
Investigating Code Quality
Tools in the Context of
Software Engineering
Education
DANILO SILVA,1 INGRID NUNES,2,3 RICARDO TERRA4

1Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

2Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

3TU Dortmund, Dortmund, Germany

4Universidade Federal de Lavras, Lavras, Brazil

Received 28 June 2016; accepted 21 December 2016

ABSTRACT: A key issue involved with software engineering education consists of how to guarantee that

adequate software engineering principles are being followed at the code level, thus reinforcing that students

produce high-quality code. Reviewing and grading student projects to verify whether they followed such principles

is a time-consuming task, since this typically involves manual code inspection. In this paper, we exploit code

quality tools and metrics to automatically assess student projects with respect to methods with many

responsibilities (i.e., where the ExtractMethod refactoring should be applied), and evaluate their effectiveness. We

conducted a study using two sets of student projects, developed in two academic semesters. Our results indicate

that, to reduce the effort required to grade projects, two traditional codemetrics, namely method lines of code and

number of statements, perform best, and other metrics can be selected according to the system being

implemented. � 2017 Wiley Periodicals, Inc. Comput Appl Eng Educ; View this article online at wileyonlinelibrary.
com/journal/cae; DOI 10.1002/cae.21793

Keywords: software engineering education; object-oriented programming; code quality tools

INTRODUCTION

Teaching software engineering is a challenging task [1]. It is hard
to motivate students to put techniques that are useful in medium
and large-scale software into practice with small-scale examples,
which is what we typically can handle in limited teaching time. In
general, practicing techniques is an adequate approach for
supporting the learning process. When they are adopted, it is
usually in the form of projects to be developed by students. Such
projects involve the elaboration of project instructions, and there
are three main concerns associated with this task. First, we must
identify adequate problems and scenarios, which demonstrate the

need for software engineering approaches. Second, we must
somehow guarantee that projects are developed using the taught
techniques. Third, we must provide adequate feedback for
students. As software engineering exercises often do not have a
single correct answer, teachers typically perform manual inspec-
tion on produced models or source code to verify problems and
give an appropriate grade to the work done.

To address these concerns, recently, software engineering
courses tend to involve mainly practical activities [2], including
games [3,4]. For instance, students may be required to develop
software using up-to-date tools, such as Git for version control and
automated unit tests using jUnit. Agile approaches, for example
Scrum and Kanban, are also taught in this way [3]. Nevertheless,
these approaches to teach software engineering tend to reinforce
the need for soft-skills, for example, [5], and the dynamics in
which software is developed, lacking the reinforcement of code
quality excellence, with limited work on this topic [4]. Our focus in

Correspondence to I. Nunes (ingridnunes@inf.ufrgs.br).

© 2017 Wiley Periodicals, Inc.

1

http://www.wileyonlinelibrary.com/journal/cae
http://www.wileyonlinelibrary.com/journal/cae

this paper is this unexplored issue, targeting the problem of
grading student projects and providing adequate feedback at the
code level.

Over the past years, the software engineering research
community has made significant effort to use software metrics in a
systematic way or to develop approaches and tools to identify
points in the source code where refactoring is potentially needed to
improve code quality [6–9]. Examples are tools to analyse code
quality, identify code smells [10,11] or check architectural
conformance [12]. Not only such approaches and tools have
been proposed, but have also been evaluated in the context of
medium and large software projects. The targeted end-users of
such tools are professional developers, so that they can be assisted
in the task of design and coding to produce high quality software.

Software engineering students often produce design and
code with compromised quality because of the lack of experience.
They often learn abstract principles, for example, separation of
concerns and modularity, and it is not trivial for them to put such
principles into practice. It is thus a responsibility of teachers to
analyse the design and code of students to point out problems in
their design and code, and how to solve them. However, this is a
challenge because checking many details of software projects of
many students (or groups of students) is a time-consuming,
repetitive task.

Therefore, given the code quality tools we have available,
our goal is to investigate whether they can help teachers identify
design problems in code developed by software engineering
students and support them in the grading process. Although there
is evidence that existing tools to support refactoring are effective,
they were evaluated in restricted scenarios, and it is not guaranteed
that they are effective in (very) small-scale software projects.
Moreover, the coding style of an experienced developer is
potentially different from that of a student that is learning software
engineering principles for the first time. Consequently, this calls
for studies that evaluate the effectiveness of code quality tools
using software projects produced by students, so that they can be
used by teachers to review and grade projects.

In this context, we present in this paper a study that evaluates
the effectiveness of code quality tools to aid teachers of software
engineering courses, in which principles such as modularity,
information hiding, and polymorphism are taught. We focused
specifically on the Java programming language, which is one of
the programming languages to teach object-orientation [13] and is
the number one programming language according to the TIOBE
index.1 Given that source code can present many problems, we
investigate in particular the problem of a method having many
responsibilities, and thus the Extract Method refactoring [14]
should be applied. In Figure 1, we present a code sample in which
Extract Method has been used. In this example, a new method
named checkInterfaceModifiers was extracted to encapsulate part
of the logic from the visitToken method, improving the separation
of concerns and the readability of the original method.We selected
this kind of code issue, because this is a recurrent problem we
observe while teaching software engineering: students, who learn
procedural programming before object-orientation, tend to create
classes with methods that seem like procedures that implement
required software functionality instead of splitting responsibility
—actually this issue also occurs in the industry and thus it is

important to ensure that students appropriately learn good
programming practices.

Considering our target refactoring, we investigated two
alternatives to identify it. First, we selected two tools that explicitly
identify ExtractMethod opportunities, namely JDeodorant [11] and
JExtract [10]. Second, we used an Eclipse plug-in to extract
different code metrics. Although metrics do not explicitly identify
our target refactoring, they are used to analyse code quality and thus
can be used as evidence of problems in the code.

In short, our study consists of the following steps. First, an
assignment was given to students, in which they had to design and
implement a small software project according to a specification.
Then, the teacher pointed out methods that have many
responsibilities and should be split into two or more methods.
We next collected data from projects with the selected tools and
metrics, and matched them against the teacher output. Our results
indicate that two traditional metrics perform best to support the
grading process, and other metrics can be selected according to the
system being implemented.

ANALYSED CODE QUALITY TOOLS

This section introduces the code quality tools we selected, which
can potentially aid teachers to identify problems in the design and
code of software engineering students. JDeodorant and JExtract
sections present two tools that identify Extract Method refactoring
opportunities, and Eclipse Metrics section presents a tool that
calculates consolidated metrics, which we use for the same
purpose. There are other tools that support refactoring, even IDEs
such as Eclipse and IntelliJ. However, they were not selected
because they are used to modify the code once refactoring
opportunities are identified. Therefore, they do not support the
identification process itself, which is the goal of our selected tools.

JDeodorant

JDeodorant suggests refactorings on Java systems, aiming to solve
commoncode smells, such as Feature Envy,LongMethod, andGod
Class [11,15,16]. Specifically, JDeodorant is able to suggest Extract
Method refactoring opportunities in a target system and also apply
them automatically. JDeodorant employs backward slicing to
identify the slice of code that may affect a variable at a given point.
This technique relies on the Program Dependence Graph (PDG)—
nodes represent statements and edges represent dependencies—to
represent the method under analysis. Therefore, backward slicing
consists of selecting statements connected in the PDG, starting with
a set of seeds. While traditional slicing algorithms consider the
entire method body as a region where the slice may expand,
JDeodorant adopts the concept of block-based slicing [17].

JExtract

JExtract identifies and ranks Extract Method refactoring oppor-
tunities, which are directly automated by IDE-based refactoring
tools, based on the notion of similarity of structural dependen-
cies [10]. Similarly to JDeodorant, JExtract’s output is also Extract
Method refactoring recommendations, which may be useful for
identifying methods with many responsibilities. Additionally, the
refactoring opportunities are ranked by a relevance metric.

Basically, the approach underlying JExtract consists of two
main phases: candidate generation and ranking phases. In the1http://www.tiobe.com/tiobe-index/

2 SILVA ET AL.

http://www.tiobe.com/tiobe-index/

candidates generation phase, it generates an exhaustive list of
Extract Method candidates, that is, all possible series of sequential
statements that follow a linear flow in the Control Flow Graph
(CFG). In the ranking phase, JExtract shows only the most relevant
candidates as Extract Method recommendations. By the exhaustive
nature of the candidate generation algorithm, there are usually
dozens of candidates for each method. Since users are usually
interested in receiving just a few good recommendations, JExtract
filters the list of candidates by setting the maximum recommen-
dations per method and minimum score value thresholds.

Eclipse Metrics

Among the many existing metrics [18–21], this study contem-
plates the metrics provided by the Eclipse Metrics2 tool. It is a
plug-in for the Eclipse IDE that calculates several consolidated
metrics for Java projects during build cycles and warns developers
in case of range violations.

The plug-in was selected given that it is integrated to a
development environment frequently adopted in academic
environment and, as said, calculates many widely used metrics.
Selected metrics can be directly associated with code
problems, because they are related either to code complexity
or size. For example, high number of statements in methods
may indicate a long method that has many responsibilities (low
cohesion), and high McCabe cyclomatic complexity may
indicate that the code legibility is poor. In this study, we
investigated all method-level metrics provided by the tool,
which are detailed as follows.

� Number of locals (NumLocals): it refers to the total number
of local variables declared in the scope of method. Formal
parameters are not accounted for.

� MethodLines of Code (LOCm): it refers to the total number
of lines of code of the method, including signature, empty,
and comment lines.

� Feature Envy: it refers to the maximum difference of
features the method uses from the given class by the ones the
method uses from the current class. Stated differently,
FeatureEnvy =maxc 6¼ cm (|Fc |�|Fcm|), wherem is the target

method, Fc is the set of featuresm uses from a type c, and cm
is the class m is defined.

� Number of levels (NumLevels): it refers to the maximum
number of levels of nesting in a method.

� Number of parameters (NumParams): it refers to the number
of formal parameters of a method.

� Number of statements (NumStatements): it refers to the total
number of statements of the method, which includes if,
switch, for, do, while, explicit method/constructor calls,
assignments, return, throw, try, catch, finally, break, and
continue.

� McCabe cyclomatic complexity: it refers to the number of
code segments with no branches in a method and hence can
be used to determine the number of tests that are required to
obtain complete coverage.

STUDY SETTINGS

In this section, we detail the study performed to evaluate the
effectiveness of the previously described tools andmetrics to identify
problems in students’ code, and thus be helpful to grade them.
Although tools have been previously evaluated [10,11], projects used
in experiments have not the size of student projects and were
developed by experienced developers. Coding style evolves based on
developer maturity and therefore previous results cannot be
generalised to our context. We next present the goal of our study
and the associated research question, and then describe the study
procedure. Participants and developed projects are also presented.

Goal and Research Question

Inspecting software projects developed by students to assess
whether they followed object-oriented principles after learning
them is a time consuming task. In order to provide support to this
task, our goal in this study is to evaluate how existing code quality
tools that focus on supporting software development in the
industry perform when target systems are very small and are
developed by students that have just learned object-orientation.
This goal is presented in Table 1, according to the GQM
template [22]. Based on our goal, we derive a single research
question: what is the effectiveness of code quality tools to identify
situations in which the Extract Method refactoring should be
applied?

Figure 1 Extract Method Example.

2http://sourceforge.net/pro jects/eclipse-metrics, v. 3.14.1

CODE TOOLS IN SOFTWARE ENGINEERING EDUCATION 3

http://sourceforge.net/pro jects/eclipse-metrics, v. 3.14.1

Procedure

Given that we explained our goal and research question, we now
detail the steps we conduced, which comprise our study procedure.

Student Assignment. In an introductory software engineering
course, in which students learn object-oriented programming, they
were assigned to develop in groups a software system following an
informal specification of the functionalities to be implemented.
Students had to submit the assignment in a specified deadline, and
received a grade for their work. This guarantees that they invested
time and effort in this work.

Grading. An experienced teacher, responsible for the course,
manually graded all student projects, that is, without the support of
any tool. This involved a manual inspection of the code to point
out problems, including methods that had more than one
responsibility and part(s) of it that should be moved to other
methods. Classes and methods were individually analysed.

Data Collection. After completing the grading step, we analysed
the source code of all student projects with the three selected tools
described in Jdeodorant section. As previously discussed, both
JDeodorant and JExtract report Extract Method refactoring
recommendations as their output, while Eclipse Metrics reports
metric values computed for each method of the studied systems.
Thus, to be able to compare them, we mapped the output of
JDeodorant and JExtract to a metric that indicates how likely each
method may have design problems.

For JDeodorant, we collected the number of recommenda-
tions given for a method as an indicator of potential design
problems. The assumption behind this decision is that a method
likely needs decomposition when there are Extract Method
recommendations for it. We could not apply the same reasoning to
JExtract because its recommendation heuristic relies on a
maximum number of recommendations per method as input.
However, JExtract computes a score for each recommendation,
indicating its relevance. Thus, we configured the tool to suggest at
the maximum one recommendation per method and collected the
score of the best recommendation for each method as an indicator
of potential design problems. We assigned zero as the score for
methods with no recommendations.

Lastly, we also analysed the code using Eclipse Metrics. We
computed all method-level metrics available in this tool, for all
methods in all projects. In this case, there is no need for translating
the output as before, because it consists of the quality metrics
discussed in Eclipse Metrics section. By the end of the data
collection step, we compiled them into a table with a total of 2,950
methods and their corresponding metrics.

Result Comparison and Analysis. The data collected in the
previous step do not explicitly indicate whether methods should be
refactored, but instead express, as a set of metrics, to what extent
each method has more than one responsibility and, therefore, must
be refactored. Consequently, to identify which methods should be
refactored, a threshold must be set, either using a default value or
choose one based on experimentation. In our case, we explore
results obtained with a wide range of thresholds. Methods
associated with a metric that has a value above the threshold must
be refactored. That is the reason why we also analysed other code
metrics, such as method lines of code and McCabe cyclomatic
complexity—similar reasoning can be applied to them. Perhaps, a
typical simple code metric can be useful in our scenario.

By specifying a threshold, we split methods into two groups
(those above and below the threshold), and one of them
corresponds to the set of methods that should be refactored
according to the different tools and associated metrics. We also
have a ground truth that is the evaluation made by the teacher, so
we are able to calculate two widely used metrics to evaluate the
performance of the tools: precision and recall. This allows us to
discuss how many methods can be ignored during the grading
process, without compromising recall. In addition, we also analyse
the distribution of the values obtained for each metric,
understanding their behaviour for methods that should be
refactored and those that should not.

This completes the description of our study procedure. We
next describe the participants involved in the study and the
software projects students had to develop.

Participants

The first two steps of the procedure described above, that is,
student assignment and marking, were performed in two different
academic semesters, involving two different classes of the same
course, which is part of a Computer Science undergraduate
program. In this course, students learn for the first time software
engineering concepts, focusing on the code level. Topics taught in
this course include modularity, reuse, code conventions, and unit
tests. In addition, object-orientation is introduced in this course,
using Java as programming language. Before this course, students
learn procedural programming in C.

Two sets of projects developed in the two academic semesters
were evaluated. In the first semester of 2013 (2013/1), projects were
developed by 12 groups of students, each composed of 3 members,
except one that had 2 members. In the second semester of 2014
(2014/2), students formed 7 groups of 4 students each. The same
teacher was responsible for these two classes, and graded all
projects. This teacher has industrial experience in software
development, and had previously taught software engineering
courses. Note that participants had no knowledge about this study
while developing projects, to guarantee that there was no change in
their usual programming style (permission to use their code was
obtained afterwards).

Software Projects

Here we describe the two software systems that students were
requested to develop in each academic semester to practice the
learned object-oriented concepts.

Bank Management System. In 2013/1, students were requested
to implement a software system typically used to teach

Table 1 Goal Definition

Element Our experiment goal

Motivation To understand the benefits of using code quality tools in the
context of Software Engineering Education,

Purpose Evaluate
Object Their effectiveness to identify programming issues in

students’ code
Perspective From a perspective of the researcher
Scope In the context of undergraduate student projects in a

Computer Science course.

4 SILVA ET AL.

object-oriented concepts, namely the Bank Management System.
Students were instructed to develop a desktop system with two
different interfaces: one for bank employees in branches and one
for customers in ATMs. The system should simulate a database, so
the system should start up with provided initial data, and data do
not need to be persisted—the goal was to simplify student’s effort,
as persistence was not a concern of the course. Both interfaces
should provide access to typical bank transactions, such as printing
account balance, and make deposits and withdrawals. The
transactions should be exactly the same through both interfaces,
except that bank employees must inform the bank account in the
system, while, in ATMs, this information is obtained when
customers identify themselves in the system with an account
number and password.

The key idea underlying this assignment is to make students
model classes with their attributes and behaviour, such as an
account class, and make system functionalities extensible—
transactions should be implemented once as business operations
independent from the user interface that invoke them. In addition,
the user interface (text-based or graphic) should not be a god class,
for example, implement a loop with a switch-case statement, each
case implementing the logics of a specific functionality. This is
what they were used to do when programming in procedural
languages.

In 2014/2, students received a different assignment because
the teacher responsible for the course noticed that students were
not able to successfully implement the Bank Management System
following good object-oriented and software engineering princi-
ples. They often created data classes and classes that implement
the transactions, which caused the system to resemble a procedural
system. Even though they seemed to understand modularity
principles in theory, in practice, they tend to implement systems in
the way they were used to, that is, with a procedural paradigm. In
the next edition, the teacher followed an alternative approach. In
the first practical assignment, students received an implementation
of the Bank Management System made by an experienced
developer and they were requested to evolve it by adding and
modifying functionalities. After this experience, they were
requested to develop a conference support system, described next.

Simple Conference Support System. The Simple Conference
Support System provides basic functionality to support the
management of conferences. As before, it is assumed that the
system has a runtime database with existing data, that is, students
did not need to develop functionality to put these data in the
system. Students were requested to develop three main function-
alities, all performed by an administrator. First, the system should
be able to automatically allocate papers to be reviewed by
committee members based on topics and conflicts—a simple
algorithm was described to students. Second, a score, associated
with a particular reviewer, can be given to a paper. Third, based on
provided scores, the system should inform accepted and rejected
papers, considering a given threshold.

In this project, students again must be able to appropriately
design and implement a modular user interface. However, given
that they had previously evolved a system that served as a concrete
example of how it can be implemented (the example used a
command pattern structure), it was assumed that they would
follow the example. The key task in this system was then the
design and implementation of the allocation algorithm, which
should not be implemented in a single method, but split into
different responsibilities assigned to different classes.

Nevertheless, many groups of students did not successfully
complete the task, using their old programming habits.

RESULTS AND ANALYSIS

Now we detail the results obtained after executing the steps of our
procedure.We first present, in Table 2, the overall statistics of each
studied project grouped by academic semester, detailing their
number of packages, number of classes, number of methods, and
total lines of code (LOC). Additionally, the last column (Issues)
reports the number of methods to which the Extract Method
refactoring should be applied, as marked by the teacher while
reviewing and grading the student projects.

We can observe that the average number of lines of code is
higher in the 2013/1 group (1,624.75) than that in the 2014/2 group
(1,395.14). One may argue that this is due to the system size,
considering that the Bank Management System seems to have
more functionalities than the Simple Conference Support System.
However, the average number of classes is higher in the 2014/2
group, causing the average number of lines of code per class to be
lower—in the 2013/1 group the average of each project number of
lines of code per class is 84.6 versus 58.1 in the 2014/2 group. In
order to verify that this difference is statistically significant, we
applied the one-tailed variant of theMann-Whitney U test with the
following null hypothesis: “the average number of lines of
code per class in the 2013/1 group is less than or equal to that in the
2014/2 group.” The null hypothesis was rejected with significance
at 95% confidence level (P-value< 0.05), and thus we can
conclude that the 2013/1 group has higher number of lines of code
per class than the 2014/2 group. This analysis is relevant to
understand the differences among metric values between the
two groups. We believe that this significant difference may be due
to the extra effort spent in the 2014/2 semester to reinforce
modularity principles with students prior to the project

Table 2 Project Characteristics

Year Project Packages Classes Methods LOC Issues

2013/1 1 5 27 134 1,432 4
2 17 44 405 3,161 1
3 2 26 158 1,658 5
4 5 14 83 894 6
5 2 16 121 1,636 7
6 6 28 154 1,377 2
7 1 11 94 1,081 11
8 4 19 112 1,606 1
9 4 16 181 1,636 1
10 3 18 199 2,524 12
11 2 14 105 1,014 3
12 2 13 71 1,478 14

Average 4.42 20.50 151.42 1,624.75 5.58
St. Dev. 4.25 9.35 88.87 639.12 4.56

2014/2 1 6 20 94 1,237 4
2 6 27 125 929 1
3 9 40 214 1,743 6
4 8 24 177 1,444 0
5 10 31 173 1,650 4
6 7 26 177 1,708 7
7 1 12 86 1,055 5

Average 6.71 25.71 149.43 1,395.14 3.86
St. Dev. 2.93 8.73 48.20 327.67 2.54

CODE TOOLS IN SOFTWARE ENGINEERING EDUCATION 5

development (see Simple Conference Support System section).
This is an indication that giving an example of modularised code
before letting students develop a system from scratch seems to be a
good approach.

We next present further data about our study, split into two
parts. First, we discuss precision and recall in Precision and Recall
section, and then present and analyse the distributions of themetric
values in Distribution of Metric Values section.

Precision and Recall

As said in Result Comparison and Analysis section, the selected
tools andmetrics solely provide values, and do not point out which
methods should be indeed refactored. This can be made by setting
a threshold in themetrics to indicate whether the method should be
refactored. Using this reasoning, we present precision vs. recall
curves for each computed metric in Figure 2a,c,e. These plots
should be interpreted as follows. Let R be the set of methods that
should be refactored (as marked by the teacher) andM be the set of
methods with a metric that is above a certain threshold t. A point in
the plot is a tuple (Recall, Precision), such that Precision¼ |M \
R|/|R|, and Recall¼ |M \ R|/|M|.

By moving the value of the threshold t, we plot a precision
versus recall curve for ametric. Each line in the plot represents one
of the studied metrics. Usually, precision versus recall curves start
at high precision (y-axis) and falls down when we move right in
the x-axis. Ideally, a perfect metric would yield a straight line at
the 1.0 precision. In Figure 2a, we present the overall comparison
between all studied metrics.

We can observe that the NumStatements and LOCm curves
are very similar and both dominate all other curves. Therefore,
simple size metrics showed to be better indicators of methods that
need refactoring than all other metrics in this experiment setup.
The behaviour of the other metrics varies depending on the desired
recall level. For example, if we focus on the 0.4 recall mark,
JDeodorant, and McCabe are the third and fourth most precise
indicators respectively. On the other hand, if we focus on the 0.8
recall mark, McCabe, and JExtract assume the third and fourth
places.

In Figure 2c,e we present the same comparison, but with
different plots for the 2013/1 and 2014/2 groups, aiming to
investigate whether the different characteristics between the
groups of projects influence the precision of each approach. By
comparing both plots, we observe that NumStatements and LOCm
are still dominant. Specifically in 2014/2, they completely
dominate all other curves. However, other curves are much closer
to both of them in the 2013/1 group. In fact, JDeodorant surpasses
them at 0.5 recall. Another interesting observation is that
JDeodorant and NumLevels achieve significantly better results
in 2013/1, while JExtract achieves better results in 2014/2. We
believe that this may be due to the implemented system itself. In
the Bank Management System, many students implemented the
user interface as a god class, and different variables were used in
different parts of a long method, while in the Simple Conference
Management System the core issue was the algorithm to distribute
the papers, which has separate steps. The latter is a case that the
JExtract captures well, so in this case it tends to perform better.
Therefore, NumStatements and LOCm can be used as a rule-of-
thumb, and other metrics can be selected according to the selected
teaching strategies. Yet, this requires the teacher to know in
advance the best metric according to the characteristics of the
system being implemented by students.

To complement the precision vs. recall analysis, we also
present recall vs. rank position plots in Figure 2b,d,f. These plots
present what proportion of a ranked list of all methods one should
inspect to achieve a certain recall level, for all studied metrics. In
Figure 2b we present the overall recall vs. rank position
comparison. We can observe that, when ranking by
NumStatements or LOCm, more than 80% of the methods with
problems are in the top 10% of the ranked list. Moreover, both
NumStatements and LOCm achieve 1.0 recall at the 40% mark.

In Figure 2d,f we also present the recall vs. rank position
comparison, but with different plots for the 2013/1 and 2014/2
groups. The differences between these plots are consistent with
those observed in the precision vs. recall analysis. NumStatements
and LOCm are the best metrics, but this is accentuated in 2014/2.
Moreover, JDeodorant and NumLevels achieve significantly
better results in 2013/1, while JExtract achieves better results in
2014/2.

Distribution of Metric Values

After analysing precision and recall, we investigated the
distribution of the values of each metric selected in our study in
order to have a better understanding of the metrics and possible
thresholds to be set. Specifically, we investigated whether the
distribution of values is different when we divide our set in two
partitions: (1) the group of methods with no issues pointed out by
the teacher, which we denote by ok, and (2) the group of methods
with issues marked by the teacher, which we denote by refactor.
To compare the distribution of values of these two groups, Figure
3a–i show violin plots for each studied metric. Violin plots show
themedian and the distribution of data in quartiles, similarly to box
plots, along with a probability density estimation of the data at
different values. As a general sense, we expect that metrics such as
lines of code, McCabe’s cyclomatic complexity, and so on, tend to
be higher in the methods from the refactor group, that is, a method
that should be refactored is likely to be longer and more complex
than one that should not. For example, in Figure 3b we can observe
that the median (represented by the white dot) is close to 50 in the
refactor group, which means that about half of the methods in this
group have 50 lines of code or more. On the other hand, themedian
is about 4 lines of code in the ok group. We can visually confirm
that the median of the refactor group is higher for all metrics in
Figure 3a,b,d–f,h,i. The only exceptions are Figure 3c,g which
correspond to NumLocals and NumParams. The distribution of
values for these metrics is slightly different between groups, but
the median is the same.

We also applied the one-tailed variant of the Mann-
Whitney U test to find if the difference in the expected value of
each metric is statistically significant between groups. In this case,
we tested for the following null hypothesis: “the measures in the
refactor group are less than or equal to the measures in the ok
group.” The null hypothesis was rejected with significance at 95%
confidence level (P-value< 0.05) for all metrics, and thus we can
conclude that the expected value for all metrics is really higher in
the refactor group. This result indicates the using metrics, either
traditional or derived from the JDeodorant or JExtract tools, makes
sense, because otherwise, that is, if there was no difference
between the metrics of these two groups, they could not be used to
discriminate methods with issues.

Although the distribution of values is different, we can
observe that there is always an overlap between the distributions
of ok and refactor groups. For example, if we inspect Figure 3d

6 SILVA ET AL.

we can note that it is impossible to set a threshold for the LOCm
metric such that all methods from the refactor group are
concentrated above it and all methods from the ok group are
concentrated below it. This is unsurprising, as we should not
expect a single metric to perfectly capture the judgment criteria
of a human expert.

DISCUSSION

Based on the results obtained in our study, we now proceed to a
discussion regarding the use of code quality tools in software
engineering education. First, we discuss the effectiveness of the
tools and metrics investigated in this study (Effectiveness of

Figure 2 Precision and Recall Analysis: (a) Precision vs. Recall, (b) Recall vs. Rank Position, (c) Precision vs. Recall
(2013/1), (d) Recall vs. Rank Position (2013/1), (e) Precision vs. Recall (2014/2), (f) Recall vs. Rank Position (2014/2).

CODE TOOLS IN SOFTWARE ENGINEERING EDUCATION 7

Tools in Small-Scale Student Projects section) and, second,
analyse their effectiveness with respect to different thresholds
(Threshold Identification for Tools section). Third, despite our
study focuses on the use of code quality tools to assist the

grading process, we also discuss how students can use such tools
(Providing Refactoring Tools for Students section). Finally, we
point out threats to the validity of our study (Threats to Validity
section).

Figure 3 Violin plots comparing the distribution of values between ok and refactor groups: (a) JDeodorant, (b) JExtract,
(c) NumLocal, (d) LOCm, (e) FeatureEnvy, (f) NumLevels, (g) NumParams, (h) NumStatements, (i) McCabe.

8 SILVA ET AL.

Effectiveness of Tools in Small-Scale Student Projects

Our study evaluated the effectiveness of existing tools and metrics
to identify methods that should be refactored in student projects.
This means that we are evaluating them not only in the context of
small-scale projects, but also with source code written by
inexperienced programmers. Moreover, such programmers may
have strong procedural programming habits, because they learned
this paradigm before learning object-orientation. This kind of
evaluation is typically not performed in the research community,
as results would not be generalizable to real-world applications,
which is of interest of researchers.

As introduced, JDeodorant provides recommendations for
different kinds of refactorings. In previous work, Tsantalis and
Chatzigeorgiou [11] evaluated its effectiveness to identify Extract
Method opportunities with existing software projects—actually
parts of systems, because of their size. This evaluation showed that
JDeodorant “demonstrated a precision of 51% and a recall of 69%
on average.” In contrast, our results indicate worse performance
considering our investigated scenario, ranging from 25% of
precision and 56% of recall to 100% of precision and 3% of recall,
as discussed in Precision and Recall section—and this is valid for
both groups of projects (2013/1 and 2014/2). Nevertheless, the
kind of systems we are investigating is different; consequently,
results are expected to be different.

JExtract was previously evaluated with open-source and
commercial systems [10]. In this previous evaluation, a
recommendation was considered adequate not only if experts
certified that the method with a recommendation needs refactor-
ing, but also the recommended statements are those that should be
extracted. Therefore, it is not possible to directly compare our
results to previous evaluations.

We believe that the difference between results obtained with
large- and small-scale projects is due mainly to the programming
style of the students that participated of the study, which are
inexperienced. One of their programming habits, which in fact
they were requested to abandon, is to declare local variables in the
beginning of the method. This is something that experienced
programmers typically do not do and hence is a scenario
unaddressed by the rationale underlying code quality tools, or
the adopted heuristics. Consequently, precision and recall are
expected to be different.

Threshold Identification for Tools

Most code quality tools that identify potential problems in the code
rely on ametric, which indicates the degree of a particular property
of the code, for example, cohesion or coupling. Therefore, in order
to give a binary answer—whether there is a problem in the code or
not—thresholds must be specified. This is the case for the metrics
adopted by these tools, or traditional metrics, such as those
investigated in this paper such as lines of code or number of
statements. As a consequence, selecting an appropriate threshold
is crucial, and in general this means specifying the desired
compromise between precision and recall. This issue is clearly
seen in Figure 2a,c,e which show the higher the recall, the lower
the precision.

Based on our study, we do not recommend any specific
threshold for any of the investigated tools and metrics because this
depends on the goal of the lecturer that is using them to evaluate
student projects. On the one hand, if the goal is to point out
representative problems, but not all of them, a high threshold may

be selected. In this case, it is very likely that the recommended
methods indeed must be refactored, and the teacher needs to
evaluate a very limited number of methods. However, not all
problems in the code will be reported. On the other hand, if the
goal is to indicate all problems in the code with respect to the
Extract Method refactoring, a low threshold must be set. In this
case, many of the recommended methods will be false positives;
however, none or few methods that must be refactored will remain
unreported. Even though with a low threshold many methods must
be inspected, the adopted tools and metrics can still reduce the
number of methods to be analysed, thus reducing the effort to
evaluate student projects.

Note that it is very unlikely, or even impossible, that we are
able to achieve 100% of both precision and recall solely with
metrics. As can be seen in the violin plots in Figure 2, there is no
threshold that could separate the ok and refactor groups, for all
metrics. Perhaps, heuristics for our specific scenario can be
proposed, as suggested above, or different metrics can be
considered to make a recommendation.

Providing Refactoring Tools for Students

The motivation of our work is to reduce the effort of teachers
while marking and grading student projects. This task is time-
consuming since providing adequate feedback for students
typically requires manual inspection of the code. As discussed
earlier, metrics and tools can be indeed leveraged to support this.
Nevertheless, not only such tools can be used by teachers, but
can also be exploited in the teaching process and be adopted by
the students themselves.

The idea is that students may use code quality tools to
inspect their code and evaluate themselves their quality,
understanding scenarios in which they did not properly follow
object-oriented principles. A simple approach is to ask them to
collect metrics from their code and analyse them. However,
students that just learned object-orientation are not experienced
enough to do so. Therefore, pointing out where the problems are
is important.

As discussed above, the goal of using a tool or a metric to
identify issues in the code influences the choice for a threshold. In
the case of inexperienced students, they may not know, based on
the identification of a problem in their code, whether it is a true
positive or a false positive. Therefore, in this case, it is better to
prioritise precision, instead of recall, by setting a high threshold.

The use of code quality tools can be used in a 2-step project
to be assigned to students, as illustrated in Figure 4. The first
step consists of the development of a system that implements a
given specification and, as result, students produce code. This
step is similar to what was performed in the projects used in our
study. The student projects will be put into a repository, which
will be used by code quality tools. Then, in the second step,
students receive feedback from these code quality tools, and
should refactor their projects and also write a report of the
changes made, and why they were needed. A variation of this
step is to exchange projects among students, so that students that
did not implement it assess the quality of a project. The
advantage of building a repository is that all projects in it
implement the same specification, so the metrics of all projects
should have a similar behaviour.

This idea of introducing the use of code quality tools to help
students learn object-oriented principles emerged from our study
and we plan to adopt them in future classes.

CODE TOOLS IN SOFTWARE ENGINEERING EDUCATION 9

Note that we do not suggest the use of open-source datasets
to collect metrics, or identify thresholds as discussed above,
because student projects are small-scale projects and may not
follow industrial patterns. Because of the small size of such
projects, metrics are potentially sensitive to small variations.
Consequently, using open-source repositories may be inade-
quate in our scenario.

Threats to Validity

A threat to the validity of our study is that a single individual
provided our ground truth. And this is a potential threat because
humans may not identify all refactoring opportunities when
analysing the code. This has been mentioned by Tsantalis and
Chatzigeorgiou [11], based on their empirical evaluation of
JDeodorant. We emphasise, however, that our target systems are
small and implement simple specifications. Therefore, it is trivial
to analyse such systems in comparison with real-world systems. In
addition, the teacher involved in this study, as said before, has both
academic and industrial experience, and carefully analysed all
projects. In fact, this teacher is the second author of this paper, but
she evaluated the projects without knowledge about this study; as a
consequence, there was no bias towards any of the tools ormetrics.
The second author of this paper learned about the other authors’
work after 2014/2 and, based on a discussion among them, the idea
of this study emerged. Therefore, the data analysed in this work
was built before our study was conceived, and appropriate actions
were taken to conduct it.

An external threat to the validity of this study is the
number of projects. Note that our analysis was always within a
group of projects—developed by a single class of a semester—
therefore, regardless of how many classes we assess, the
number of projects investigated together would be always
small, considering the typical size of classes in the investigated
university. However, analysing more classes to which the same
project was assigned would provide further evidence to
support our conclusions. The two classes that we analysed
not only implemented different systems, but also received
different prior assignments to be done. Despite they had these
differences, we managed to identify similarity in the results:
NumStatements and LOCm were the best metrics in the two
groups, and had similar behaviour. Therefore, although we did
not have two instances of similar classes, different classes
allowed us to investigate similarity in their results. In addition,
changes from one semester to another is always expected, to

prevent students of copying projects made by students from
previous semesters.

RELATED WORK

To the best of our knowledge, this is the first work that
empirically investigates code quality tools in the context of
software engineering education. However, other researchers
have proposed tool-supported teaching and development
processes, and investigated metric thresholds that are related
to our study.

Software Engineering Education

Some studies focus on the automatic assessment of program-
ming assignments with respect to the expected result
(behaviour), not on the code quality excellence as this paper
is centred on. S�anchez et al. [23] report an experience in
automatically evaluating practices using surveys in Moodle for
self-learning in engineering. The automatic evaluation tool,
which provides an immediate feedback to the student,
improved the practice exam marks and decreased the workload
for the teachers. Similarly, Pape et al. [24] propose an
approach to automatically evaluate and grade software
engineering exercises also in Moodle. The tool, named
STAGE, measures the test coverage based on test cases
defined by the students; essentially, the higher the test
coverage, the higher the grade. Empirical evidences show
that (1) most of 250 students gave a positive or neutral
feedback and (2) the automation of the assessment frees up
teaching resources to improve the teaching in other ways. In
another research line, Cervantes et al. [4] describe their
experiences with the development of a game that aids in
teaching architecture design. In contrast to traditional (and
usually time-consuming) exercises, the consequences of
design decisions within the game are immediately tangible,
that is, the participants get rapid feedback in terms of a score.
Since this is not usual in design assignments, the authors claim
a great pedagogical aid. Last but not least, Ihantola et al. [25]
conducted a systematic literature review of the automatic
assessment tools for programming exercises. The authors
discuss the major features the tools support and the different
approaches they are using both from the pedagogical and the
technical point of view. The authors conclude that new
proprietary systems are ceaselessly developed and hence claim
that open sourcing the existing tools could make them much
more willingly adopted.

Tool-Supported Teaching Processes

Evans [26] proposed an approach to teach software engineering
that exploits lightweight analysis tools. Similarly to our study, the
author focuses on tools that offer clear and immediate benefits
with minimal costs. On the other hand, his approach provides
pedagogical benefit on information hiding, invariants, memory
management, and security. More specifically, Evans’ approach
relies on LCLint to exploit source code annotations, ESC/Java to
incorporate theorem provers, and Daikon to determine likely
program invariants.

Figure 4 Tool-supported Project Development.

10 SILVA ET AL.

Tool-Supported Development Processes

There are approaches that promote the use of specific tools in the
development processes. For instance, Fox and Patterson propose
[2] an approach that establishes Ruby On Rails for software
architecture, RSPec for test-first development and unit tests,
Cucumber for behaviour-driven design and integration tests,
Pivotal Tracker for agile iteration-based project management, etc.
In contrast, these approaches focus on supporting the development
process, not on increasing the code and design quality.

Identification of Thresholds

Although the large number of softwaremetrics, the effective use of
software metrics is hindered by the lack of meaningful thresholds.
In this context, there are studies that derive thresholds from
programming experience [27], from metric analysis [19], by
stating methodologies for characterizing metric distributions
[18,28], or by proposing methods to derive thresholds [29]. In
contrast, all aforementioned studies have investigated systems
developed by experienced programmers, which is potentially
different from systems developed by students that are learning
software engineering principles for the first time.

CONCLUSION

There is a gap between the theoretical understanding and the practical
application of several software engineering principles, such as
separation of concerns andmodularity. This study was centred on the
problem of a method having many responsibilities, which is a
recurrent problem we observed while teaching software engineering
due to students’ procedural programming background. Our goal,
therefore, consisted of verifying whether code quality tools can help
teachers identify problems in the design and code of software
engineering students to support them in the grading process.

To address this shortcoming, we exploited two refactoring
recommendation systems, namely JDeodorant and JExtract, and
seven metrics, namely NumLocals, LOCm, FeatureEnvy, Num-
Levels, NumParams, NumStatements, and McCabe, to provide
some automation to the assessment of student projects with respect
to methods with many responsibilities and evaluated their
effectiveness. We conducted a study using two sets of student
projects, developed in two academic semesters, focusing on the
Java programming language.

First, we investigated the precision vs. recall curves. In an
overall comparison, simple size metrics, namely NumState-
ments and LOCm, showed to be better indicators of methods
that need refactoring than all other metrics, in which more than
80% of the methods with problems are in the top 10% of the
ranked list. Nonetheless, the characteristics of the system impact
on some metrics. For instance, JDeodorant achieves signifi-
cantly better results in the Bank Management System (2013/1),
whereas JExtract in the Simple Conference Support System
(2014/2). Thus, we concluded that NumStatements and LOCm
are effective and can be used as a rule-of-thumb, and other
metrics can be selected according to the system being
implemented. However, there must be a choice for high
precision, for example, 100% of precision and 17% of recall
with NumStatements, or for high recall, for example, 33% of
precision and 81% of recall with LOCm. Therefore, if a teacher
wants to provide examples of code problems, inspecting only a

small portion of the code, high precision should be prioritised.
However, if (most of) all problems must be identified, high
recall is more important—but the tool can still help reduce the
amount of code analysed.

Second, we investigated the distribution of the metrics by
comparing the values of the methods with no issues (ok) and of those
with issues (refactor).Weobtainedstatistical evidence that theexpected
value for allmetrics is really higher in the refactor group.However, it is
impossible to set a threshold for any metric such that all methods from
the refactor group are above it and all methods from the ok group are
below it. This is unsurprising, aswe should not expect a singlemetric to
perfectly capture the judgment criteria of a human expert.

Last, we state the contributions of our study: (1) the
evaluation of the effectiveness of tools to identify Extract Method
refactoring opportunities in small-scale student projects to support
teachers in evaluating student projects; and (2) additional
empirical evidences of the difficulty in setting thresholds for
tools and metrics. In addition, our study allowed us to derive the
proposal of a tool-supported teaching process where all students
develop a system that implements a given specification and push it
into a central repository. Sincemetrics of all projects should have a
similar behaviour, students receive solid feedback from the code
quality tools, and can refactor their projects properly.

Ideas for future work include (1) evaluating the educational
gains with our proposed tool-supported project development and
(2) investigating other code quality tools, such as those that
identify bad smells or other refactorings.

ACKNOWLEDGMENTS

Our research is supported by CAPES, FAPEMIG, and CNPq.
Ingrid Nunes thanks for research grants CNPq ref. 303232/2015-3,
CAPES ref. 7619-15-4, and Alexander von Humboldt, ref. BRA
1184533 HFSTCAPES-P.

REFERENCES

[1] N. R. Mead, Software engineering education: How far we’ve come
and how far we have to go, J Syst Softw 82 (2009), 571–575.

[2] A. Fox and D. Patterson, Engineering Software as a Service: An Agile
Approach Using Cloud Computing. Strawberry Canyon LLC, San
Francisco, USA, 2013.

[3] V. T. Heikkil€a, M. Paasivaara, and C. Lassenius. Teaching university
studentsKanbanwith a collaborativeboardgame, in: 38th International
Conference on Software Engineering (ICSE), 2016, pp 471–480.

[4] H. Cervantes, S. Haziyev, O. Hrytsay, and R. Kazman, Smart
decisions: an architectural design game, in: 38th International
Conference on Software Engineering (ICSE), 2016, pp 327–335.

[5] C.-Y. Chen and P. P. Chong, Software engineering education: A study
on conducting collaborative senior project development, J Syst Softw
84 (2011), 479–491.

[6] I.K�ad�ar, P.Heged€us,R.Ferenc, andT.Gyim�othy,Assessment of theCode
Refactoring Dataset Regarding the Maintainability of Methods, Computa-
tional Science and Its Applications—ICCSA 2016, Volume 9789 of the
series Lecture Notes in Computer Science, 2016, pp 610–624.

[7] I. K�ad�ar, P. Hegedus, R. Ferenc, andT.Gyim�othy, ACodeRefactoring
Dataset and Its Assessment Regarding Software Maintainability, in:
23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), 2016, pp 599–603.

[8] F. Arcelli Fontana, M. Zanoni, and F. Zanoni. A duplicated code
refactoring advisor, in: 16th International Conference on Agile
Software Development (XP), 2015, pp 3–14.

CODE TOOLS IN SOFTWARE ENGINEERING EDUCATION 11

[9] J. Xuan, B. Cornu, M. Martinez, B. Baudry, L. Seinturier and M.
Monperrus, B-Refactoring: Automatic test code refactoring to
improve dynamic analysis, Inf Softw Technol 76 (2016), 65–80.

[10] D. Silva, R. Terra, and M. T. Valente, Recommending automated
extract method refactorings, in: 22nd International Conference on
Program Comprehension (ICPC), 2014, pp 146–156.

[11] N. Tsantalis and A. Chatzigeorgiou, Identification of extract method
refactoring opportunities for the decomposition of methods, J Syst
Softw 84 (2011), 1757–1782.

[12] J. Van Eyck, N. Boucké, A. Helleboogh, and T. Holvoet, Using code
analysis tools for architectural conformance checking, in: 6th
International Workshop on Sharing and Reusing Architectural
Knowledge (SHARK), ACM, New York, USA, 2011, pp 53–54.

[13] C. Thomas Wu, An Introduction to Object-Oriented Programming
with Java, 5th ed, McGraw-Hill Education, New York, USA, 2009.

[14] M. Fowler, Refactoring: Improving the Design of Existing Code,
Addison-Wesley, 1999.

[15] N. Tsantalis, and A. Chatzigeorgiou, Identification of Move Method
refactoring opportunities, IEEE Transactions on Software Engineering
35 2009 347–367.

[16] M.Fokaefs,N.Tsantalis, andA.Chatzigeorgiou, JDeodorant: Identification
and removal of feature envy bad smells, in: 23rd International Conference
on Software Maintenance (ICSM), 2007, pp 519–520.

[17] K. Maruyama, Automated method-extraction refactoring by using block-
based slicing. In: Software reusability: putting software reuse in context,
Prooceedings of the 2001 symposium, (SSR '01), ACM, New York, NY,
USA, 2001, pp 31–40. DOI=https://doi.org/10.1145/375212.375233

[18] S. R. Chidamber, and C. F. Kemerer, A metrics suite for object oriented
design, IEEE Transactions on Software Engineering 20 1994 476–493.

[19] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice:
Using Software Metrics to Characterize, Evaluate, and Improve the
Design of Object-Oriented Systems. Springer, 2010.

[20] B. Henderson-Sellers, Object-oriented metrics: measures of com-
plexity. Prentice-Hall, 1996.

[21] R. Martin, OO design quality metrics: an analysis of dependen-
cies, in: Workshop on Pragmatic and Theoretical Directions in
Object-Oriented Software Metrics, New York, NY, USA, 1994,
pp 1–8.

[22] V. Basili, R. Selby, and D. Hutchens, Experimentation in software
engineering, IEEE Transactions on Software Engineering 12 1986
733–743.

[23] C. S�anchez, O. Ramos, P. M�arquez, E. Mart�ı, J. Rocarias, and D.
Gil. Automatic evaluation of practices in Moodle for Self
Learning in Engineering. J Technol Sci Educ. [Online] (2015)
5:2.

[24] S. Pape, J. Flake, A. Beckmann, and J. J€urjens, STAGE: a software
tool for automatic grading of testing exercises: case study paper, in:
38th International Conference on Software Engineering Companion
(ICSE), 2016, pp 491–500.

[25] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Sepp€al€a. Review of
recent systems for automatic assessment of programming assign-
ments, in: 10th Koli Calling International Conference on Computing
Education Research, 2010, pp 86–93.

[26] D. Evans, Teaching software engineering using lightweight analysis,
Technical report, University of Virginia 2001.

[27] T. McCabe, A complexity measure, IEEE Transactions on Software
Engineering SE-2 (4) (1976) 308–320.

[28] P. Oliveira, M. T. Valente, and F. Lima, Extracting relative thresholds
for source code metrics, in: IEEE Conference on Software
Maintenance, Reengineering and Reverse Engineering (CSMR-
WCRE), 2014, pp 254–263.

[29] T. Alves, C. Ypma, and J. Visser, Deriving metric thresholds from
benchmark data, in: International Conference on Software Mainte-
nance (ICSM), 2010, pp 1–10.

BIOGRAPHIES

Danilo Silva holds amaster’s degree inComputer
Science from Federal University ofMinas Gerais,
Brazil, and he is currently a PhD student in
Computer Science at the same university. His
research interests include software evolution,
object-oriented design, and code refactoring.
Contact him at danilofs@dcc.ufmg.br.

Ingrid Nunes is a senior lecturer at the Institute
of Informatics, Universidade Federal do Rio
Grande do Sul (UFRGS), Brazil, currently in a
sabbatical year at TU Dortmund in Germany.
She obtained her PhD in informatics at the
Pontifical Catholic University of Rio de Janeiro
(PUC-Rio), Brazil. Her PhD was in cooperation
with King’s College London (UK) and Univer-
sity of Waterloo (Canada). She is the head of the
Prosoft research group, and her main research

areas are software maintenance and evolution and agent-oriented software
engineering.

Ricardo Terra received his PhD degree in
Computer Science from Federal University of
Minas Gerais, Brazil (2013) with a 1-year
internship at the University of Waterloo, Canada.
Since 2014, he is an assistant professor in the
Department of Computer Science at Federal
University of Lavras, Brazil. His research interests
include software architecture maintainability and
evolvability. Contact him at terra@dcc.ufla.br, or
visit www.dcc.ufla.br/~terra.

12 SILVA ET AL.

https://doi.org/10.1145/375212.375233
danilofs@dcc.ufmg.br.
terra@dcc.ufla.br
http://www.dcc.ufla.br/&x223C;terra

