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Abstract— There are two important artifacts in any
Architecture-Conformance Checking (ACC) approach: i) the
representation of the PA and ii) the representation of the CA.
Many times, inside the same ACC approach, distinct meta-models
are adopted for representing the PA and the CA. Besides, it is
common the adoption of meta-models unsuitable for representing
architectural details. This heterogeneity makes the checking
algorithms complex since they must cope with instances that
comply with two different meta-models or do not have proper
architectural abstractions. KDM is an ISO meta-model proposed
by OMG whose goal is to become the standard representation
of systems in modernization tools. It is able to represent many
aspects of a software system, including source code details,
architectural abstractions and the dependencies between them.
However, up to this moment, there is no research showing how
KDM can be used in ACC approaches. Therefore we present
an investigation of adopting KDM as the unique meta-model for
representing PA and CA in ACC approaches. We have developed
a three-steps ACC approach called ArchKDM. In the first step a
DSL assists in the PA specification; in the second step an Eclipse
plug-in provides the necessary support and in the last step the
checking is conducted. We have also evaluate our approach using
two real world systems and the results were very promising,
revealing no false positives or negatives.

Index Terms—Architecture-Driven Modernization, Knowledge-
Discovery Metamodel, Architecture-Description Language, Archi-
tectural Reconciliation, Architectural Conformance Checking.

I. INTRODUCTION

Legacy information systems are usually characterized by
demanding high maintenance costs, but at the same time, for
being essential to support internal business processes. These
systems cannot simply be discarded since they store a lot
of valuable business knowledge over time [1]. For many
years, reengineering has been a solution to this problem,
although a study has shown that more than 50% of the
reengineering projects fail. One of the main reasons is the lack
of standardization [2], which hinders the reuse of algorithms
and interoperability among reengineering/modernization tools.

As a solution, OMG has proposed the Architecture-Driven
Modernization (ADM) [3], which is a model-driven alternative
for reengineering processes. The most important ADM meta-
model is the Knowledge Discovery Metamodel (KDM), whose
1.3 version was recognized as an ISO standard in 2012
(ISO/IEC 19560) [4]. Besides, more than 30 companies have
participated in the specification of this meta-model.

The most important characteristic of KDM is its com-
pleteness for representing source code details, architectural
abstractions, deployment characteristics, UI, database, business
rules, and also the dependencies among them. OMG intends
to make KDM the most adopted meta-model in modernization
tools (ADM-based modernization tools). Many OMG members
are interested in finding out the advantages and disadvantages of
KDM [4]. This will support them in deciding for the adoption
of KDM in their modernization tools.

Architectural erosion is a well known problem of legacy
systems, which is a progressive degradation of their architecture.
This problem occurs when there is a gap between the Current
Architecture (CA) and the Planned Architecture (PA). PA is
the architecture that the system should have and preserve
along its life in order to meet the intended quality attributes.
It is an artifact that involves architectural elements (Layers,
Components, etc.) and constraints/rules among these elements
(e.g. Layer A cannot access Layer B). On the other hand, CA
is a representation of the current system implementation; many
times exposing differences when compared to the PA.

An alternative for solving the architectural erosion problem
is conducting a modernization process focusing on architectural
reconciliation, readjusting the CA towards the PA. The first
and most important step of this process is called Architecture-
Conformance Checking (ACC), whose goal is to reveal the
architectural violations of the CA, when compared to the
PA [6, 7]. In general, these violations are dynamic actions
(methods calls, class instantiations, parameters passing, object
instantiations, etc.) or structural dependencies (extends, im-
plements, associations) that are not in accordance with the
constraints/rules imposed by the PA.

In order to conduct ACC in an automatic way, PAs and CAs
must be represented in a computable format. A diverse set of
formats have been used in ACC approaches for specifying PAs
and CAs [7, 8, 9, 10, 11, 12, 13], such as: proprietary meta-
models, UML, etc. Besides, many times the same approach
employ different meta-models for representing these architec-
ture representations, increasing the complexity of the checking
algorithms and impacting in the accuracy of the detection
process. For example, Dependency Constraint Language (DCL)
[7], SAVE [11], and LDM [13] employs proprietary models
for representing the PA, and AST for the CA.



In this paper we present an investigation on how to use KDM
as the underlying meta-model for representing both PA and CA
in ACC approaches. The main motivations of this work are:
the current demand for evidences of the suitability of KDM in
supporting modernizations that involve ACC. Since ACC is a
recurrent activity when conducting architectural modernizations,
it is very important to provide evidences of the KDM suitability
to support this process. The second motivation is to check
if the use of a unique meta-model in ACC approaches for
representing PA and CA, impact the accuracy of the checking
process. Therefore, the following two general research questions
drive this study: GRQ1 - Is it possible to reach good levels
in terms of recall and precision when employing KDM as a
base metamodel in ACC? GRQ2 - Does KDM provide all the
suitable metaclasses for conducting ACC?

In order to raise conclusions, we have developed an ACC
approach called ArchKDM. For the PA specification, our
approach delivers a Domain-Specific Language (DSL) called
DCL-KDM that generates a KDM instance that represents the
PA. For the CA extraction, our approach delivers an Eclipse
plug-in called ExtrArch that supports the mapping between PA
abstractions and the system source code. After having these
two artifacts, our approach is able to conduct the checking.

We have conducted an evaluation of our approach focused
on verifying i) the effectiveness of extracting the CA and ii) the
effectiveness in detecting the architectural violations. Two real-
world systems were used in the evaluation (SIGA and LabSys)
and the results were very promising, i.e., the approach was able
to correctly generate the CA and to identify all architectural
violations without false positives or negatives.

This paper is structured as follows: Section II explains
ADM and KDM; Section III describes the ArchKDM and
its support tools; Section IV reports a case study that evaluates
our approach; Section V outlines related work, and Section VI
makes concluding remarks and suggests future work.

II. ADM AND KDM

ADM [14] is an OMG initiative for standardizing system
modernization processes. The main idea is take advantage
of reverse engineering concepts, Model-Driven Architecture
(MDA) principles and the KDM meta-model. A typical ADM
modernization process starts by reverse engineering a system
into a KDM instance, keeps on processing this instance to
identify problems, proceeds by applying refactorings/transfor-
mations on this instance and finishes with the generation of the
modernized system. According to Perez [14] there are several
modernization scenarios that can be conducted to modernize
legacy systems: Platform Migration, Language to Language
Conversion and Application Improvement. The last one involves
architecture reconstruction, which is the scenario we are dealing
with in this paper.

KDM is a language and platform independent ISO meta-
model capable of representing a complete software system.
KDM can be seen as a family of meta-models and is composed
of several meta-models that share the same vocabulary and
terminology, facilitating the relationships among meta-classes

in different abstraction levels. OMG intends to make KDM
the most adopted meta-model for representing systems inside
modernization tools. This will propitiates the interoperability
among these tools and, consequently, can lead to higher success
in modernization projects.

A schematic representation of KDM can be seen in Fig-
ure 1. It is divided into four layers (right side) that group
packages (internal meta-models), where, each one concentrates
on specific aspects of a software system. Thus, there are
packages (meta-models) for representing a wide spectrum of
system abstractions, from low level details of the source code
(Code package) to run-time actions (Action package), to user
interface (UI package), to deployment details (Build package),
to Business Rules abstractions (Conceptual package), to
Architectural details (Structure package), etc.
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Fig. 1. KDM layers

The Code, Action and Structure are the most important
packages in the context of this work because they allow
the specification of systems architectures. Figure 2 shows
a small snippet of the KDM, showing some meta-classes
of the Structure, Code, Core and Action packages, that is
represented by the word “from [package]” under the name of
each meta-class.
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Fig. 2. Structure Package Class Diagram (OMG Group [14])

The Core package is a central KDM package that provides
base meta-classes for the other packages. KDMEntity is one
of the most important meta-classes, since all the other KDM
meta-classes are direct or indirect subclass of it. So, all KDM-
metaclass are KDMEntities.

The AggregatedRelationship is also another important
meta-class in this context. It is a relationship that allows to
group other primitive relationships within it. This is represented
by the association with the KDMRelationship class. In KDM,
every relationship type is represented by a meta-class, examples



of primitive relationships are method calls (Calls meta-
class), object instantiations (Creates meta-class), implements
relationships (Implements meta-class), etc. Observe that each
AggregatedRelationship involves two KDM Entities, the
source and target.

The Structure package delivers five classes for rep-
resenting architectural elements: Subsystem, Component,
SoftwareSystem, ArchitectureView and Layer. By means
of the self-relationship of the AbstractStructureElement,
it is possible to create a hierarchy among these elements. For
example, it is possible to create an architecture having two
subsystems, which include two layers each, where each layer
can includes two components.

Since all the architectural elements are KDM Entities
(due to the inheritance), it is possible to represent rela-
tionships between these architectural elements by means of
the KDMAggregatedRelationship (AR), which is schemat-
ically shown in Figure 3. Suppose the existence of a
relationship between the layers Controller and Model.
The arrow between these layers represents an instance of
the KDMAggregatedRelationship Ë class, where the source
of the relationship is the Controller Ê and the target is
the Model. As its name suggests, an aggregated relationship
incorporates primitive relationships inside itself. Primitive
relationships are “actions” or structural dependencies that are
also represented as KDM meta-classes.

In the figure, the AR contains one the eight instance of each
primitive relationship type existent in the KDM. For example:
: calls Ì represents the presence of an instance of the Calls

meta-class, showing the existence of a method call from a
class that belongs to the Controller layer to a class belonging
to the Model layer. The same occurs with others primitive
relationships. Another important information here is that every
AR has a density, which represents the number of primitive
relationships inside it. In this example, the density Í is 8.
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Fig. 3. Schematic example of a KDM Structure Package Instance

III. ARCHKDM

A. Overview

As any other ACC approach, the main goal of ArchKDM is
to identify violations between the PA and CA of a system. It
involves three main steps depicted in Figure 4. The first is the
specification of the PA; the second step is the specification of
the CA and the third step is the checking; in which PA and
CA are compared to detect the violations. Step II is divided
into three activities. Steps I.A. and II.C. are human-dependent.
The others are performed by algorithms and transformations.

It is important to highlight that the ArchKDM approach is
generic, i.e., it involves the conventional steps of any ACC
Approach. Besides, as the developed algorithms rely exclusively
on KDM terminology, we can also say it works for checking the
conformance of systems implemented in any object-oriented
language. The limitation resides on the existence of parsers
for different languages. Nowadays, the most mature parser
is MoDisco, which is exclusive for Java. The following sub-
sections detail each of the steps shown in Figure 4.
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Fig. 4. ArchKDM Approach

B. Specification of the Planned Architecture

In this Step, the goal is to create the PA by specifying
all of its architectural elements (AE) and constraints among
them. To support the specification we have extended an
existing architecture-description language called DCL [7]. The
extension comprises three points: i) the possibility of using
the words: Layer, Component, Interface, Subsystem and
System in the specification; ii) the automatic generation of
some constraints and iii) the generation of the KDM instance
(XML) that represents the PA. The main reasons for choosing
DCL as our base DSL were i) its proximity to natural language
and ii) the actions (method calls, instance creations, etc.)
originally evaluated by DCL are perfectly supported by the
KDM meta-classes.

In the original version of DCL the unique keyword (Type)
used to specify AEs is module, which represents a set of classes.
Therefore, what distinguish a type of module from the others
are simply the name of them. For example, if you want to create
a Layer, you must create a Module whose name indicates that.
If you want to create a Component, you must also create a
Module whose name indicates that. Therefore, regardless of
the architectural style [15] you are using, you will always
create modules. This way, it is very difficult to associate details
that are particular to some architectural styles and is almost
impossible to process them. Examples of specific characteristics



to architectural styles are: levels in layers, required and provided
interfaces in components and the sequence in Pipes and Filters.

As the KDM Structure Package has some dedicated
meta-classes for some types of architectural elements, we
decided to bring up these specific types as keywords in our
language. Doing that, it is possible to process each AE in a
more specific way and generate some constraints (restrictions)
for them. Besides, we claim that using Architectural Styles-
based keywords makes the specification a more straightforward
task for those familiar with architectural styles and KDM
terminology. This is one of the advantages of using a meta-
model that provides specific AEs when specifying PAs.

Regarding the automatic generation of constraints/restric-
tions, up to this moment, we have just being able to auto-
matically generate constraints for strict layered systems and
hierarchies. For example, when the software engineer specifies
layers he/she needs to inform the ”level” of the layer. Doing that,
DCL-KDM is able to automatically generate the constraints
among the layers. This is possible because in the Strict Layering
Architectural Style is known that lower level layers cannot
access higher level ones. In the case of hierarchies, we assume
higher-level AEs can access all the services of the inner AEs.
However, the inner elements cannot access the higher level
ones. For example, if there is a Component C inside a Layer

L, all the functionalities of the Component can be accessed
by the Layer. It is important to stress that for any other case,
the restrictions can also be written by the software engineer.

When specifying PAs, two issues are important: the architec-
tural elements and the constraints between them. As KDM only
provides direct support for the first one, we had to decide how
to represent the constraints on it. Our decision was representing
the constraints considering the presence and absence of
primitive relationships inside an AggregatedRelationship. The
existence indicates they are allowed and the absence indicates
the opposite. In other words, if there are none relationships
between layer A and B, it means that elements inside A cannot
access the elements in B regardless of the way. The whole
set of primitive relationships provided by KDM is shown in
Figure 3. As can be seen, there are eight relationship types.
Therefore, in a PA, if there is only the type Calls between
two AEs, that means all the other seven types are not allowed
between them.

Suppose the Structure instance shown in Figure 3 is a PA.
This means the Layer Controller can access the Layer Model
because there is an Aggregated Relationship between them.
The allowed primitive relationships between these layers are
those shown inside the Aggregated Relationship, i.e., all the
possible types. However, if the Aggregated had only two types
of relationships inside it (lets say Calls and Implements), that
would mean all the other types are not allowed between these
layers. In the same line of thought, if there was no Aggregated
between two AEs, that would mean these elements should not
communicate at all.

In the next sub-sections we provide more details about each
of the reserved words of our DCL-KDM and examples of their
use for PA specification.

1) Layer: layer is a group of modules that offer a cohesive
set of services to other layers [16]. Layers are related to each
other by the strictly ordered relation allowed by their use. In
addition, the relations must be unidirectional. In the context
of our approach, layers are represented in DCL-KDM though
the keyword layer, as can be seen in Listing 1.

1 layer l1, level 1 inSubSystem main
2 layer l2, level 2 inSubSystem main
3 layer l3, level 3 inSubSystem main

Listing 1. Example of Layered Style Architecture in DCL-KDM

The expression for specifying a layer is divided into
two mandatory parts and one optional. Firstly, one should
specify the layer via the keyword layer, followed by its
name. Secondly, the architect must specify its level through
the keyword level. DCL-KDM uses level keyword to
automatically generate the architectural constraints.

The optional part is used when a layer is contained in a
subsystem, component or another layer, i.e., the architect should
specify in which subsystem or component the layer belongs to.
Listing 2 depicts the constraints that are automatically created
by our approach accordingly to the Listing 1.

1 l1 cannot-depend l2
2 l2 cannot-depend l3
3 l1 cannot-depend l3
4 l3 cannot-depend l1

Listing 2. Example of constrains automatically generated

1) Component and Interface: Component is a software
element that conforms to a component model and can be
independently deployed and composed without modification
according to a composition standard [17]. Components have
interfaces that defines a specific point of potential interaction
by a component with its environment. In order to use DCL-
KDM, the architect must first write the keyword component

followed by its name, as can be seen in Listing 3. In addition,
if necessary the architect can set the layer, subsystem or
another component that the component belongs to. However, as
previously mentioned, components require auxiliary structures
to represent constraints, these elements are called interfaces.

An interface is declared by the interface keyword, fol-
lowed by its name. Its specification also requires that the
architect defines the component which it belongs to. Unlike
layers, the architectural style defined by components requires
that its constraints be explicitly specified. Listing 3 show as the
component and interfaces are specified and how they interact.

1 component c1;
2 component c2;
3 interface i_c1 ofComponent c1;
4 c2 can-depend-only i_c1;

Listing 3. DCL-KDM code to define interfaces and its constraints

Lines 1-2 specify the components. Line 3 describes an
interface named i c1 that is provided to the component c1.
An architectural constraint is defined in line 4. It states that
component c2 can depend only of i c1 interface.

2) Subsystem: A subsystem may be independently imple-
mented by any other AE [16]. The requirements are: (i) Under
subsystem must have the subSystem keyword, followed by its



name, and (ii) it may be in another subsystem. An important
difference between a subsystem (DCL-KDM) and a module
(DCL) is the hierarchy position of subsystems in an architecture,
because DCL-KDM predicts that a subsystem can comprise
of: layer, components, and subsystems.

3) Software System and Module: All rules outlined in
our approach consider that, by default, there is a root el-
ement in the architectural description hierarchy, which is
called SoftwareSystem. Thus, it is automatically added to
KDM Structure model. We have decided to not eliminate
the Module element, it deals with cases of explicit rules, in
the same way that it is used in DCL.

As long as the software engineer has specified the PA with
DCL-KDM, the PA is generated as an instance of the KDM
Structure package. The output of this step is a KDM instance
just with the Structure package instantiated, which represents
the PA, i.e., the Code and Action packages are totally empty.

An example of a PA specification using DCL-KDM is shown
in Listing 4. This example is related to the PA of the LabSys
system, which we have used in our examples and evaluation.

1 architeturalElements {
2 subSystem c o r e ;
3 layer view , level 3 , inSubSystem : c o r e ;
4 layer c o n t r o l l e r , level 2 , inSubSystem : c o r e ;
5 i n t e r f a c e c o n s u m e r I n t e r f a c e ofComponent consumer ;
6 layer model , level 1 , inSubSystem : c o r e ;
7 module r e p o s i t o r y , inLayer : model ;
8 component g e n e r i c ;
9 i n t e r f a c e g e n e r i c I n t e r f a c e ofComponent g e n e r i c ;

10 component c o n v e r t e r ;
11 i n t e r f a c e c o n v e r t e r I n t e r f a c e ofComponent c o n v e r t e r ;
12 module v a l i d a t o r ;
13 } restrictions {
14 r e p o s i t o r y can−depend−only c o n t r o l l e r ;
15 only c o n t r o l l e r can−depend r e p o s i t o r y ;
16 only c o n t r o l l e r can−depend v a l i d a t o r ;
17 g e n e r i c I n t e r f a c e can−depend−only c o n t r o l l e r ;
18 c o n v e r t e r I n t e r f a c e can−depend−only c o n t r o l l e r ;
19 }

Listing 4. Planned Architecture of LabSys

The specification is divided in two parts. The first one (lines
2-12) describes the AEs and the hierarchy among them. The
second one (lines 13-18) describes the restrictions among the
AEs. Notice that some restrictions are automatically generated
and are not shown in the Listing. Lines 2-12 show the AEs and
hierarchy between them. The hierarchy automatically generates
its constraints, avoiding the need for creating restrictions
in theses cases. Lines 13-18 show the constraints. Note
that no restriction was defined between layers model, view,
and controller, because they are automatically generated
by DCL-KDM.

In Listing 5 it is shown a XML KDM instance generated by
DCL-KDM and that represents a snippet of the PA specification
shown in Listing 4. Line 5 shows the StructureModel, which
defines a new architectural specification. Lines 8, 15 and
16 show instances of the Layer meta-class representing the
layers model, view and controller. The allowed relationships
between these layers are represented by instances of the
AggregatedRelationship class, as presented in lines 9-13
and 17-21.

It is important to stress that each of these instances is
composed by a source element (line 9), the target one (line 10)

and the primitive relationships, which are not shown because of
space limitations. The density is defined (line 13), that indicates
the quantity of relationships accepted between the source and
target elements.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <kdm:Segment xmi:version="2.0" [...]
3 xmlns:kdm="http://kdm.omg.org/kdm"
4 xmlns:structure="http://kdm.omg.org/structure">
5 <model xsi:type="structure:StructureModel" name="LabSys">
6 <structureElement xsi:type="structure:SoftwareSystem" name="LabSys">
7 <structureElement xsi:type="structure:Subsystem" name="core">
8 <structureElement xsi:type="structure:Layer" name="controller">
9 <aggregated from="//@model.0/[...]/@structureElement.0"

10 to="//@model.0/[...]/@structureElement.1"
11 relation="//@model.1/[...]/@actionRelation.0
12 //@model.1/[...]/@codeElement.0/@actionRelation.1 //
13 [...]//@model.1/@codeElement.0/@codeRelation.2" density="8"/>
14 </structureElement>
15 <structureElement xsi:type="structure:Layer" name="model"/>
16 <structureElement xsi:type="structure:Layer" name="view">
17 <aggregated from="//@model.0/[...]/@structureElement.2"
18 to="//@model.0/@structureElement.0/[...]/@structureElement.0"
19 relation="//@model.1/[...]/@actionRelation.0
20 //@model.1/[...]/@codeElement.0/@actionRelation.1 //
21 [...]//@model.1/@codeElement.0/@codeRelation.2" density="8"/>
22 </structureElement>
23 </structureElement>
24 </structureElement>
25 </model>
26 [...]
27 </kdm:Segment>

Listing 5. A KDM Instance representing the PA of the LabySys

C. Extraction of the Current Architecture

This subsection provides an overview of the process for
extracting the CA, which is another KDM instance that
represents this architecture. This step involves three activities
shown in Figure 4 and it is supported by an Eclipse Plug-in
we have developed called ExtrArch. The three activities are
briefly commented below.

In activity II.B, Getting KDM Instance of Legacy System,
the MoDisco tool [18] is employed to obtain an initial KDM
instance that represents all source code elements (classes,
actions, attributes, relationships, etc.). This KDM instance
is incomplete, since only the code and action packages are
instantiated by MoDisco.

In activity II.C, Mapping Architectural Elements to Code
Ones, a mapping between the architectural elements (declared
in the PA specification - activity I.A.) and the code elements
(collected from MoDisco - activity II.B.) must be created by the
software engineer. The intention is to inform that specific code
elements are the implementation of some AEs. For example, a
package P1 is the implementation of a layer L1. The mapping
is supported by the ExtrArch plug-in, in which the engineer
chooses an architectural element on the left side and assigns it
to code elements on the right side.

When the mapping is not clear, the process must be
supported by system specialists to reach an optimal mapping,
which is generally possible considering the granularity of our
architectural elements. In terms of our tool support, the engineer
can iterate on the process by creating several mapping versions
that can be analyzed later. It is significant to highlight that our
approach allows a low level of granularity, i.e., in addition to
packages, our approach also support classes and interfaces.
At the end of this activity, the output is a KDM instance
that represents a partial CA. It is called “partial” because
it is still missing the relationships (aggregated relationships)
among the architectural elements, which are the most important
information for detecting the violations. These relationships
are automatically generated by the next activity.



In activity II.D., Generating the Aggregated Relation-
ships, an algorithm scans all code elements in the current KDM
instance collecting all the actions and structural dependencies
between these elements. Based on that, the algorithm is able to
generate the aggregated relationships between the architectural
elements. For example, suppose the previous step has defined
the package P1 is the implementation of the Layer L1 and
package P2 is the implementation of the Layer L2. If there
is a method call from a class of P1 to a class of P2, then
the algorithm creates an aggregated relationship between the
layers L1 and L2 and insert this primitive relationship inside
it. Besides, it also calculates the density value.

Algorithm 1: ExtrArch - Extracting Algorithm
Input: KDM Instance with code and action packages fully instantiated and

structure package partially.
Output: KDM Instance with code, action, and structure packages fully

instantiated (current system architecture).
1 begin
2 primitiveRelationships = kdmUtil.getAllPrimitiveRelationships(currentArq)

foreach primitiveRelationships primitiveRelationship do
3 sourceElement = primitiveRelationship.getSource()
4 targetElement = primitiveRelationship.getTarget()
5 archElementSource = getArchitecturalElement(sourceElement)
6 archElementTarget = getArchitecturalElement(targetElement)
7 foreach archElementSource.aggregatedRelatioships

aggregatedRelSource do
8 if aggregatedRelSource target equals to then
9 auxAgRelationship =

archElementSource.getAggregatedRelatioship
10 foreach outgoing auxAgRelationship do
11 if auxAgRelationship.getTo = archElementTarget then
12 auxAgRelationship.add(primitiveRelationship)
13 auxAgRelationship.density(archElementSource.
14 getAggregatedRelatioship.getDensity+1)
15 end
16 if auxAgRelationship is the last then
17 auxAgRelationship = new AggregatedRelatioship
18 auxAgRelationship.add(primitiveRelationship)
19 auxAgRelationship.density(1)
20 end
21 end
22 else
23 auxAgRelationship = new AggregatedRelatioship
24 auxAgRelationship.add(primitiveRelationship)
25 auxAgRelationship.density(1)
26 end
27 end
28 end
29 end

Algorithm 1 shows the code responsible for extracting CA,
which is called “extracting algorithm”. The first step of the
algorithm is to recover all primitive relationships (method
calls, implementation of interfaces, etc) (line 2). This part
was implemented by an auxiliary algorithm that performs a
depth-first search in KDM-tree. Then, for each meta-class
representing a primitive relationship, its respective source code
elements (method, class, package, etc.) and targets are searched
(lines 3-4). Next, the architectural elements of source (layer ,
component, subsystem) and target are searched (lines 5-6).

Additionally, it is verified if any architectural level rela-
tionship exists (AggregatedRelationship) in the source
architectural element (line 7). If so, it should be checked if
the destination is the same as a searched relationship (line
11), then the primitive relationship should be inserted (lines
12-14), otherwise, a new one should be created (line 17-19).
Finally, if the source architectural element still does not have
an AggregatedRelationship, a new one should be created
(lines 22-24). Thus, each one of the primitive relationships are

added to their respective AggregatedRelationship, without
creating any unnecessary relationship. The output of this step
is a KDM instance representing the CA of the system, which
will be compared to the PA generated in the previous step.
Both are XMI documents, as shown in Listing 5.

D. Checking

In this subsection we present the Conformance Checking,
as shown in Figure 4, Step III. This step is supported by our
Checking Algorithm shown in Algorithm 2. The input are
two KDM instances (PA and CA) generated for the DCL-
KDM and ExtrArch, respectively. The algorithm compares
these two KDM instances, checking which relationships of
the CA do not exist in the PA, characterizing the possibility
of an architectural violation. The output is a KDM instance
containing all violations possibilities.

Algorithm 2: ArchKDM - Checking Algorithm
Input: KDM instances that represents the planned plannedArq and current

currentArq architectures.
Output: KDM instance containing the architectural violations violationsArq.

1 begin
2 aggregatedRelCA = kdmUtil.getAllAggregatedRelationships(currentArq)

aggregatedRelPA = kdmUtil.getAllAggregatedRelationships(plannedArq)
3 foreach aggregatedRel aggregatedRelCA do
4 plannedRelationship = seekCorrespondentRelationship(aggregatedRel,

plannedArq)
5 if plannedRelationship is empty then
6 violationsArq.addViolation(aggregatedRel)
7 end
8 else
9 primitiveRelationshipsCA =

kdmUtil.getAllPrimitiveRelationships(aggregatedRel)
primitiveRelationshipsPA =
kdmUtil.getAllPrimitiveRelationships(aggregatedRel) foreach
primitiveRel primitiveRelationshipsCA do

10 if primitiveRel not exist in primitiveRelationshipsPA then
11 violationsArq.addViolation(primitiveRel)
12 end
13 end
14 end
15 end
16 end

The first part of this algorithm is recover all architectural
level relationships of the PA and CA representations (line 2).
Then, the list of CA relationships is iterated (lines 3-15). Next,
the algorithm checks which PA relationships has the same
source and target of the CA relation (line 4). Then is verified if
the PA relationship does not have any relationship, in positive
case, a new one is added (lines 5-6). In negative case, the
relationships that are not present in the PA are included in a
list of relationships that are not allowed (lines 9-12). Therefore,
at the end of the algorithm execution, it must exist a KDM
instance that has the list of violations.

The working of ArchKDM can also be explained using Set
Theory. Figure 5 shows an example. Let R be the Set of whole
spectrum of possible relationships provided by KDM, i.e., the
eight primitive relationships shown in Figure 4. On one hand,
let PA be the Set of the relationships specified by the software
engineer as the allowed relationships among AEs. PA is a
subset of R, i.e., PA ⊂ R. Consider a PA composed by two
relationships, a Calls and an Implements, as shown in Figure 5.
On the other hand, let CA be the Set of the relationships
of the current architecture of the system under analysis. CA



is also a subset of R, i.e., CA ⊂ R. A software system
in full conformance with its architectural design indicates
CA ⊆ PA. The set V of the existing architectural violations
is the difference between CA and PA, i.e., CA - PA. So, in the
example shown below, CA− PA = V = {Extends}.

PA CA

Calls

Implements

HasValueCreatesUsesType Hastype

R

Imports

Cons

V

Extends

Fig. 5. Checking

IV. EVALUATION

The best possible result of our approach is to detect all
the existing architectural violations in a given system, without
false positives or negatives. However, the effectiveness of the
whole approach depends on three main steps: i) the correct
specification and generation of the PA (Step I); ii) the correct
extraction of the CA (Step II); and iii) the quality of the
checking algorithm. In this paper we decided to evaluate
only non-human-dependent activities. Therefore, the evaluation
concentrated on the extracting (Activity II.D - Figure 4) and
the checking algorithms (Step III - Figure 4).

A. Definition of the Empirical Study

1) Goal: The general goal is to evaluate the effectiveness
of the approach in detecting architectural violations. Therefore,
we divided the evaluation into two parts: i) evaluation of
the extracting algorithm (Activity II.D - Figure 4), which
is responsible for recovering the CA, and ii) evaluation of the
checking algorithm (Step III - Figure 4), which is responsible
for identifying the architectural violations between PA and CA.

2) Quantitative Approach: The potential of the approach is
measured by means of the percentage of correct relationships
(CA) and violations (architecture conformance checking) that
the algorithms are able to detect.

3) Perspective: Software architects.
4) Study Object: The relationships in the extracted CA and

the violations detected by the conformance checking.

B. Study Planning

In order to answer the General Research Question 1 shown in
Section 1 (Is it possible to reach good levels in terms of recall
and precision when employing KDM as a base metamodel in
ACC?) we decided to break it into two more specific ones:
1) Assuming that the software engineer has provided a correct
mapping in Step II, is the extracting algorithm able to recover
the correct CA? 2) Assuming that the PA and CA specifications
are correct, is the checking algorithm able to detect all the
architectural violations? Therefore, to answer these research
questions, we collected the following data:

• The relationships among code elements (classes/interfaces)
that are automatically extracted by our tool;

• The violations detected by our checking algorithm.
The focus of Item 1 is to verify if the extraction algorithm

is able to generate all the relationships presented in the source
code, for a given system. The focus of Item 2 is to check if the
checking algorithm is able to identify violations between all
types of elements (layers and components, layers and systems,
layers and modules, etc.) and constraints (calls, extends, etc.).

1) Context Selection: We have used two real-world systems
in our evaluation: LabSys (Laboratory System) and SIGA
(Integrated System of Academic Management). LabSys is a
laboratory management system currently used by the Federal
University of Tocantins (UFT) and SIGA is an academic
management system currently used by the Federal University
of São Carlos (UFSCar). We chose LabSys because it involves
a considerable variety of combinations among architectural
elements. We chose SIGA since it is a large system, and its
software engineers are very interested in detecting the system
architectural violations.

C. Operation

1) Preparation: We have built two oracles for LabSys; one
containing all architectural violations (called violations oracle)
and another for its CA, containing all relationships among its
architectural elements. That was possible because an author
of this paper was one of the main developers of this system.
So, he knows the system in a deep way. Even considering his
experience, the building of the oracles was an intensive work
for several days.

For building the oracles, each element of each class was
manually scanned and compared to the PA and a list of
them was elaborated. This process took five weeks and it
was conducted by three people; a master degree student that
was the main developer, the software engineer who is currently
the responsible for the LabSys and a phD student of our lab.
In the case of SIGA, the PA was provided by the project
manager from the Development Sector of UFSCar. However,
the building of an oracle was impractical because of its size.
Thus, we just verified if the architectural violations found by
our tool were true positives, i.e., they actually refer to design
decisions that are not prescribed by the PA.

2) Execution: We performed the approach following all
ArchKDM’s steps. Initially, we used DCL-KDM to specify
the PA. Next, we used the ExtrArch to map the architectural
elements of the PA to the source code elements. Finally, we
triggered the violation detection.

3) Data: We extracted all relationships and violations to
compare them with LabSys oracles.

We analyzed architectural violations from three perspectives:
amount of violations, constraints between different elements
and different types of restrictions. The amount of violations
are used to verify if the checking was successful. Then, we
checked if all possible architectural violations between two
elements of different types were found, such as those found
between a layer and a subsystem, or between a layer and a



component. Finally, we checked if all kinds of restrictions were
found, e.g., method calls, variables accesses, and inheritance.

D. Analysis of the Current Architecture Extraction Process

The goal here is to determine if the extracting algorithm is
able to generate the CA correctly. The critical part of this step
is the extraction of existing relationships, since an error in the
underlying algorithm may lead to incorrect results. Table I list
the LabSys relationships in combination with the oracle results.
It is important to remember that every existing relationship in
the source code is an instance of a specific meta-class. For
example, looking at the third line of the table, it is possible to
see that the algorithm generated 240 instances of the Calls

meta-class, between the Controller and Model layers.
Regarding the result, all relationships found by the tool

were also present in the oracle. Thus, the extracting algo-
rithm is able to correctly detect all relationships. Another
relevant point is that the algorithm properly retrieved the eight
kinds of relationships (calls, extends, etc.) determined in the
proposed approach.

E. Analysis of the Checking Algorithm

The goal here is to evaluate the amount of architectural
violations detected by the checking algorithm. Table II presents
the results, showing the application name, the amount of
architectural violations found (Architectural Violations - AV),
the amount of architectural violations presented in the oracle
(Architectural Violations Oracle - AVO), the percentage of
false positives (FP), and the amount of false negatives (FN).
Regarding the SIGA system, we have not built an oracle,
therefore AVO and FN are empty.

The results indicate that we found 43 architectural violation
indications in LabSys. Thus, ArchKDM could find all violations
identified by the oracle, thus, no false negatives were found. For
the SIGA application, we checked with the software engineers
if the architectural violation evidences found by ArchKDM
were correct. The tool did not return any false positives.

Despite the good levels achieved after analysis of the results
regarding the amount of false positives and negatives, some
variables still need to be exercised so that the quality checking
can be evaluated more accurately. Thus, another point we have
evaluated is the ability of the algorithm in detecting violations
between all architectural element types. For example, between
Layers and Components, Layers and Subsystems, Layers and
Layers, etc. Table III reports the results. In LabSys, only the
combination of subsystem-subsystem was not evaluated because
there are not two subsystems in the architecture. However, in
SIGA application, we found architectural violations between
all combinations. Therefore, ArchKDM was able to detect
deviations between all combinations.

F. Threats to Validity

We must state at least two threats of the reported evaluation.
First, even though we rely on two real-world systems that
have different architecture and constraints, we cannot claim
that our approach will provide equivalent accuracy rates in
other systems, as it usually happens in empirical studies of

software engineering (external validity). Second, we relied on
two software engineers to evaluate the amount of false positives.
As typical in human-based classifications, our results might
be affected by some degree of subjectivity (construct validity).
However, it is important to highlight that we interviewed the
software engineers who designed the architecture, and whom
are responsible for their maintenance and evolution.

V. RELATED WORK

Researchers have been proposing Architectural Conformance
Checking approaches based on several underlying models, in
which we divided in the following four groups: i) AST-based
approaches; ii) Graph-based ACC approaches; iii) MDE-based
approaches and iv) other approaches.
AST-based ACC approaches: DCL [7], ArchJava [19], and
ArchLint [20] rely on AST (Abstract Syntax Tree) as the
underlying model for performing ACC. DCL [7] employs static
analysis for identifying the structural dependencies that does
not respect the rules specified in the PA. ArchJava [19] extends
Java with architectural modeling constructs that seamlessly
unify software architecture with implementation, ensuring that
the implementation is according to the architectural constraints.
ArchLint [20] is a data mining approach for ACC that identifies
architectural violations based on a combination of static and
historical source code analysis that frees architects from
specifying the architectural constraints. These three studies
share the same weakness. Although they achieve good levels
in ACC, they do not support multiple languages, architectural
styles, and explicitly hierarchy between the architectural
elements as our approach does.
Graph-based ACC approaches: ConQAT [21], SAVE [22],
[11], and SotoArch [23] rely on graphs as the underlying
model to perform ACC. ConQAT [21] identifies divergences
and absences based on the comparison between a machine
readable specification of the intended architecture and the
knowledge of the dependencies extracted automatically from
the source code. Based on pure reflexion model concepts,
SAVE [22], [11] highlights convergent, divergent, and absent
relationships between the high-level model and the source-
code model that are also automatically extracted from the
source code. SotoArc [23] provides means to visualize and
understand the static structure of a software system, including
modeling the intended architecture and detecting architectural
violations. Although complete and accurate, these tools rely
on proprietary models to represent the intended architecture.
Our approach, on the other hand, relies on an ISO meta-model
(KDM) to represent the PA and CA. It means that researchers
who are familiar to KDM can develop and improve any of our
approach steps, e.g., implementing a more sophisticated CA
extraction algorithm or performing high-level refactorings for
the identified violations.
MDE-based ACC approaches: ArchConf [24], ReflexML [25],
and Herold and Rauschs approach [10] rely on MDE models
to perform ACC. ArchConf [24] generates a conformance
view and computes metrics between two C&C (component
and connector) views. They uniformly represent various



TABLE I
RECOVERED RELATIONSHIPS OF THE CA LABSYS

Architectural Element 1 Architectural Element 2 Calls Implements Extends Imports Creates UsesType HasType HasValue
A/O A/O A/O A/O A/O A/O A/O A/O

view - Layer controller - Layer
view - Layer model - Layer

controller - Layer model - Layer 240/240 21/21 52/52 19/19 150/150
view - Layer repository - Module

controller - Layer repository - Module 208/208 24/24 11/11
model - Layer repository - Module 6/6 24/24 37/37 1/1 2/2 128/128 3/3
view - Layer generic - Component

controller - Layer generic - Component 108/108 8/8
model - Layer generic - Component

repository - Module generic - Component 25/25
view - Layer validator - Module

controller - Layer validator - Module 16/16 8/8 2/2
model - Layer validator - Module 9/9 8/8 8/8 1/1 1/1 9/9 1/1

repository - Module validator - Module 12/12
generic - Component validator - Module

view - Layer converter - Component
controller - Layer converter - Component 1/1

model - Layer converter - Component 2/2 12/12 12/12 1/1
repository - Module converter - Component 1/1 1/1
generic - Component converter - Component
validator - Module converter - Component

A = Algorithm, O = Oracle

TABLE II
ARCHITECTURAL VIOLATIONS IN LABSYS AND SIGA

Application AV AVO FP FN
LabSys 43 43 0 0
SIGA 115 - 0 -

TABLE III
VIOLATIONS BETWEEN DIFFERENT ELEMENTS

Element 1 Element 2 LabSys SIGA
Layer Layer Yes Yes
Layer Subsystem Yes Yes
Layer Component Yes Yes
Layer Module Yes Yes

Subsystem Component Yes Yes
Subsystem Module Yes Yes

Module Component Yes Yes
Subsystem Subsystem No Yes

Module Module Yes Yes
Component Component Yes Yes

languages of the system in the form of a meta-model of
the relevant source artifacts at the desired level of detail.
ReflexML [25] defines the traceability of UML component
models to code using AOP type pattern expressions. Herold
and Rausch [10] express architectural rules as formulas on
a common ontology, and models are mapped to instances
of that ontology. A knowledge representation and reasoning
system is then used to check whether the architectural rules
are satisfied for a given set of models. Although MDE-based
approaches promote reuse, they do not accurately represent
implementation details. Our approach, however, relies on
KDM, which provides a complete specification of architectural
elements and allows source code elements to be represented
with one-to-one precision.

Other ACC approaches: LDM [13] relies on Dependency
Structure Matrices (DSMs) to perform ACC. A DSM is a
weighted square matrix whose both rows and columns denote
classes from an object-oriented system and the number of

references that B contains to A is represented in cell (A, B).
Although DSM is important for documentation purposes and
communication with stakeholders, DSM is not an architecture
specification that is independent of the systems implementa-
tion. In the dynamic analysis research line, DiscoTect [26]
dynamically monitors a running system to derive its software
architecture. Thus, architects can develop mappings to exploit
regularities in the system implementation and architectural
styles. Similarly, ConArch [27] is a runtime verification
approach for detecting inconsistencies between the dynamic
behavior of the documented architecture and the actual runtime
behavior of the system. However, these studies share the same
problem: mappings between low-level system observations and
architectural events are not usually one-to-one and hence it
is not straightforward to indicate implementation patterns that
represent the target architecture.

VI. CONCLUSION

A characteristic of our approach is that it can be used for
checking the conformance of systems implemented in any
language. This is possible because all the algorithms are
dependent only on the KDM terminology. Besides, as our
algorithms are totally based on an ISO pattern, they have a
great potential for reuse. This does not happen when algorithms
are developed over a proprietary or language-dependent model.
Summing up, the main advantage of our approach is that it
performs all the activities over an ISO platform and language-
independent meta-model, and not over proprietary one. KDM
is implemented by the MoDisco tool, which is a good reverse
engineering tool. So, who wants to use our approach just
need to convert their systems into a KDM representation using
MoDisco and install our plug-in. We believe the use of KDM
is what makes our approach attractive and unique.

Considering the GRQ2 shown in Section 1, an important
discussion is, an important discussion here is regarding the
suitability of the KDM for representing software architec-
ture. The code package is clearly able of representing a



very good/low level of details, however, the quality of the
Structure package is more difficult to evaluate. For example,
although the Structure package has the most conventional
meta-classes for representing architectural details, it lacks of
some other important ones, for example: Filters, Connectors,
Ports, Required and Provided Interfaces, etc. In our case studies
these classes were not necessary. It is worth to note that we did
not extend KDM to represent architectural details, e.g., ports
and connectors. Thus, we were restricted to the abstractions
provided by KDM.

In the last step of our approach, both representations are
compared and a list of architectural violations are obtained. As
both system representations are instances of the same meta-
model, the algorithm (see Algorithm 2) becomes clearer, easier
to understand and, as a consequence, easier to maintain, reuse,
and evolve. To conclude, based on our evaluation, the ACC
was applied successfully. The usage of KDM does not impact
the process quality, mainly because the Code meta-model is
in an abstraction level very similar to the source code, thus,
every detail to perform an architectural check, such as dynamic
code actions (calls, instantiations, etc.) are available. Although
checking for relationships is the unique type of ACC we
cover, this is also the most common type of deviations existent
in software systems. We claim the deviation types we have
approached represent a significant portion of all architectural
deviation that occur in reality.

Another important point to note is that the advantage of KDM
is its standardization. Thus, modernization tools now have good
reasons for adopting KDM as the main underlying meta-model.
The reason is that there probably will be a lot of resources (e.g.,
ACC/refactoring algorithms/tools/techniques) available that can
be reused [28, 29]. Our algorithms are reusable across KDM-
compliance tools because their source-code only mentions
the original names of KDM meta-classes. To sum up, even
considering the threats of our evaluation, we can say there
is good evidence that its perfectly possible to conduct ACC
in the ADM context and to obtain good results in terms of
violation detection.
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