ the concept of unit testing
applied to architectural compliance. Since it is based on
unit testing, this technique is easy to learn for users who
are familiar with testing frameworks. This technique does
not facilitate architectural modeling, mainly because it
is not intuitive to specify architectural details by using
tests.Moreover, design tests do not have features explicitly
designed for higher level abstraction.

Framework-specific model language (FSML)
FSML [25] goal is to model architecture focused on frame-
works. The technique does not control structural depen-
dencies or relations, and uses framework instantiation
for architectural conformance. The instantiation feature
favors reuse, since it is possible to instantiate architectural
models asmany times as necessary. On the other hand, the
framework-based architectural conformance is not easy to
learn.

ArchLint
ArchLint [9, 26] automatically extracts architectural rules
from source code version history. Therefore, ArchLint is
well suited when the system documentation is not well
kept. This is a very strong point that favors the adop-
tion of ArchLint. On the other hand, ArchLint requires a
higher level architectural model to map the source code
into architectural specifications, which may compromise
its adoption by inexperienced users. Since ArchLint auto-
matically extracts the architectural specification from the
source code, it does not (and is not expected to) promote
reuse or modularity for its specifications.

Object constraint language (OCL)
OCL [27] is an UML standard that allows the specifica-
tion of constraints among objects. This technique has the
advantage of being integrated with UML models, and it
features object-oriented features such as inheritance, and
abstraction. On the other hand, OCL lacks usability which
makes it more difficult to learn and adopt. Since it is a
standard, OCL does not offer any type of constraint visu-
alization. Moreover, OCL reusability depends on whether
you can reuse the UML models integrated with it, and as
such this might not be a strong suit for this technique.

Architecture description language (ADL)
ADL [28, 29] is a broader term that defines a language
that provides means to specify architectural and its con-
straints. We can see that OCL, DCL, and others can be
considered ADLs, as they fall into its definition. However,
for this category, we are analyzing a set of ADLs that were
not previously discussed.
Armani [30] is an old ADL with similar characteristics

and disadvantages that most ADLs share. More specif-
ically, Armani supports different abstraction levels, the
specification of dependencies, and limited modular spec-
ifications. However, it does not capture structure viola-
tions, it does not favor reuse, it has no support to visualize
the architecture or the constraints, and it learnability was
not a concern when the language was designed.
Alloy [29] defines an ADL that maps the architectural

language definition into a model that can be more eas-
ily verified for architectural conformance. Unlike other
ADLs, alloy does provide a limited support to capture
some structural violations.
CLACS [28] uses the concepts of component-based

software development to model the architectural speci-
fications. CLACS was specifically designed to tackle the
lack of reuse faced by most ADLs.

Critical assessment
Most techniques do not explicitly concern with architec-
tural reusability. Moreover, few techniques partially sup-
port the capture of structural violations while the majority
does not support it at all. We can also see little support
for modular specifications. Therefore, most architectural
conformance techniques lack on these three characteris-
tics: reuse, structure, and modularity. On the other hand,
for the positive points, most techniques explicitly specify
andmonitor dependencies between components. There is
also a general concern to provide other abstraction levels
when modeling architectures.

DCL
DCL is a declarative language aimed to verify dependen-
cies among modules from object-oriented systems [12].
The language restricts the dependencies among modules

Rocha et al. Journal of the Brazilian Computer Society (2017) 23:12 Page 6 of 25

by using a set of architectural rules. Basically, each rule has
two elements and one relation between them, as follows:
MA cannot-extend MB
Constraint MA cannot-extend MB indicates that classes

from moduleMA cannot extend classes from moduleMB.
All DCL constraints follow the same syntax. Indeed, this
simple and intuitive syntax is one of the main advan-
tages of DCL. Therefore, once the system architect knows
the project’s architectural characteristics, it becomes a
relatively simple process to employ DCL to model archi-
tectural constraints.
We need to follow a few steps to use DCL for architec-

tural specification. First, we define the modules, which are
the high-level components in DCL. Then, we define the
mapping of classes into modules, i.e., in this step, we spec-
ify the module that represents source code classes. Finally,
we define the constraints between each pair of modules.
Once we have the DCL architectural specification, we

can use tools to read such specification and verify the
source code for architectural violations. Basically, the
specification is created by modules and the constraints
between a pair of modules. A module is a set of classes, as
shown in Listing 1.

In the example, module Math (line 1) represents only
one class (java.lang.Math). In line 2, module Exception
represents two classes: java.lang.RuntimeException and
java.io.IOException. In line 3, JavaUtilmodule that repre-
sents all classes from the java.util package. In line 4, mod-
ule JavaSwing refers to every type defined in javax.swing
package or sub-packages.
DCL classifies its violations into two groups: diver-

gences and absences. A divergence violation occurs when
an existing dependency in the source code violates the
architectural model. DCL provides the definition of the
following kinds of constraints between modules:

• Only classes from module A can depend on types
defined in module B, where the possible
dependencies are as follows:

– only A can-access B: only classes
declared in module A can access (calling

methods, reading or writing to fields)
non-private members of classes declared in
module B.

– only A can-declare B: only classes
declared in module A can declare variables of
types declared in module B.

– only A can-handle B: only classes
declared in module A can access and declare
variables of types declared in module B. This is
an abbreviation for only A can-access,
can-declare B.

– only A can-create B: only classes
declared in module A can create objects of
classes declared in module B.

– only A can-extend B: only classes
declared in module A can extend classes
declared in module B.

– only A can-implement B: only classes
declared in module A can implement
interfaces declared in module B.

– only A can-derive B: only classes
declared in module A can extend a class or
implement an interface declared in module B.
In other words, this is an abbreviation for
only A can-extend,
can-implement B.

– only A can-throw B: only methods from
classes declared in module A can return with
exceptions declared in module B raised.

– only A can-useannotation B: only
classes declared in module A can use
annotations declared in module B.

• Classes declared in module A can depend only on
types defined in module B, where the dependencies
that can be prescribed are similar to those described
for the only-can constraint (declare, handle, create,
extend, implement, derive, throw, and
useannotation). For example, A
can-access-only B defines that classes declared
in module A can access only non-private members of
classes declared in module B.

• Classes declared in module A cannot depend on types
defined in module B. The dependencies that can be
forbidden are similar to those described the only-can
constraint. For example, A cannot-create B
defines that no classes declared in module A can
create objects of classes declared in module B.

On the other hand, an absence violation occurs when
the source code does not follow a dependency that is pre-
scribed by the architectural model. In order to capture
absences, DCL supports the definition of the following
constraints:

• Classes declared in module A must depends on types
defined in module B, where the dependencies that

Rocha et al. Journal of the Brazilian Computer Society (2017) 23:12 Page 7 of 25

can be prescribed are similar to those described for
divergence violations. For example, A
must-derive B defines that all classes declared in
module A must extend a class or implement an
interface declared in module B.

Figure 2 summarizes the language syntax.
DCLsuite is a plug-in to the Eclipse Integrated Develop-

ment Environment (IDE). It implements DCL to perform
architectural conformance verification. DCLsuite has an
editor to create and edit specifications, which are stored
in a file with the .dcl extension. The .dcl file must be
placed in the root directory of the target project. In fact,
DCLsuite reads this file to analyze the source code search-
ing for architectural violations, i.e., it automatically checks
the source code. The violations found by DCLsuite are
presented as errors in the Eclipse Problems tab interface.
DCL also has an extension, called DCLfix, that pro-

vides recommendations for developers to solve problems
related to architectural erosion [15, 31].Moreover, DCLfix
suggests refactoring recommendations to the violations
that were detected during the architectural verification
done by DCL. Another DCL-based tool, called ArchRuby,
was proposed to verify the architectural conformance of
dynamically typed languages [32].
In the remainder of this paper, we refer to the original

DCL language as DCL 1.0 to avoid being mistaken with
our proposed extension.

Proposed language: DCL 2.0
In this paper, we propose DCL 2.0, an extension on DCL
1.0 by introducing modular, reusable, and hierarchical
specification models. The objective is to improve the orig-
inal DCL language with the detection of new types of
architectural violations. We also improved several other
language aspects such as the architectural specification,
documentation, and visualization. Moreover, our motiva-
tion to propose an evolution for DCL 1.0 is to enhance
it with important features to be more effective in real
software development scenarios. Table 2 highlights the
main features reworked by our proposed language—DCL
2.0—and their situation in the original DCL 1.0.

Fig. 2 DCL constraints (adapted from [12])

Hierarchical andmodular specification
Software development usually uses artifacts composed
of components from a higher abstraction level to rep-
resent the system’s architecture. This situation is more
common in the beginning stages of the development,
where the architectural requirements are still unclear. As
the development progresses, the architecture is further
detailed and its higher level components are decomposed
into smaller ones (e.g., sub-modules, packages, directo-
ries, classes, and files). We can observe a hierarchical
pattern when we detail such smaller components. Archi-
tectural models reflect the system’s internal structure and
they can be used to communicate the software architec-
ture [7, 8]. A few other approaches provide hierarchical
specification arguing that a hierarchical model is easier to
work considering components from different abstraction
levels [7, 8].
Our proposed language, DCL 2.0, supports hierarchi-

cal and modular specification. By contrast, DCL 1.0 only
supports a monolithic and flat specification where each
module or component is defined independently from each
other.
Figure 3 represents the logical (a) and physical (b) struc-

ture for a hypothetical system. Listing 2 shows the spec-
ification using DCL 2.0 for the same fictitious system.
We can see the following three models have a hierarchi-
cal nature: (i) the logical model (Fig. 3a), (ii) the physical
model (Fig. 3b), and the DCL 2.0 specification (Listing 2).
On the other hand, DCL 1.0 would define every compo-
nent isolated from each other, and without any indication
that a component could include or be a part of other
components.
In Listing 2, we defined the component foo (line 2)

for the example architecture. DCL 2.0 allows hierarchical
specification of modules; in this case, foo contains other
three components: entities (line 3), constants (line 10), and
utils (line 17). Each component can map and group lower
level artifacts (source code and other files) into a higher
abstraction definition. For instance, inside the component
entities, we map file names that begin with “Ent” to the
newly defined Entity abstraction (line 4), and all architec-
tural constraints this component follows (lines 5 to 7). We
can also see that Fig. 3 shows an example of this represen-
tation where EntCar.java and EntPerson.java are classified
as entities.
A software modularity is defined as a way to imple-

ment more flexible and comprehensible systems, which
impacts directly on its maintenance tasks [33]. In software
architecture, modularity is also very important. We can
observe this importance in the architectural model 4+1,
where views like logical view and implementation view
capture modularity aspects [5]. Although the benefits of
modularization are clear, for architectural conformance
and specification, there is little discussion on this front. As

Rocha et al. Journal of the Brazilian Computer Society (2017) 23:12 Page 8 of 25

Table 2 DCL 1.0 and DCL 2.0 comparison

Feature DCL 1.0 DCL 2.0

F1 Specification Monolithic and flat. Converted to a modular and hierarchical specification.

F2 Verification
Limited to only Java artifacts. Verifications are
also limited to dependencies constraints.

First, we allow non-Java related artifacts. Second, we added new con-
straints to improve the detection of architectural violations.

F3 Reusability Limited.
The language is integrated to amanagement tool, which decouples the
specification from the target system and promotes reuse.

F4 Architectural
visualization

Non-existent.
A tool and an API that shows the system architecture. The API also pro-
vides several visualization layouts to show the architecture in different
ways.

F5 Architectural
coverage

No support.
Provides visualization on the portion of source code that is being
covered by the specification.

we explain in related work (the “Related work” section),
most architectural specifications are monolithic in nature.
DCL 2.0 implements a modular specification by using

a cross-reference mechanism, where an element defined
in a specification file can be referenced by another file.
As already illustrated in Listing 2, we can see component
plataform.java.lang (lines 6, 13, and 20) were not defined
in the current file, they are references. One of the main
advantages for this modularity specification in DCL 2.0 is
the reuse of architectural components, i.e., frameworks,
APIs, and libraries can have its components specified only
once and reused by other projects.
DCL 2.0 also requires a more formal specification

than other languages. For example, we can observe
the ignore keyword, which informs that component doc
should not be considered as an architectural artifact
(Listing 2, line 26). More specifically, ignored artifacts are
not verified or visualized by the tools using DCL 2.0

specification. Particularly for Listing 2, if the ignore key-
word did not specify the doc component, a violation would
be generated.

Non-java artifacts
One of the new improvements of DCL 2.0 over DCL 1.0
is the possibility to work with non-java related artifacts.
This is important because a software project may contain
different artifacts, such as documentations, style sheets,
web pages, and configuration files.
For example, Listing 3 shows the view component spec-

ification using DCL 2.0. First, we define the view compo-
nent (line 1), which is composed by a directory or folder
with the name “view” (line 2). Inside the view compo-
nent we create a module that contain any folder (lines 3
and 4). We can see that the page component (lines 5–7)
is composed by artifacts with xml, zul, or html extensions
(line 6).

Fig. 3 Hypothetical system models: a logical model and b physical model

Rocha et al. Journal of the Brazilian Computer Society (2017) 23:12 Page 9 of 25

New violation types
The hierarchical features introduced in DCL 2.0 provided
a way to verify new types of architectural violations. We
classified these new types as structural violations, which
occurs when a code element diverges from the hierarchi-
cal component specification. We detail the new structural
violations types as follows.

Unknown component
This violation occurs when the language finds a source
code artifact that does not fit into the components defined

in the architectural specification, and consequently, such
artifact is considered unspecified (or undefined) in DCL
2.0. Figure 4 shows an example of unknown component
violation. In the example, we have two violations related
to the existence of FooHelper class and the bar package
(Fig. 4b), which there are no corresponding components
in the architectural model (Fig. 4a).

Unknown reference
This violation occurs when an instance of a declared
component references an unknown component. In other
words, an unknown reference reveals when an unspec-
ified element (either internal or external) is referenced
by a source code artifact. Figure 5 shows an example of
unknown reference violation, which EntPerson class refer-
ences java.rmi.Remote class that was not specified in any
component.

Incorrect location
This violation occurs when the language identifies a valid
instance of a code artifact that belongs to an archi-
tectural component, although the architectural location
diverges from where the artifact was supposed to be
implemented. Figure 6 presents an example showing an
incorrect location violation. In the figure, entity class Ent-
Person is located in the utils component, but that class
should be placed in the entities component (dashed line
arrow).

Absence of dominant component
DCL 1.0 does not support the specification of dependen-
cies among components related to the same concept. To
address this issue, DCL 2.0 proposes a new type of con-
straint represented by requires keyword. The purpose for
this new constraint is to provide traceability between the
conceptual model and source code elements. For example,
line 21 in Listing 2 establishes that every instance from the
Util component must be related to an Entity component
related to the same concept.
An absence of dominant component violation occurs

when it is not possible to find the dominant component.
Figure 7 shows an example of such violation. In Fig. 7a,
we can observe the conceptual relation among the com-
ponents. By our specification, to create class UtilPerson,
it should also exist a EntPerson class (Fig. 4b). The under-
lined class names in the figure show essential concepts
for the system. Based on the naming convention, DCL 2.0
identifies the code artifacts related to the same concept
(matching keyword).

Architectural reusability
A major change introduced by DCL 2.0 is how the archi-
tectural specification and source code artifacts are related.
In DCL 1.0, the specification is integrated to the system.

Rocha et al. Journal of the Brazilian Computer Society (2017) 23:12 Page 10 of 25

Fig. 4 a, b Unknown component violation

In DCL 2.0, the specification is decoupled from target
system. This difference makes the DCL 2.0 possible to
reuse any architectural specifications in DCL 2.0. More-
over, this new feature is better to handle the architectural
evolution because it allows the specifications to be man-
aged and distributed by software configuration tools in a
similar way as it is done with source code.

Architectural coverage
Another important new feature of DCL 2.0 is a simple
metric to indicate howmuch of source code was analyzed.
Due to the hierarchical specification, all source elements
must be verified by the language, except for the elements
declared with the ignore keyword. In general terms, the
less elements are ignored, the greater is the architectural

Fig. 5 a–c Unknown reference violation

Rocha et al. Journal of the Brazilian Computer Society (2017) 23:12 Page 11 of 25

Fig. 6 a, b Incorrect location violation

coverage. For example, if we consider a system with 100
artifacts (classes, XML, JavaScript, documentation, etc.)
with only 70 of those are considered architectural compo-
nents, then for this case the architectural coverage is 70%.
By default, binary files are excluded for the architectural
coverage calculation.

Architectural visualization
Understanding the architectural specification of a sys-
tem is important to avoid the proliferation of violations
[11]. Therefore, visualizing the planned architecture can
aid system architects to better understand it, which can
contribute indirectly to the system architectural con-
formance. DCL 2.0 hierarchical model allows for three
different types of architectural visualizations: (i) textual

shape, (ii) component tree, and (iii) code artifacts and
their respective architectural component. A fragment of
the third visualization can be see in Fig. 8.
Another noteworthy point is that the visualizations

reflect the modeled architecture, which is not just a stan-
dard package overview as provided by most IDEs. For
example, suppose an architecture component in DCL 2.0
called webpages that is composed of every html file. How-
ever, html files for this system are spread across multiple
folders or packages. Moreover, while our tool would show
every html artifact as belonging the webpages architec-
ture component, an IDE package view would not. As such,
the user in an IDE would be required to search for those
artifacts following the package structure which does not
reflect the architecture component.

Fig. 7 a, b Absence of dominant component violation

Rocha et al. Journal of the Brazilian Computer Society (2017) 23:12 Page 12 of 25

Fig. 8 Architecture and code visualization

Tool support: DCL2Check
We developed a tool, called DCL2Check (available at
github.com/aserg-ufmg/dcl2check), that uses DCL 2.0 to
verify the applicability of our proposed solution and to
aid our evaluation. The tool is implemented as a plug-in
for Eclipse IDE. It provides essential functionalities, such
as architectural conformance verification and high-level
architectural visualization.
The “Overview” section presents an overview of the

tool and its main components. The “Architecture” section
describes the tool’s architecture. Last, the “Features”
section highlights DCL 2.0’s main features.

Overview
We used the Eclipse platform and Xtext as the main
components to implement our tool. Eclipse is a popular
open-source IDE (Integrated Development Environment).
Xtext is a framework for development of program-
ming languages and domain-specific languages. With
Xtext you define your language using a formal grammar
specification. As a result, Xtext provides the elements
required for domain specific language processing, includ-
ing parser, linker, type checker, and compiler as well as
editing support for Eclipse, IntelliJ IDEA, and for any
web browser.
DCL2Check is publicly available as a plug-in for Eclipse.

We created a specific DCL 2.0 project in the Eclipse plat-
form to use the tool. This project is needed to store the
architectural specification using the DCL 2.0 language.
Once created, the specification project should be exported
in JAR (Java ARchive) format. The system we want to
perform architectural conformance adds the DCL 2.0
specification JAR file to its project dependencies. The
tool identifies the architectural specification among the
project system dependencies and employs it to perform
the architectural compliance task. It is important to high-
light, that even though the specification is exported as a
JAR file, it can be used for software projects written in any
programming language and not just Java. Since our tool
is integrated with Eclipse, it can work with any language
supported by the Eclipse platform.

We also integrated the tool with the Maven framework
to support the distribution of architectural specifications
in remote repositories. Another feature introduced by
Maven is that it can access the remote repositories to auto-
matically update the architectural specification for each
developer machine. As we can see it is easy to reuse spec-
ifications to other systems, since they are decoupled from
the software project.

Architecture
Figure 9 presents DCL2Check conceptual model show-
ing its main entities (Component, ComponentInstance,
Reference, Restriction).

• Component: it is the main model entity for DCL 2.0.
We use Component to represent conceptual
elements from the system. This entity possesses two
self-relations (parent and children), to allow a
hierarchical specification and navigation through the
architectural components.

• ComponentInstance: entity that represents source
code portion related to a specific component.

• Reference: entity that represents a relation between
two component instances (i.e., model a dependency
between a source component instance and a target
one).

• Restriction: entity that represents rules, restrictions,
or constraints applied to a specific component.

Features
In this section, we present the following main fea-
tures implemented by our tool: specification editor
(the “Specification editor” section), architectural verifica-
tion (the “Architectural verification” section), and visual-
ization (the “Visualization” section).

Specification editor
The tool has built in editor specifically designed to handle
architectural specifications in DCL 2.0. The editor offers
syntax highlight, cross-reference, and autocomplete to aid
in the writing of specifications. Moreover, the editor also
validates the specification automatically, showing syntax
errors just in time. These functionalities attached to the
editor are important to improve the usability and ease the
learning curve to new users.

Architectural verification
For the architectural conformance task, our tool offers
explicitly designed features to handle it. The user can
enable the architectural verification for each Eclipse
project in the configurationmenu. Once enabled, the ver-
ification task can be executed in the following ways: (i)
live feedback, which the verification occurs every time an

github.com/aserg-ufmg/dcl2check

Rocha et al. Journal of the Brazilian Computer Society (2017) 23:12 Page 13 of 25

Fig. 9 Conceptual model for DCL2Check

artifact is modified; (ii) build feedback, which the veri-
fication is processed when the project is compiled; and
(iii) off-line feedback, which the architectural verification
is only performed by demand, i.e., only when the user
explicitly invokes the tool command (in the Eclipse IDE)
to perform the architectural compliance check.
Figure 10 shows a violation in the EntPerson class. The

tool marks the source code line on the artifact that caused
the violation. A textual message is also showed to explain
the violation found by our tool. The message is to facili-
tate the users’ understanding. We think it is noteworthy
to point out that these messages can be customized and
defined using DCL 2.0.

Visualization
As we showed in the architectural conformance tech-
niques comparison (the “Architectural conformance
checking” section), not every technique provides a visu-
alization feature. We claim visualization is important to
aid the development team in better understanding the
designed architecture. Therefore, we implement in our
tool three types of visualizations: (i) textual shape, (ii)
component tree, and (iii) code artifacts and their respec-
tive architectural component.
The visualization types provided by DCL2Check are

independent from the architecture specification, which
allows new tools or extensions to provide more visualiza-
tion options for DCL 2.0 in the future. Moreover, our tool

Fig. 10 Architectural violation

visualizations reflect the modeled architecture that is dif-
ferent than the common package overview provided by
IDEs.
The tool also uses Eclipse’s View Console and Problems

to show details on the architectural violations. We also
show the Architectural Coverage for each project under
the project’s properties.

Evaluation
In this section, we report a case study where we applied
an architectural conformance check using DCL 2.0 to a
large system. The system is maintained by PRODEMGE,
which is a government information technology company
from the state of Minas Gerais, Brazil.

Research questions
The main objectives behind our research ques-
tions is to understand the architectural erosion
phenomenon (RQ#1) and to evaluate the DCL 2.0 lan-
guage (RQ#2).

Research questions related to architectural erosion:

RQ# 1.1:Why do architectural violations occur?
RQ# 1.2: How does the development team handle
the violations?

Research questions related to DCL 2.0:

RQ# 2.1: Can DCL 2.0 be used to avoid architectural
violations?
RQ# 2.2: Do the new concepts and features
introduced by DCL 2.0 improve the architectural
verification process?
RQ# 2.3: Can DCL2Check tool be used in real
software development process to perform
architectural verification?

Methodology
First, we present the criteria used for the target sys-
tem selection (the “System selection” section). Then, we
explain the metrics used for this case study (the “Metrics”

Rocha et al. Journal of the Brazilian Computer Society (2017) 23:12 Page 14 of 25

section). Finally, we show a detailed conformance archi-
tecture process for the case study (the “Process definition”
section).

System selection
There are studies arguing the necessity to evaluate new
researches in real systems [20, 34]. Therefore, we chose to
verify the applicability of DCL 2.0 by using a real system
and their development team. We defined the following
criteria to select a PRODEMGE system that was more
appropriate to our context of architectural conformance:

• The system needs to be of medium or large size
because larger systems are more inclined to have
architectural violations [35].

• The system’s source code language should be Java.
Although DCL concepts and its architectural
conformance can be applied to any object-oriented
system, the original DCL 1.0 has already a Java
implementation.

• The system should be under development, since it is
less likely for stable and mature systems to present
violations.

• The development team should be medium sized.
Small teams are less likely to deviate from the
planned architecture; usually, the same team who
defines the architecture is also the one who
implements the system.

• The development team should be heterogeneous.
The main reason is to avoid a biased team composed
mostly of very experienced developers or
inexperienced ones.

Therefore, we selected the SSC-ADMIN system, which
is an administration module for the SSC system. The SSC
system is used by government agencies to manage digital
identities from the Minas Gerais state. The target sys-
tem is coded in Java and its main functionalities include
the general management of unities (government branches,
commissions, etc.), systems, users, profiles, resources, and
auditing.

Metrics
Table 3 summarizes the SSC-ADMIN system metrics that
we uncovered during our analysis.
We would like to clarify some of the summarized met-

rics presented in Table 3. First, the project life-cycle time
accounts for the conceptual of the system, the approval of
the project by the company, the development time, and
maintenance (for correction and enhancement). We also
would like to note that since this project was developed
in a government branch, there is some bureaucracy that
affects the project time. The first release of the system
was around 6 months after the beginning of the project.
The lines of code, classes, and packages only account

Table 3 SSC-ADMIN metrics

Metrics Value

Project life-cycle time 35 months

Lines of code (Java) ≈30K

Classes 187

Packages 39

Layers 6

Changes—Commits 9, 368

Sets of changes 1454

Artifact types 18

Number of artifacts 602

People (architects, developers, etc.) 21

for Java artifacts because we used an automated tool to
acquire such information. However, there are many non-
java artifacts that were not accounted for (e.g., web pages,
documentations, xml, etc.). The people involved with the
project account for developers, architects, interns, and
any person who had some contact with the system. It is
noteworthy that not all of them worked at the project at
the same time, but during the course of the case study
(35 months). In fact, new developers arriving to replace
more experienced ones was one the reasons that con-
tributed for the inclusion of architectural violations.

Process definition
Our evaluation process was inspired by other researches
on architectural violations [4, 36]. We adapted the pro-
cess to make it more iterative and incremental, as shown
in Fig. 11. Our defined process for the case study included
the following steps:

1. Development team preparation.
2. Source code preparation.
3. Architecture formalization.
4. Architectural verification and violation analysis.
5. Violations removal.
6. Generate a new system’s version.
7. Monitoring and evolution.

1. Development team preparation: In this step, we
explained the DCL 2.0 language to the team.We also sepa-
rated the development team into two groups. Group 1 was
composed of architects who are responsible to specify the
system architecture in DCL 2.0. Group 1 is also responsi-
ble to refactor the code to remove architectural violations.
Group 2 is composed of developers that keep the standard
software development process followed by the company.
2. Source code preparation: We extracted the current

and previous versions of the source code for the target
system. All the versioning information is stored into a
database for further analyses.

Rocha et al. Journal of the Brazilian Computer Society (2017) 23:12 Page 15 of 25

Fig. 11 Defined process for the case study

3. Architecture formalization: Group 1 (architects) spec-
ifies the system’s architecture using DCL 2.0 language and
our tool (DCL2Check), which should map architectural
components into code elements. The architects specified
the system based on the common stereotypes employed
by their company to map the components. For instance, a
PersonCtr class (as well as any class with the “Ctr” suffix in
their name) should be mapped to the Control component.
4. Architectural verification and violation analysis: After

the architecture formalization (step 3) , the architects
(group 1) execute DCL2Check to compare the planned
architecture to the implemented code and to reveal the
architectural violations.
Since the architects are working on a large system, there

is a strategy to handle violations. The strategy is to ver-
ify each module in sequence—starting with the module
with the smaller number of dependencies—, to analyze the
violations, and to schedule for the code or architectural
changes.
5. Violations removal: The violations found on the

last step are removed. More specifically, each violation
is fixed, documented, and committed to the repository.
The violation can be removed by modifying artifacts to
fit into planned the planned architecture, or the archi-
tectural specification can be adapted. Group 1 repeats
steps 2, 3, 4, and 5 for each module until all system’s viola-
tions are fixed.
6. Generate a new system’s version: After all violations

are removed from the secondary branch, the changes are
pushed to the main branch to create a new version of
the system. After joining the two branches, DCL2Check is
installed on group 2machines to inhibit further violations.
7. Monitoring and evolution: After group 1 creates a new

system’s version, the resulting architecture is presented to
the entire development team. We also analyze the result-
ing architecture for the case study. After that, the archi-
tects keep track of the system’s architecture for adaptation,
evolution, and correction. The architects should also aid
the developers to understand the planned architecture
and the violation warnings provided by DCL2Check.

Case study execution
Team preparation
We explained DCL 2.0 to the development team and
divided them into two groups: group 1 with two architects
and group 2 with eight developers.

Source code preparation
The development company, PRODEMGE, employs two
major tools: (i) IBM-RTC (jazz.net/products/rational-
team-concert) (Rational Team Concert) and (ii) Maven
(maven.apache.org). The first tool is used for version con-
trol and the second tool for dependencies management.
The tools were used to manage source code artifacts (e.g.,
java, js, and xml files) as well as architectural specification
(e.g., asml files).

Architectural formalization
SSC-ADMIN system is divided into layers, where each
layer is an independent module responsible for a spe-
cific architectural functionality. The DCL 2.0 specifica-
tion followed the same decomposition into layers, i.e.,
the architects created DCL specification for each layer of
the SSC-ADMIN system. The system layers are the fol-
lowing: common, domain, interfaces, infrastructure, busi-
ness, and web. Each of those layers is associated with an
Eclipse project. Figure 12 shows the layers and the Eclipse
projects.
According to our methodology, the common layer was

the first to be formally specified because it has the smallest
number of dependencies. On the other hand, web was the
last to be specified because it has the largest number of
dependencies.
The architects used the existing documentation to per-

form the mapping of the system architecture into code.
The time spent in the mapping was 2 weeks (i.e., 80
man/h) because the documentation was incomplete and
consequently required more time from the architects to
reach a consensus on the planned architecture. The archi-
tects used naming standards for the mapping because it
is less intrusive than annotating the source code. The Java

jazz.net/products/rational-team-concert
jazz.net/products/rational-team-concert
maven.apache.org

Rocha et al. Journal of the Brazilian Computer Society (2017) 23:12 Page 16 of 25

Fig. 12 a, b Component layers for SSC-ADMIN system

classes were mapped according to their layer. There were
JavaScript and XML files that also needed to be mapped
into architectural components by the architects.
Listing 4 shows the final architectural specification

defined in DCL 2.0 for the domain layer. We made the
architectural specifications for the remaining layers pub-
lic available (https://github.com/aserg-ufmg/sbcars2016).
We can observe the mapping of classes into components
by using the matching keyword. In lines 7 and 8, the
mapping defines the Entity andAudityEntity components,
respectively. More specifically, the declarations state that
any artifact whose name ends with VO belongs to com-
ponent Entity, and any artifact whose name ends with
AudVO belong to the AuditEntity component. For exam-
ple, class UserVO belongs to the Entity component, and
theAuditoryAudVO class belongs to theAuditEntity com-
ponent. It is important to highlight that DCL 2.0 tool
always matches artifacts to the most related component
according to its specification pattern. For instance, even
though AuditoryAudVO could match the pattern defined
for Entity, it has a much higher correlation to the pat-
tern defined forAuditEntity and hence it is assigned to the
AuditEntity component.
Almost every component from the target system were

mapped by using naming standards. However, there were
a few cases were we mapped components by their file

Table 4 Coverage by architectural layer

Coverage

Project (layer) Components no. Artifacts % Lines %

Web 25 82 97

Business 21 63 94

Infrastructure 11 50 77

Interfaces 14 53 77

Domain 10 67 93

Common 7 33 47

Total 88

extension. Table 4 reports the number of components and
the coverage percentage for each layer. We can see that
the coverage may vary greatly for each module. The main
reason for the coverage to be lower in smaller projects
(e.g., common and infrastructure) is because the archi-
tects decided to ignore configuration files related to IDE
and integration plugins (e.g., Maven, JBoss, and RTC).
Therefore, for smaller projects, the ignored files have a
bigger impact on its coverage.

Architectural verification and violation analysis
In this step, the architects define the constraints modeling
the relations between modules. Table 5 reports the layers,
number of constraints, and the number of references
specified in DCL 2.0. For example, Listing 5 presents the
Entity component (previously mentioned in Listing 4)

after the architects defined constraints indicating that
entities should be serializable (line 4) and must extend
BaseVO (line 5). Moreover, the architects noted a great

https://github.com/aserg-ufmg/sbcars2016

Rocha et al. Journal of the Brazilian Computer Society (2017) 23:12 Page 17 of 25

Table 5 Constraints and references

Internal components

Project (layer) Constraints no. References no.

Web 8 42

Business 11 72

Infrastructure 11 31

Interfaces 8 20

Domain 8 22

Common 2 6

Total 45 193

amount of repeated references to external components
(147 to be exact) during the definition of architectural
rules. For this reason, we advised the architects to specify
components related to frameworks, APIs and Java stan-
dard libraries into a specific project to promote reuse and
decouple these external components.

In the previous step (architectural formalization), the
hierarchical restrictions were already defined because the
architectural specification implicitly imposes restrictions
to insert components to the structure. Therefore, code
artifacts that do not fit into a hierarchical model represent
violations.
At first, we observed a high number of structural

violations (91%) when compared to number of relation
violations (9%). The architect analysis detected two defi-
ciencies: (i) code elements that did not have correspond-
ing architectural components, e.g., FunctionalTypeTest
class was considered to be part of an unknown compo-
nent; and (ii) code elements that do not fit to the naming
standards, e.g., classMailService had the characteristics of
a persistence class and hence it was renamed to Notifica-
tionDAO. More specifically, in the PRODEMGE company
all helper and testing classes are considered to be a part
of system architecture and hence these classes should be
modeled into relevant architecture components.

Violations removal
The system showed a high number of violations of two
types: unknown component and unknown reference. For

this reason, the architects followed two major actions: (i)
alter and adapt the architectural specification in DCL 2.0;
and (ii) adjust the source artifacts by refactoring the arti-
facts that do not fit the architectural components.
After that, the architects started to remove the remain-

ing violations until 80% were fixed. A portion of the
violations could not be removed because they were con-
sidered high risk. Therefore, the architects used the filter
feature from DCL 2.0 to avoid these violations to be
reported to the development team. However, these high-
risk violations were documented and presented to the
project managers. The project managers assured they
will make plans to carefully remove these violations in
the near future. Most of these violations were structural
violations occurring in non-java artifacts, which corrob-
orates our hypothesis that it is not sufficient to apply
architectural conformance only to the main source code
language.

Generate a new system’s version
After the architects removed the violations, they were
required to join the source code branches. The mod-
ules went through another architectural conformance
check to capture new possible violations. In total, 11
new violations were detected and removed. After the
refactoring, we created a new version for the archi-
tectural specification and the source code. Then, we
installed DCL2Check in group 2 (developers) machines
to assure the architectural conformance from this point
forward.

Monitoring and evolution
In the first weeks, the architects identified code violations
that should not be occurring since DCL2Check tool was
installed in the developers’ computers. The architects ver-
ified the problem and realized that the developers were
disabling the validation tool in Eclipse IDE for perfor-
mance issues. On average, the tool required between one
and eight seconds (usually, one second for small modules
and eight for bigger ones).
To avoid this issue, we adapted the DCL2Check with

the possibility to perform a architectural verification
on demand or when the project is built (i.e., a com-
plete project compilation) besides the incremental just-in-
time verification. We already described those verification
options in section 2, respectively as off-line feedback and
build feedback. Moreover, since there was no guarantee
that developers would use the tool, the builder (develop-
ment team member responsible to generate a new sys-
tem’s version) was now required to use DCL2Check. The
project manager also defined that the builder should not
accept architectural violations when generating new ver-
sions. This step lasted 8 months, and 39 violations were
avoided.

Rocha et al. Journal of the Brazilian Computer Society (2017) 23:12 Page 18 of 25

Results
The results presented in this section are extracted from
the development history of the target system, between
June 2013 and April 2016 (35 months). The architectural
specifications and violations removal process began in
July 2, 2015 and lasted until August 27, 2015 (58 days).
During this period, DCL 2.0 was employed to reveal vio-
lations that may have occurred since the initial system
development. After the violations removal, the DCL 2.0
verification tool was installed on the development team
computers. We followed this step from September 2015 to
April 2016 (8 months).
As we previously discussed, there was a high number

of architectural violations of two types: unknown com-
ponent and unknown reference. Figure 13 reports the
violations found by our tool and classified them into three
categories: (1) unknown component and unknown ref-
erence violations; (2) other DCL 2.0 violations; and (3)
DCL 1.0 violations. We can observe that other types of
violations increases when we remove violations from cate-
gory 1 (i.e., unknown component and unknown reference
violations). This observation reinforces our hypothesis
that unknown component and unknown reference viola-
tions may, in fact, mask other types of violations.
Figure 14 reports the number of commits that pre-

sented (or not) architectural violations. In this figure, we
highlight two dates: (i) July 2015 marks the beginning
of DCL 2.0 specification, and (ii) September 2015 marks
when DCL 2.0 verification started. There is no direct rela-
tion between the number of commits and the number of
violations. For instance, Fig. 14 shows periods with high
number of commits and few violations, and vice versa.
We observed a trending pattern of new violations dur-

ing the development. More specifically, the first 2 months
showed in Fig. 14, 2013/06 (June) and 2013/07 (July),
show a great number of violations because during this
time period most classes were added to the project.

Cat.1
(DCL 2.0)

Cat.2
(DCL 2.0)

Cat.3
(DCL 1.0)

V
io

la
tio

ns
0

10
0

20
0

30
0

40
0

350

 67

207
227

 57

194

Before
After

Fig. 13 Violations found before and after the removal step

During January 2015 to April 2015, two main fac-
tors related to evolution maintenance contributed to
the increase in violations: (i) the system was enhanced
with new features related to functional requirements;
and (ii) new code added for a JSON framework exten-
sion. Figure 15 shows the number of features added to
the system. We can observe a positive relation between
adding new features and introducing architectural viola-
tions. We run Spearman’s rho test to measure the strength
of this association (from July 2013 to June 2015), which
was considered strong (rho = 0.694). The violations
were accumulated until DCL 2.0 was incorporated to the
development process, after that, violations were removed
constantly. In summary, adding new features creates more
violations than periods where corrective maintenance
were applied to existing features. We can also observe the
importance of an architectural conformance in the devel-
opment process because after August 2015 the number of
violations greatly decreases.
Figure 16 shows changes and violations on the source

related to developers’ profile. We can see that all pro-
files introduce architectural violations. Moreover, if we
observe violations related to complex code changes, senior
developers introduced approximately ten times more vio-
lations than other profiles. The reason for this occurrence
is because senior developers are delegated to more com-
plex coding tasks, which have a higher probability to
impact on the architecture.
Figure 17 shows the amount of development tasks each

profile accomplished. We can see that senior develop-
ers are responsible for more tasks than other profiles.
If we compare both Figs. 16 and 17, we can notice the
more tasks a developer implements on the system, more
architectural violations are also introduced.

Discussion
In this section, we answer our research questions defined
in the beginning of this case study.
RQ#1.1) Why do architectural violations occur?
When we analyze the results, we can see that

architectural violations can occur in the earlier stages of
software development. Moreover, the architectural degra-
dation does not fit into a linear pattern. The results show a
clear relation between violations and adding new features
to the system, i.e., code changes that adds new functional-
ities are more likely to spawn architectural violations than
those changes that only maintain an already implemented
functionality.
There is another important lesson regarding the vio-

lations related to developers’ skill. Generally, all profiles
introduce architectural violations. However, more skilled
developers (seniors) are more involved in complex tasks,
whichmakes them responsible for introducing more com-
plex violations. We asked the developers and architects

Rocha et al. Journal of the Brazilian Computer Society (2017) 23:12 Page 19 of 25

of

 C
om

m
its

0
20

0
40

0
60

0
80

0
10

00

13
−0

6

13
−0

7

13
−0

8

13
−0

9

13
−1

0

13
−1

1

13
−1

2

14
−0

1

14
−0

2

14
−0

3

14
−0

4

14
−0

5

14
−0

6

14
−0

7

14
−0

8

14
−0

9

14
−1

0

14
−1

1

14
−1

2

15
−0

1

15
−0

2

15
−0

3

15
−0

4

15
−0

5

15
−0

6

15
−0

7

15
−0

8

15
−0

9

15
−1

0

15
−1

1

15
−1

2

16
−0

1

16
−0

2

16
−0

3

16
−0

4

15
−0

7

15
−0

9

39

106

24
8

14

4
10 18

10

26 7

5

6 2

11
20

7 10
81 75

26 36
7

10

2

5 37

3

9

4

789

606

443 479 710 304 279 284 202 168
92 108 173 84 66 165 224 188 171

204 207
154 168

193 224 955 474
487

284 167 47 47 145 162 133

Commits with Violations
Commits without Violations

Fig. 14 Commits and violations

from the development team and according to them the
main causes of introducing architectural violations are
the following: (i) lack of knowledge and understanding
of the architectural conventions adopt for the system,
mostly because the extensive documentation; and (ii) lack
of architectural evolution, because developers when faced
with a limitation imposed by the planned architecture
would built their own solution without asking the archi-
tect and adapting the architecture.
The developers also associated stressing over project’s

deadlines as a secondary factor to architectural diver-
gence. Developers stated that they do not contradict
architectural conventions on purpose. However, the
developers also stated that the pressure and stress related
to fulfill work deadlines may have inhibited them to seek
more information about the architecture when needed.

0
10

0
20

0
30

0
40

0
50

0
60

0

of
 fe

at
ur

es
/v

io
la

tio
ns

13
−0

6
13

−0
7

13
−0

8
13

−0
9

13
−1

0
13

−1
1

13
−1

2
14

−0
1

14
−0

2
14

−0
3

14
−0

4
14

−0
5

14
−0

6
14

−0
7

14
−0

8
14

−0
9

14
−1

0
14

−1
1

14
−1

2
15

−0
1

15
−0

2
15

−0
3

15
−0

4
15

−0
5

15
−0

6
15

−0
7

15
−0

8
15

−0
9

15
−1

0
15

−1
1

15
−1

2
16

−0
1

16
−0

2
16

−0
3

16
−0

4

15
−0

7

Beginning of DCL 2.0Features
Violations

Fig. 15 New features and violations

RQ#1.2) How does the development team handle the
violations?
Whenwe analyzed the history of changes for the system,

we can see that violations were removed even before the
installation of our tool. Therefore, the development team
fixed violations without a proper process or planning.
However, most of the violations removed before DCL 2.0
had low complexity, which leaves higher complexity vio-
lations present in the system. The developers stated the
main factor to not remove more complex violations is the
risk to introduce bugs into the system.
The developers also stated that not having tool support

to find architectural violations since the beginning of the
development as a difficulty factor to not removing them,

Senior
Developer

Full
Developer

Junior
Developer

of

 V
io

la
tio

ns
 p

er
 C

om
pl

ex
ity

0
50

10
0

15
0

20
0

25
0

30
0

 66
 74

140

280

 6

 48

111

165

 4

 40

 88

132

High
Medium
Low
Total

Fig. 16 Violations complexity by developer

Rocha et al. Journal of the Brazilian Computer Society (2017) 23:12 Page 20 of 25

Senior Developer Full Developer Junior Developer

of

 T
as

ks
 Im

pl
em

en
te

d

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

672

467

315

Fig. 17 Implementation tasks by developer

mainly because manual code inspection for architectural
violations is difficult and costly.

RQ#2.1) Can DCL 2.0 be used to avoid architectural
violations?
When we consider the time of the case study

(10months) where we installed ourDCL2Check tool to aid
in architectural conformance process, the results indicate
that the development team was able to control and handle
architectural violations. Even though new features were
added to the system and maintenance took place during
the evaluated period, the system did not deviate from the
planned architectural concepts.
RQ#2.2) Do the new concepts and features introduced
by DCL 2.0 improve the architectural verification
process?
We observed the following benefits regarding DCL 2.0

new features:

• Hierarchical and modular modeling proved to be very
effective. It provides better ways to specify the system
architecture in a more faithful manner. Moreover, we
can create independent modules promoting
decomposition, and we can specify source artifacts
promoting more abstraction levels.

• New restriction types were invaluable to capture the
system’s architectural state (very informal) when we
started the study. Moreover, the unknown
component and unknown reference violations were
essential to model the architectural coverage required
by the development team. Another evidence, which
highlights the importance of the new violations, is
how other violations were revealed once the
developers removed unknown component and
unknown reference. Therefore, these violations may

hide other types of violations, which could be
discovered by DCL 2.0.

• Cross reference between modules was important to
avoid errors and also to speed up the architectural
specification process.

• The reusability improved because the architectural
definitions are completely independent from the
target system. Therefore, the specifications can be
reused in other software projects. However, we
acknowledge that we need to perform experiments in
other systems to better evaluate reusability aspect of
DCL 2.0.

• Decoupling between the system and architecture
specification provided an easier architectural
evolution. More specifically, the decoupling allowed
the development team to employ configuration
management techniques to the architectural
specification. This characteristic is important to
control the architectural evolution, especially because
each architectural module had eight versions (on
average) during the study period.

RQ#2.3) Can DCL2Check tool be used in real
software development process to perform architectural
verification?
Although this research question may be consider only

technical aspects, we claim these aspects can be impor-
tant when someone decides to adopt our tool or not.
During the study, we adapted our tool to the real develop-
ment scenario, e.g., we created new forms of verification
to address performance issues the developers faced when
using DCL2Check.
The new visualizations provided by DCL 2.0 (archi-

tectural and log visualization), and the functionality
of validation when the project is built (build feedback
verification option presented in the “Architectural ver-
ification” section) were important to the architectural
specification process. Moreover, the tool editor provided
cross-reference, error verification, and auto-complete new
features to facilitate the task of architectural specifica-
tion. We also integrated our tool with Maven to better
distribute and control different versions of the modeled
architecture. Finally, the tool was incorporated and used
in a real architectural verification process.

Threats to validity
In this section, we identify and classify threats to validity
in our evaluation.

External validity
We used for our experiments one proprietary system.
We cannot claim that different systems will provide sim-
ilar results. Therefore, our results may not reflect other

Rocha et al. Journal of the Brazilian Computer Society (2017) 23:12 Page 21 of 25

proprietary or open-source systems. We tried to mitigate
this threat by choosing a large system developed by real
technology company.

Construct validity
For the evaluation, we relied on the system architects
(group 1) for most of the experimental steps detailed in
the “Process definition” section. The architects defined
the architectural specification and rules based on com-
pany standards. The architects were also responsible to fix
the architectural violations from the system beforemaking
the architectural conformance tool available to the devel-
opers. Therefore, if different architects participated in the
experiment, the modeled architecture and, consequently,
the violations found and fixed may also be different. We
mitigate this threat by selecting a development team with
experienced architects, who were knowledgeable in the
company standard architectural specifications. Therefore,
if other architects with similar experience from the same
company participated in our experiment, it would have
little effect on the results.

Internal validity
As we stated in the construct validity, our evaluation relies
on architects. Therefore, they could be affected positively
or negatively during the experiment. We mitigated this
threat by conducting and monitoring the experiment for
approximately eight weeks (58 days to be exact). There-
fore, it is less likely for the architects to be affected (either
positively or negatively) throughout the whole experiment
in a way that would significantly impact the experiment.

Conclusion validity
Although DCL 2.0 was successful in helping the devel-
opment team to find and fix architectural violations,
we cannot guarantee that another architectural con-
formance tool would provide similar or better results.
When compared architectural conformance techniques
(the “Conformance techniques comparison” section) only
few of those partially supports the detection of struc-
tural violations. Since most of the violations found in
the experiment were structural ones, we claim that other
techniques may not perform better than DCL 2.0.

Related work
We found several approaches and techniques proposed
to address or solve architectural erosion in systems. We
divided the related work into two main categories: (i)
architectural conformance; and (ii) empirical studies.

Architectural conformance
Reflexion models compare two models, low abstraction
level model (i.e., source code) and a higher abstract level
model (i.e., conceptual and architectural elements) of the
system [11]. The models require a mapping task between

the twomodels to compare them.When we compare both
models, the reflexion model is created in which three
types of relations between the models are revealed: con-
vergence, divergence, and absence. The main disadvantage
of reflexion models is the lack of reusability [19]. By con-
trast, when we designed DCL 2.0, reuse was one of the
main concerns for the language.
Another study implements a modular and hierarchical

specification based on slices called Vespucci [8]. A slice is
a portion or block of the specified architecture, and it also
helps to control the dependencies among other blocks.
Slices are composed of smaller conceptual blocks called
ensembles. The authors argue that this approach allows
the formalization of architectures in different abstraction
levels, which facilitates architectural maintenance and
evolution because the specification is modular and hierar-
chical. Their technique combines box-and-line diagrams
to define the architectural structure and a textual lan-
guage to map the source code into the architecture. Their
technique also controls relational violations between com-
ponents, although it does not handle or support structural
violations. On the other hand, DCL 2.0 offers dependency
control among modules and also provides ways to model
structural relations.
Dependency structure matrix (DSM) was introduced to

explain the importance of modular projects in the hard-
ware industry [22]. Another research shows that DSM
can also be applied in the software industry [21]. DSM is
based on a square matrix, which the intersections among
lines and columns denotes a relation between compo-
nents (classes) in an object-oriented system [7, 22]. An
interesting aspect of this technique is the possibility to
visualize in matrix how much a component is associ-
ated with another one. DSM also supports the grouping
of components into modules, which facilitates analysis
among component relations. The grouping strategy also
allows architects to work with DSM in a hierarchical man-
ner, which they could use to analyze the architecture in
different abstraction levels. DSM can also be used in con-
junction with architectural rules. However, DSM does
not support a formal architectural specification, which
hinders the reuse. On the other hand, DCL 2.0 tries to pro-
mote reuse, not only by allowing an easier specification
of the formal architecture, but also by providing modular
and hierarchical specifications that can be used in other
systems.
The .QL language, which was based on SQL, aims to

locate specific source code elements [23]. This language
can be used for architectural conformance to generate
queries to detect coding patterns that do not follow the
planned architecture. This technique works only at source
code, which is a low level abstraction and that may make
difficult to understand the architecture. DCL 2.0 pro-
vides more ways to model different abstraction levels

Rocha et al. Journal of the Brazilian Computer Society (2017) 23:12 Page 22 of 25

to improve the understanding and evolution of the
architecture.
Design test is a technique to verify the architectural con-

formance by using automated tests similar to the ones
done by unit testing [24]. This technique also suffers
from a low abstraction level, which hinders the architec-
tural understanding. As we previously discussed, DCL 2.0
does not suffer from this disadvantage because it provides
architectural specification on different abstraction levels.
Framework-specific model language (FSML) contrasts

with other approaches because it does not control depen-
dencies. Instead, FSML relies on strict framework instan-
tiation model to assure the architectural conformance.
Each FSML contains rules and information required to
correctly use a framework. The approach maps every
framework extension point and its instantiation rules
to verify the architecture on framework-based systems
[25, 37]. Unlike DCL 2.0, this technique does not address
violations among component relations.
ArchLint is an approach to verify the architectural con-

formance that does not require a manual specification of
the architectural rules [9, 26]. The technique requires a
system versions history and a high-level document mod-
eling the system. ArchLint combines static code analysis,
change history analysis, and a set of heuristics to clas-
sify architectural dependencies (or the lack of dependen-
cies). This approach contrasts with DCL 2.0 because the
architectural restrictions on ArchLint are not specified,
i.e., ArchLint automatically extracts those rules from the
system. On the other hand, ArchLint does not handle
structural violations in contrast to DCL 2.0.
OCL [27] is a UML standard to model object-oriented

architectural constraints. OCL allows the representation
of functional and non-functional requirements on objects
and expressions on a UML model. One of the prob-
lems faced by OCL is its difficulty to reuse constraints
[28]. Another problem is the lack of usability [38]. Bajwa
et al. [38] try to improve the OCL usability by writing
the specifications in natural language and then convert-
ing it to OCL. They built a tool, called OCL-Builder, to
perform the conversion from Natural Language to OCL
constraints. DCL 2.0 was designed to be easier to adopt
and use, unlike OCL which does not favor them.When we
compare DCL 2.0 with Bajwa et al. [38] extension, their
new natural language constraints are better than OCL but
it still lacks usability and requires users to learn a new
definition language. DCL 2.0 was also built to favor reuse
which OCL, and its variations do not take into account.
Armani [30] is a language to model software archi-

tecture designs. The author presents the full scope of
Armani in his work. However, the author does not per-
form any form of evaluation. Even the examples provided
in the report are small and lack usability of a real devel-
opment scenario. For DCL 2.0, we presented the language

but we also evaluated our approach in a real software
development scenario.
Alloy [29] is another architectural language that its

architectural specification into another model to perform
an automatic conformance check. The authors use con-
cepts from UML 2.0 and the Acme ADL to specify the
architecture. Alloy reads this specification and generates
another document with its model for automatic verifica-
tion. Although, the author provide some examples of use,
they did not evaluate their approach. Another problem
faced Alloy and discussed by authors was the perfor-
mance. The authors acknowledged that a large model may
take some time, but they did not specify what that time
would be. On the other hand, for our paper we showed
an evaluation in a real scenario and we collected and
presented the performance information for such tests.
CLACS [28] is an architectural language specifically

designed to be more easy to reuse its specifications and
constraints for other projects. The authors hypothesized
that component-based concepts can be used to make the
architectural specifications more resusable. The authors
also empirically evaluate their approach focusing more on
the reusability aspect. CLACS and DCL 2.0 are similar as
both have reuse as a major concern for their design, and
both were empirically evaluated. However, DCL 2.0 also
shows concerns for other aspects neglected by CLACS
(e.g., structural constraints, visualization, etc.). Another
difference is that DCL 2.0 was evaluted in a real sofware
development scenario, while CLACS collected its data
from other sources.

Empirical studies
Rosik et al. [4] evaluated a real software development
for commercial purposes where reflexion models were
employed to detect architectural violations. The authors
concluded in their evaluation that violations are not
removed from the source code even if they are detected.
The authors reported that the evaluated development
team did not felt safe to remove the detected violations.
This contrasts with our case study, where architects and
developers were encouraged to remove as many violations
as possible. As a result, for our case study most detected
violations were removed.
Brunet et al. [39] analyzed the Eclipse platform evolu-

tion over five years to understand the violations during
the development. The authors investigate the architec-
tural rules, the characteristics of the violations, and the
developers addressing the violations. They concluded that
most restrictions are related to classes (or interfaces)
extension control, which contrasts with the majority of
the research on architectural conformance that are based
on dependencies between components. For our paper,
we focus more on the design of DCL 2.0 and the case
study. Although we investigate the possible causes for

Rocha et al. Journal of the Brazilian Computer Society (2017) 23:12 Page 23 of 25

architecture violations, this is not the main focus of this
research.
Knodel et al. [6] introduced the concept of construc-

tive conformance verification in reflexion models, i.e.,
instant feedback is given to developers related to archi-
tectural violations. The results indicated the developers
inserted 60% less architectural violations when utilizing
the approach. DCL 2.0 also offers a just-in-time architec-
tural verification for instant feedback, although we also
provide incremental on demand verification for perfor-
mance issues. When compared to our case study, the
project builder could not accept code artifacts with archi-
tectural violations. Therefore, developers in our case study
stopped inserting architecture violations in new system
version.
In another similar work, Knodel et al. [20] argued that

prototype tools are not appropriate to evaluate real sce-
narios. The authors also highlight the necessity to test new
approaches in real scenarios before making them available
to software companies. We agree with the authors per-
spective and DCL 2.0 and its tool were applied to a real
development scenario in our case study.
In another work, Knodel and Popescu [19] compared

reflexion models and two other techniques (relation con-
formance rules, and component access rules) to assess
their applicability on architectural conformance. The
authors present 13 different criteria to evaluate each tech-
nique and discuss their characteristics. In our paper, we
also did our own comparison according to seven char-
acteristics on eight different techniques for architectural
conformance.
Wettel et al. [40] proposed a technique to visualize soft-

ware artifacts in a three dimension environment, called
Code City. They also empirically evaluate their technique
with 41 participants. The evaluation tries to capture rele-
vant tasks that would occur in real development scenarios.
JSCity [41] is a variant implementation of Code City but
specialized for JavaScript programs. Code City and its
different implementations focus more on the software
artifacts (packages, classes, etc.). Our tool the dcl2check
does not offer a 3D view, but it can show the artifacts as
well as the higher level architectural components related
to those artifacts. Moreover, Code City is a tool only for
visualization purposes while DCL 2.0 and its tool can be
used for architecture conformance as well.
Lutellier et al. [42] compared six techniques used to

extract architecture from systems. In the evaluation, the
authors employed nine variants of those six techniques
to extract the architecture for five systems. This contrasts
with our work because DCL 2.0 was designed for architec-
ture modeling and conformance, and it does not extract a
system’s architecture automatically.
Merson [43] used a static analysis tool to perform

architecture conformance checks. The author applies his

approach in a real software development scenario with
more than 50 Java EE applications. The size of the devel-
opment team is large, being composed of 57 employees
and 24 interns working over the course of two years.
Even though, Merson applied his approach in a real sce-
nario, his evaluation does not analyze further the impact
of the architecture conformance (e.g., it is not shown or
discussed exactly how many violations his approach man-
aged to capture or prevent). For DCL 2.0, our evaluation
scenario is smaller when compared to Merson. However,
our analysis of the architecture conformance is presented
in more detail.
Terra and Valente [12] applied DCL and the DCLSuite

tool as a case study to evaluate architectural conformance
on a real system. The main motivation was to verify
whether architectural violations occurs when inappropri-
ate dependencies between modules are implemented in
the source code. For the experiment, the authors employ
the DCLSuite tool on three versions of the target system.
They monitored the software and architectural evolu-
tion for two earlier versions and they evaluated the third
version for their analysis. The results show that DCL iden-
tified 179 classes (8% of all the classes for the system) with
at least one architectural violation. Finally, the authors dis-
cuss DCL positive points as: (i) expressiveness, since DCL
supports many architectural restrictions types to cover a
wide spectrum of violations; (ii) abstraction level, because
DCL offers a module definition to associate lower level
elements (source code) to a higher abstraction element
(module); and (iii) applicability, as the authors highlight
the non-intrusive nature of the DCLSuite tool and how
easy it is to learn and use DCL. As we discussed through-
out the paper, DCL 1.0 has disadvantages which DCL 2.0
aims to fix. We also presented a case study for a real
software development scenario.

Conclusion
Architectural conformance is an important task to detect
and reverse architectural erosion. Although there are sev-
eral techniques to tackle this task, all of them show some
negative points, specially regarding the reuse of architec-
tural definitions and the capability to discover structural
violations. For this reason, we developed DCL 2.0, which
extends the original DCL language by giving support
to modular and hierarchical architectural specifications,
the detection of structural violations, and the promo-
tion of better reuse. We also describe a DCL 2.0 tool
implementation, called DCL2Check, which facilitates its
adoption.
We evaluated DCL 2.0 on a large system to ver-

ify its applicability on a real software development
scenario. We observed the following results regarding
architectural erosion phenomenon during our evaluation
experiment:

Rocha et al. Journal of the Brazilian Computer Society (2017) 23:12 Page 24 of 25

• Structural violations compromised 91% of all the
violations found in the system. Moreover, structural
violations can hide or mask other types of violations,
since they make it difficult to correctly identify the
components. Considering all violations together
(even those masked by others), 74% were only
detected by the new features introduced in DCL 2.0.

• Architectural violations occur more frequently in
evolution maintenance than corrective maintenance.
We can also see a correlation between a set of changes
implemented by a developer and the number of
architectural violations. However, we could not find a
direct correlation between violations and commits.

• Experienced developers introduce more complex
architectural violations than other developers. The
reason is because experienced developers handle
more complex coding tasks, which are more likely to
introduce violations. Moreover, many complex
violations are not removed from the system.

• One of the initial steps to validate the architecture is
to identify its components. The risk of introducing
architectural violations lessens for well-known
components. On the other hand, unknown
components and references represent a silent
problem that could hide serious violations.

Besides the good results in detecting existing violations,
DCL 2.0 also proved important in helping the develop-
ment team to address violations. After ten months since
the installation of DCL 2.0, the number of architectural
violations being committed into the system branches was
reduced to zero. Based on the presented results, we con-
cluded that DCL 2.0 can have a positive impact on the
architectural conformance of systems.
We have the following ideas for future work: (i) new

visualization types; (ii) architectural specification that
supports fine grained elements (such as methods or
attributes); (iii) architectural rules definition based on
metrics, e.g., a component must have low coupling;
(iv) a catalog of architectural references; and (v) another
experiment comparing DCL 2.0 against other techniques
w.r.t. learning curve effect and applicability difficulty, for
example.

Abbreviations
ADL: Architecture description language; DCL: Dependency constraint
language; DSM: Dependency structure matrix; FSML: Framework-specific
model language; OCL: Object constaint language; SCQL: Source code query
language

Acknowledgements
Our research has been supported by CAPES, FAPEMIG, and CNPq.

Funding
Funding information is not applicable for this paper.

Availability of data andmaterials
The dataset supporting the conclusions of this article belong to a government
branch with sensitive information, we cannot publicly share this data. We ask
that researchers contacts us directly for the data.

Authors’ contributions
HR and RSD wrote this manuscript. HR, RSD, and SB extended the original
work with new content for this manuscript. RT and MTV revised the
manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Computer Science, Federal University of Minas Gerais, Belo
Horizonte, Brazil. 2Department of Computer Science, Federal University of
Lavras, Lavras, Brazil.

Received: 23 January 2017 Accepted: 26 July 2017

References
1. Shaw M, Clements P (2006) The golden age of software architecture. IEEE

Softw 23(2):31–39
2. Kruchten P (2008) What do software architects really do?. J Syst Softw

81(12):2413–2416
3. Knodel J, Lindvall M, Muthig D, Naab M (2006) Static evaluation of

software architectures. In: 10th European Conference on Software
Maintenance and Reengineering (CSMR). IEEE Computer Society,
Washington. pp 294–304

4. Rosik J, Le Gear A, Buckley J, Babar MA, Connolly D (2011) Assessing
architectural drift in commercial software development: a case study.
Softw Pract Experience 41(1):63–86

5. Kruchten P (1995) The 4+1 view model of architecture. IEEE Softw
12(6):42–50

6. Knodel J, Muthig D, Rost D (2008) Constructive architecture compliance
checking - an experiment on support by live feedback. In: 24th
International Conference on Software Maintenance (ICSM). IEEE
Computer Society, Washington. pp 287–296

7. Sangal N, Jordan E, Sinha V, Jackson D (2005) Using dependency models
to manage complex software architecture. In: 20th Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA). ACM, New York. pp 167–176

8. Mitschke R, Eichberg M, Mezini M, Garcia A, Macia I (2013) Modular
specification and checking of structural dependencies. In: 12th
International Conference on Aspect-oriented Software Development
(AOSD). ACM, New York. pp 85–96

9. Maffort C, Valente MT, Anquetil N, Hora A, Bigonha M (2013) Heuristics for
discovering architectural violations. In: 20th Working Conference on
Reverse Engineering(WCRE). IEEEComputer Society, Washington. pp 222–231

10. Passos L, Terra R, Valente MT, Diniz R, Mendonca N (2010) Static
architecture-conformance checking: an illustrative overview. IEEE Softw
27(5):82–89

11. Murphy G, Notkin D, Sullivan K (1995) Software reflexion models: bridging
the gap between source and high-level models. In: 3rd Symposium on
Foundations of Software Engineering (FSE). ACM, New York. pp 18–28

12. Terra R, Valente MT (2009) A dependency constraint language to manage
object-oriented software architectures. Softw Pract Experience
39(12):1073–1094

13. Bessa S, Valente MT, Terra R (2016) Modular specification of architectural
constraints. In: X Simpósio Brasileiro de Componentes, Arquiteturas e
Reutilização de Software (SBCARS). IEEE Computer Society, Washington.
pp 31–40

14. Van Eyck J, Boucké N, Helleboogh A, Holvoet T (2011) Using code analysis
tools for architectural conformance checking. In: 6th International
Workshop on SHAring and Reusing Architectural Knowledge (SHARK).
ACM, New York. pp 53–54

Rocha et al. Journal of the Brazilian Computer Society (2017) 23:12 Page 25 of 25

15. Terra R, Valente MT, Czarnecki K, Bigonha RS (2015) A recommendation
system for repairing violations detected by static architecture
conformance checking. Softw Pract Experience 45(3):315–342

16. Zapalowski V, Nunes I, Nunes DJ (2014) Revealing the relationship
between architectural elements and source code characteristics. In: 22th
International Conference on Program Comprehension (ICPC). ACM, New
York. pp 14–25

17. Koschke R, Simon D (2003) Hierarchical reflexion models. In: 10th Working
Conference on Reverse Engineering (WCRE). IEEE Computer Society,
Washington. pp 36–45

18. Knodel J (2002) Process models for the reconstruction of software
architecture views. PhD thesis, Universität Stuttgart

19. Knodel J, Popescu D (2007) A comparison of static architecture
compliance checking approaches. In: 6th Working IEEE/IFIP Conference
on Software Architecture (WICSA). IEEE Computer Society, Washington.
pp 12–12

20. Knodel J, Muthig D, Haury U, Meier G (2008) Architecture compliance
checking-experiences from successful technology transfer to industry. In:
12th European Conference on Software Maintenance and Reengineering
(CSMR). IEEE Computer Society, Washington. pp 43–52

21. Sullivan KJ, Griswold WG, Cai Y, Hallen B (2001) The structure and value of
modularity in software design. ACM SIGSOFT Softw Eng Notes
26(5):99–108

22. Baldwin CY, Clark KB (1999) Design rules: the power of modularity. MIT
Press, Cambridge

23. De Moor O, Verbaere M, Hajiyev E, Avgustinov P, Ekman T, Ongkingco N,
Sereni D, Tibble J (2007) Keynote address: QL for source code analysis. In:
7th IEEE International Working Conference on Source Code Analysis and
Manipulation (SCAM). IEEE Computer Society, Washington. pp 3–16

24. Brunet J, Guerrero D, Figueiredo J (2009) Design tests: an approach to
programmatically check your code against design rules. In: 31st
International Conference on Software Engineering (ICSE). IEEE Computer
Society, Washington. pp 255–258

25. Antkiewicz M, Czarnecki K (2006) Framework-specific modeling
languages with round-trip engineering. In: 9th International Conference
on Model Driven Engineering Languages and Systems (MoDELS).
Springer-Verlag, Berlin. pp 692–706

26. Maffort C, Valente MT, Terra R, Bigonha M, Anquetil N, Hora A (2016)
Mining architectural violations from version history. Empir Softw Eng
21(3):854–895

27. (2012) OMG: object constraint language (OCL), Version 2.3.1. http://www.
omg.org/spec/OCL/2.3.1/. Accessed 20 May 2017

28. Tibermacine C, Sadou S, Ton That MT, Dony C (2016) Software architecture
constraint reuse-by-composition. J Futur Gener Comput Syst 61(C):37–53

29. Kim JS, Garlan D (2006) Analyzing architectural styles with alloy. In: ISSTA
2006 Workshop on Role of Software Architecture for Testing and Analysis.
ROSATEA ’06. ACM, New York. pp 70–80

30. Monroe RT, Overview A (1998) Capturing software architecture design
expertise with armani. Technical report, Carnegie Mellon University

31. Terra R, Valente MT, Czarnecki K, Bigonha RS (2012) Recommending
refactorings to reverse software architecture erosion. In: 16th European
Conference on Software Maintenance and Reengineering (CSMR). IEEE
Computer Society, Washington. pp 335–340

32. Miranda S, Rodrigues E, Valente MT, Terra R (2016) Architecture
conformance checking in dynamically typed languages. J Object Technol
15(3):1–34

33. Parnas DL (1972) On the criteria to be used in decomposing systems into
modules. Commun ACM 15(12):1053–1058

34. Tonella P, Torchiano M, Du Bois B, Systä T (2007) Empirical studies in
reverse engineering: state of the art and future trends. Empir Softw Eng
12(5):551–571

35. Terra R, Valente MT, Czarnecki K, Bigonha RS (2012) Recommending
refactorings to reverse software architecture erosion. In: 16th European
Conference on Software Maintenance and Reengineering (CSMR). IEEE
Computer Society, Washington. pp 335–340

36. Tvedt RT, Lindvall M, Costa P (2002) A process for software architecture
evaluation using metrics. In: 27th Annual NASA Goddard/IEEE, Software
Engineering Workshop. IEEE Computer Society, Washington. pp 191–196

37. Lee H, Antkiewicz M, Czarnecki K (2008) Towards a generic infrastructure
for framework-specific integrated development environment extensions.

In: 2nd Workshop on Domain-Specific Program Development (DSPD).
pp 1–6

38. Bajwa IS, Bordbar B, Lee MG Ocl constraints generation from natural
language specification. In: 2010 14th IEEE International Enterprise
Distributed Object Computing Conference. IEEE Computer Society,
Washington. pp 204–213

39. Brunet J, Murphy GC, Serey D, Figueiredo J (2015) Five years of software
architecture checking: a case study of Eclipse. IEEE Softw 32(5):30–36

40. Wettel R, Lanza M, Robbes R (2011) Software systems as cities: a controlled
experiment. In: Proceedings of the 33rd International Conference on
Software Engineering. ICSE ’11. ACM, New York. pp 551–560

41. Viana M, Hora A, Valente MT (2017) Codecity for (and by) JavaScript.
Comput Res Repository (CoRR) abs/1705.05476:1–9

42. Lutellier T, Chollak D, Garcia J, Tan L, Rayside D, Medvidović N, Kroeger R
(2015) Comparing software architecture recovery techniques using
accurate dependencies. In: 37th International Conference on Software
Engineering. ICSE ’15. IEEE Press, Piscataway. pp 69–78

43. Merson P (2013) Ultimate architecture enforcement: custom checks
enforced at code-commit time. In: Proceedings of the 2013 Companion
Publication for Conference on Systems, Programming, & Applications:
Software for Humanity. SPLASH ’13. ACM, New York. pp 153–160

http://www.omg.org/spec/OCL/2.3.1/
http://www.omg.org/spec/OCL/2.3.1/

	Abstract
	Background
	Method
	Result
	Conclusion
	Keywords

	Introduction
	Background
	Architectural conformance checking
	Conformance techniques comparison
	Dependency constraint language (DCL)
	Reflection model
	Vespucci
	Dependency structure matrix (DSM)
	Source code query languages (SCQL)
	Design tests
	Framework-specific model language (FSML)
	ArchLint
	Object constraint language (OCL)
	Architecture description language (ADL)
	Critical assessment

	DCL

	Proposed language: DCL 2.0
	Hierarchical and modular specification
	Non-java artifacts
	New violation types
	Unknown component
	Unknown reference
	Incorrect location
	Absence of dominant component

	Architectural reusability
	Architectural coverage
	Architectural visualization

	Tool support: DCL2Check
	Overview
	Architecture
	Features
	Specification editor
	Architectural verification
	Visualization

	Evaluation
	Research questions
	Methodology
	System selection
	Metrics
	Process definition

	Case study execution
	Team preparation
	Source code preparation
	Architectural formalization
	Architectural verification and violation analysis
	Violations removal
	Generate a new system's version
	Monitoring and evolution

	Results
	Discussion
	Threats to validity
	External validity
	Construct validity
	Internal validity
	Conclusion validity

	Related work
	Architectural conformance
	Empirical studies

	Conclusion
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

