Angular]JS in the Wild: A Survey with 460 Developers

Miguel Ramos
Marco Tulio Valente

UFMG, Brazil
{miguel,mtov}@dcc.ufmg.br

Abstract

To implement modern web applications, a new family of
JavaScript frameworks has emerged, using the MVC pattern.
Among these frameworks, the most popular one is ANGU-
LARIJS, which is supported by Google. In spite of its popu-
larity, there is not a clear knowledge on how ANGULARJS
design and features affect the development experience of
Web applications. Therefore, this paper reports the results of
a survey about ANGULARIJS, including answers from 460
developers. Our contributions include the identification of
the most appreciated features of ANGULARIJS (e.g., custom
interface components, dependency injection, and two-way
data binding) and the most problematic aspects of the frame-
work (e.g., performance and implementation of directives).

Categories and Subject Descriptors D.3.3 [Frameworks]
Keywords JavaScript, AngularJS, MVC frameworks.

1. Introduction

JavaScript is a fundamental piece of modern Web applica-
tions. It was initially designed as a scripting language to ex-
tend web pages with small executable code. However, the
language is used nowadays to construct a variety of com-
plex systems (Kienle |2010; [Silva et al.|[2015). As a re-
sult, we are observing the birth of new technologies and
tools—including JavaScript libraries and frameworks—to
solve common problems faced in the development of such
applications. For example, frameworks following the Model-
View-Controller (MVC) architecture pattern (or variations
of it) are widely used nowadays, including systems such as
ANGULARJS, BACKBONE.JS, and EMBER.JS. Among these
frameworks, ANGULARIJS is probably the most popular one.
This fact is evidenced by comparing the number of Google
searches (the most queried framework since 2013), the num-

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

PLATEAU’16, November 1, 2016, Amsterdam, Netherlands
© 2016 ACM. 978-1-4503-4638-2/16/11...
http://dx.doi.org/10.1145/3001878.3001881

Ricardo Terra

UFLA, Brazil
terra@dcc.ufla.br

Gustavo Santos

RMoD Team, INRIA, France
gustavo.santos@inria.fr

ber of contributors in GitHub and the increasing number of
questions and answers in Stack Overflow (the framework
with more Q&A since mid-2013).

However, despite the increasing practical interest on AN-
GULARIJS, there is no clear knowledge on how the design
and features proposed by this framework affect the develop-
ment experience of JavaScript software. More specifically, it
is not clear what are the most appreciated features of AN-
GULARJS, what are the main problems faced by develop-
ers when using the framework, and which aspects of AN-
GULARIJS can be improved. Answers to these questions are
important to different developers. First, developers who use
ANGULARJS can learn how to improve this usage and also
how to avoid bad ANGULARJS programming practices. Sec-
ond, developers who do not use JavaScript MVC frameworks
can understand the benefits and problems related to these
frameworks, by reviewing the case of ANGULARIJS. Third,
MVC framework builders can use our results to design more
powerful and usable frameworks.

This paper reports the results of a survey with 460 de-
velopers, when we collected their perceptions about ANGU-
LARJS. We reveal the relevant features of the framework,
e.g., custom components, dependency injection, and two-
way data binding. We also shed light on the most frequent
problems faced by ANGULARJS developers, e.g., due to the
complexity of the API to declare directives.

The remainder of the paper is organized as follows. Sec-
tion 2] introduces ANGULARIJS. Section 3] documents the
survey design and Section [] presents the survey results.
Threats to validity are presented in Section [5] Section [6] dis-
cusses related work and Section [7] concludes.

2. Angular]JS in a Nutshell

In this section, we briefly describe the key components of
ANGULARJS. A basic understanding of these components
is important to interpret our survey results.

Modules: An ANGULARJS application is a set of modules,
which act as containers to the different parts of the applica-
tion. Modules can also depend on other modules.

Services: ANGULARIJS services are objects that encapsulate
code related with a specific concern. They are instantiated

1 <html lang="en" ng-app="todomvc">

<header id="header">

4 <hi>todos</h1>
<form ng-submit="addTodo ()">
6 <input placeholder="What needs to be done?"
ng-model="newTodo"/>
</form>
8 </header>
9 “ee
10 </html>

Listing 1. Template sample

only once by factories or constructor functions. The created
singleton object is shared by the components that depend
on it (e.g., controllers, directives, filters, and other services).
Typically, ANGULARIJS services are stateless objects with
a set of methods that deal with specific concerns, such
as server requests, manipulation of arrays, asynchronous
operations, etc. ANGULARJS also provides built-in services
to deal with common concerns in Web applications, such as
$http, $filter, and $timeout.

Templates: In Web applications, HTML documents are
parsed to generate the DOM (Document Object Model),
which is the data structure that models the final document
presented to users. ANGULARIJS supports DOM-based tem-
plates, which are written in HTML and contain proprietary
elements and attributes to render the dynamic interface of
web applications. Listing [I] shows a sample template. It
includes the definition of the document (html element in
line 1) and the markup for the main input of the application,
which is represented by the form element (line 5).

Directives: Directives are specific HTML markers used
in templates to define the UI behavior. In Listing [T} the
ng-app attribute (line 1) is an ANGULARJS directive that
specifies the root node of the application. When directives
are executed by ANGULARJS they can modify the DOM
structure and also register event handlers. During the
compilation process, ANGULARIJS traverses the DOM and
searches for all directives. The directives are executed in
order of priority generating the final DOM presented to
users. Directives can (1) use the same scope of the parent
element; (2) create a scope that inherits from the scope of
the parent element; or (3) create a completely new scope. It
is also possible to create custom directives.

Expressions: ANGULARJS expressions are delimited by
double curly brackets ({{expression}}) or are the values
of some directive attributes. Literals (e.g., arrays ([]),
objects ({})), operators, and variables are examples of
elements that can be used in expressions. Expressions are
evaluated using a context represented by an object, called
scope. Variables and functions used in expressions must be
defined in the scope object. During the template compila-
tion, when the ng-app directive is parsed, ANGULARJS
creates an object representing the main application scope,

10

which is referenced as the $rootScope. Since directives
can define different scopes from $rootScope, expressions
from different parts of the template may be evaluated under
different scopes. When the value of an expression changes,
ANGULARIJS updates the view accordingly.

Controllers: ANGULARJS controllers are used to initialize
the state of an application and provide an interface to update
it. Controllers are used with the ngController directive.
When this directive is used in a template, it receives the
name of a controller and the scope created by the directive
is passed as a parameter to the specified controller. The
controller must populate the scope object with properties
and methods that are used when evaluating expressions.

Digest Cycle: ANGULARIJS constantly maintains in sync the
state of the application with the view presented to the final
user. The framework provides this synchronization by com-
paring the current value of all variables in the scope refer-
enced by the template expressions with their previous val-
ues. When a change is detected, the framework adequately
updates the DOM, in a process known as digest cycle.

3. Survey Design

First, we performed a Mapping Study (Section[3.1) to gather
information about ANGULARJS. We relied on the results
of this first study to construct the survey. The survey par-
ticipants were selected among Stack Overflow users (Sec-

tion[3.2)).
3.1 Mapping Study

We use a mapping study to gather information about the use
of ANGULARJS. A mapping study is more flexible than a
systematic review and it is recommended for studying emer-
gent fields or technologies (Wohlin et al.|[2012). For exam-
ple, information about ANGULARJS is primarily found in
blogs, forums, and Q&A sites. Therefore, using the Google
search engine, we initially focused on finding documents re-
porting the benefits and disadvantages of ANGULARIJS. To
this purpose, we used search queries such as “the best fea-
tures of AngularJS” or “the bad parts of AngularJS”. We also
used two other strategies to reach more sources of informa-
tion. First, we recursively accessed the references in the sites
already reviewed (a practice called “snowballing”). Second,
we performed additional search queries for frequently men-
tioned topics. As an example, we searched for “transclu-
sion directives”, due to the frequency of references to this
topic as a complex ANGULARJS concept. During the re-
vision of blogs, we only considered well-written posts, by
authors with experience in software development. A com-
plete list of the posts we consider is available in a companion
website[]_-] Finally, these documents were analyzed and clas-
sified by identifying topic trends, which were used for the
survey design.

Wnttps:// github.com/aserg-ufimg/angularjs- survey

https://github.com/aserg-ufmg/angularjs-survey

0 120,696
S‘ —> () 153680

I—I + additional info

J

Tags with "angularjs"

—

Qo AO
74,005

GitHub matching 8 B
M ? O — ? 2===0Q ¢
= - 588 ©
Potential participants

9

=20,695 (28%)
58,084 (10.9%)

Figure 1. Selecting the survey participants

3.2 Survey Construction and Participants

As a result of the mapping study, we built a 15-minute sur-
vey with 25 questions, organized in seven sections: (1) back-
ground of the participants, (2) key characteristics of ANGU-
LARJS, (3) problems with ANGULARJS templates, (4) de-
bugging and testing, (5) development practices, (6) complex
concepts and features, and (7) ANGULARIJS 2.0. To avoid
unreliable responses, we asked developers to skip the ques-
tions they did not feel confident to answer. All the scales
used in the survey have an even number of points, to force
participants to make a choice. In multiple choice questions,
when the respondents could provide a response not included
in the set of answers, we included an Other option.

To find participants, we used the Stack Exchange AP]E|
to search for ANGULARJS developers in the Stack Overflow
community. As illustrated in Figure[T} we retrieved all exist-
ing tags with the substring “angularjs”. We retrieved 120,696
questions and 153,689 answers containing these tags. Next,
we extracted data about three types of users: users who own
a question (QO); users who own an answer (AO); or users
who edited a question or answer (E). In this way, we col-
lected a total of 74,005 users. To find their e-mail address,
we matched each user nickname at StackOverflow with an
equivalent nickname at GitHub. In this way, we obtained a
total of 20,695 matched users (28%). However, only 8,084
users (10.9%) had public contact information at GitHub. In
a last step, 7,157 users were marked as potential partici-
pants in the survey, because they have valid e-mail address
and at least one operation with the collected answers that is
not a simple edition. These users were ranked considering
the number of ANGULARJS-related questions and answers
at Stack Overflow. Each user received the following score:
S = QO0+3%xA0, where QO is number of questions owned
by the user and AO is the number of answers he owns. We
gave an additional weight to answers since users who pro-

Anhttps:// api.stackexchange.com

11

vide answers tend to have more experience than those who
are looking for them.

We randomly selected 30 users from the middle of the
rank, with scores between 9 and 24, to run a pilot survey.
Their feedback helped us to correct typographical errors and
ambiguities in some questions. However, the most important
change was in the structure of some questions. In the ini-
tial survey version, we used ranking questions, when survey
respondents have to rank a list of items in order of impor-
tance. After this pilot study, we decided to change to rating
questions (when respondents just have to rank each item in
a scale ranging from 1 to 4) because some participants com-
plained about the time to answer ranking questions. Due to
these changes in the survey, the responses obtained during
the pilot phase were discarded.

The final version of the survey—which is also available
in our companion website—was first sent to a group of 60
users. This time, we received complete responses and an im-
proved response rate. Therefore, we extended the invitation
to the rest of the users by daily emailing groups of nearly
700 users from the top of the ranking. At one point, we de-
cided to stop due to replies from developers saying that they
had a limited experience with ANGULARIJS. In total, we sent
the survey to 3,060 users with score between 3 and 831. We
received 460 complete responses, representing a response
rate of 15%. The survey was open during approximately one
month (from early November to early December 2015).

4. Survey Results
4.1 Background

Figure [2] reveals the participants background. The majority
of the respondents (97.6%) have at least one year of expe-
rience in JavaScript (Figure 2(a)), and 74.8% have one to
three years of experience with ANGULARJS (Figure 2(b)).
For 37.4% of the developers, the largest application imple-
mented with ANGULARJS has more than 10 KLOC (Fig-

https://api.stackexchange.com

39.6 % 16.7 %

O Lessthan 1 year
—~24% B 1to2years

W 2to5years

| More than 5 years

41.3%

(a) JavaScript experience

(b) AngularJS experience

30.4 %

@ Less than 1 KLOC
-63% W 1to5KLOC

B 5t0 10 KLOC

W More than 10 KLOC

Less than 1 year
1to 2 years

2to 3 years

More than 3 years

259 %

374%

(c) Largest application

Figure 2. Respondents’ background

Custom interface components I _ 452 (98%)
Behavior specified in HTML [40 96%) 2
%
Predefined components I _ 439 (95%) §
k]
Templates directly in HTML 0 447 @7%) 3
5
One solution to many problems I _ 434 (94%) Z

Modeling with POJOs B s 443 (96%)

T T T T T T T
40 20 0 20 40 60 80 100
Percentage

1 (not valuable)

2

3l 4 (very valuable)ll

Figure 3. Key features and characteristics of AngularJS

ure[2(c)). Therefore, we can conclude that at least the partic-
ipants are not novice ANGULARJS developers.

4.2 Key Characteristics and Features of AngularJS

We asked developers about the the following features:

1. Pre-defined components for code organization: ANGU-
LARJS has different components to modularize code,
which may help in separation of concerns.

. Dependency injection: This design pattern is used by
ANGULARJS to manage dependencies between compo-
nents, to reduce coupling and increase testability.

. Use of POJOs in model components: In ANGULARIJS,
models are implemented using Plain Old JavaScript Ob-
jects (POJOs). There is no need to extend proprietary
classes, for example, to provide accessor methods.

. Templates in HTML: ANGULARJS uses DOM-based
templates to simplify data binding operations, event map-
ping, and updating of large interface components.

. Support to custom components: Custom directives can be
used as a DSL to define reusable UI components.

12

. Ease of writing tests: ANGULARIJS provides the ngMock
module to simulate logging operations, HTTP reqs, etc.

. Two-way data binding: ANGULARIJS provides synchro-
nization between data in the view and in the model.

. Use of HTML to declare UI behavior: The Ul, including
its behavior, is defined in standard HTML documents.

. One solution to manage many problems: ANGULARIS
is an “opinionated framework”, meaning that its design
handles common decisions related with Web apps.

10. Supported by Google: This support may guarantee the

evolution and constant maintenance of the project.

Figure [3] reports the value given by developers to these
characteristics and features, ranging from not valuable
(score 1) to very valuable (score 4). At the right of the charts,
we include the number of answers of each item. Each indi-
vidual item was rated by at least 93% of the participants.
The top-3 features with more positive scores are the sup-
port to custom components, the use of dependency injection,
and the support for two-way data binding. The characteristic

Silent failures

Dump/Debug problems

Modularity and SOC loss

Low readability of HTML

439 (95%)

449 (98%)

434 (94%)

Number of answers

448 (97%)

80 70 60 50 40 30 20 10 O

1 (never)@ 2

10 20 30 40

Percentage

3l 4 (very often)ll

Figure 4. How often these items represent a real problem caused by using code in ANGULARJS templates?

with the lowest number of positive answers is Google sup-
port, with 45.2% of the respondents seeing it as having no
value (score 1) or limited value (score 2).

4.3 Code in HTML Templates

In the mapping study, we detected four possible problems
related to placing code in ANGULARIJS templates:

1. Silent failures: In ANGULARJS, when undefined func-
tions or objects are used in templates no exceptions are
raised. As a consequence, applications might fail silently.

. Code hard to debug: Since the code used in ANGULARJS
templates is not pure JavaScript, it is not possible, for
example, to define break points.

. Low readability: ANGULARJS code might be spread all
over the HTML document, hindering readability.

. Modularity and Separation of Concerns: The use of large
amount of JavaScript code in HTML is often seen as bad

smell (Nguyen et al|2012), which might hinder separa-
tion of concerns.

We asked developers whether these issues are real prob-
lems in their daily development. In this case, the score 1
means the issue was never a problem and a score 4 means
it is a very frequent problem. As shown in Figure [4] none
of the issues have a major detrimental impact, according to
the respondents; they have at least 60% of the answers in the
low part of the scale (scores 1 or 2).

In a separate question, we asked if the developers had at
least once used large amounts of logic in HTML templates
and 26.3% of them answered positively. Since this is not a
recommended practice, we asked them to indicate possible
reasons for their decision The two most voted reasons are
ANGULARIJS design (54.8%) and the lack of experience in

13

ANGULARIJS (43.5%). Lack of experience in Web architec-
ture and in JavaScript were also voted (20.9% and 4.3%, re-
spectively). We also gave the respondents the possibility to
indicate other reasons, which were provided by 31 develop-
ers. These reasons include, for example, tight deadlines, spe-
cial cases, easiness or laziness, prototyping purposes, etc.

4.4 Testing

First, we asked the participants to rate the frequency they
make use of mocking (provided by the ngMock module)
when testing their systems. From 441 answers, 72.8% in-
dicated they never or rarely use this module (scores 1 or
2). Possible reasons for this result include limited useful-
ness of ngMock features, unfamiliarity with the module, and
few developers putting testing into practice. We also asked
the participants to rank how complex is testing ANGULARJS
components, from very easy to very difficult. As presented in
Figure@ services, filters, controllers, and providers received
the higher number of answers with scores 1 and 2. The rea-
son is that these components are very common and usually
do not include complex code or code that deals with com-
plex APIs. For example, most code in filters only make string
transformations. By contrast, the two components more dif-
ficult to test are transclusion directives and directives with
external templates. Probably, developers find these direc-
tives more difficult to test because they demand a deeper un-
derstanding of ANGULARJS concepts. For example, when
creating directives, there are different types of transclusion,
different types of scopes, and different ways to interact with
the DOM APIL.

4.5 Complex Concepts and Features

We asked the participants to evaluate several characteris-
tics of ANGULARIJS, which were originally identified in the

Transclusion directives

Directives with external templates

337 (73%)

350 (76%)

Number of answers

-
- N
Simple HTML directives - - 371 (81%)
Providers - - 361 (78%)
Controllers - - 386 (84%)
Filters _ . 369 (80%)
Services _ . 381 (83%)

20

o 4
N
o

Percentage

1 (very easy)l 2 3 4 (very difficult)ll

Figure 5. How difficult is it to test these ANGULARJS components?

Performance degradation details 413 (90%)

Transclusion directives API

Directive scopes

Compile, link and controller functions
Correct use of $scope.$apply
Dependency registration methods
Scopes prototypal inheritance

External components integration

Dependency injection methods

397 (86%)

424 (92%)

424 (92%)

425 (92%)

419 (91%)

Number of answers

414 (90%)

416 (90%)

419 (91%)

1 (very simple)l

20

o
n
o
o
o
D
o
o]
o

Percentage

2 3l 4 (very complex)ll

Figure 6. How complex are the the following ANGULARIJS aspects and features?

mapping study as complex concepts. The following charac-
teristics were proposed: (1) use of different scopes in direc-
tives; (2) use of prototypes to simulate scope inheritance; (3)
different types of entities to register dependencies; (4) com-
pile, link, and controller functions (necessary to implement
DOM-related directives); (5) transclusion directives; (6) cor-
rect use of $scope.$apply to manually trigger the digest
cycle; (7) tackling of performance degradation details; (8)
integration with external components and plug-ins; and (9)

correct usage of the syntax to inject dependencies (in order
to avoid unexpected results when minifying the code).
Figure [f] summarizes the developers’ classification from
very simple concept (score 1) to very complex one (score 4).
Tackling all the details that can lead to performance degrada-
tion was rated by 76% of the participants as a complex task.
The next three items in terms of complexity are transclusion
directives, the different scopes that can be used when build-
ing directives, and the correct use of the functions compile,
link, and controller. All these items are somehow re-

Integration with ES6 modules

New API for Ul components definition
Component router

New mechanism for change detection
New mobile features

Server rendering

New template syntax

New API for dependency injection

No more $scope.$apply

Execution time measurement service

Other

o —
2 -

n |
o

30 40

o
=}
@
=}

70

Percent of developers

Figure 7. Most expected ANGULARJS 2.0 features

lated with the implementation of directives. The remaining
items were rated as more simple than complex, mainly the
integration with external components and the use of the cor-
rect syntax to inject dependencies.

In a separate question, we asked the developers about the
frequency they create directives. As a result, 83.5% of the
participants answered they often or very often create their
own directives. Despite this fact, many tasks and features
related to the implementation of directives are usually con-
sidered complex by the survey participants.

4.6 Angular]S 2.0

To reveal the most expected features or improvements in
ANGULARJS 2.0, we selected the following features that
appeared in the mapping study: (1) the new API to de-
fine the main Ul building blocks; (2) Zone.js (no more
$scope.$apply ()); (3) server rendering; (4) the new log-
ging service, called diary.js; (5) new mobile features (e.g.
support for touch event gestures); (6) the new template syn-
tax; (7) the new change detection mechanism; (8) the new
API for injecting dependencies; (9) integration with EC-
MAScript 6 (ES6) modules; (10) component router, which
allows asynchronous loading.

Figure [7] indicates that the most expected feature is the
integration with ES6 modules (68.3%). The second most
expected feature is the new API to create Ul components,
which is expected because the current API is perceived by
most developers as difficult to use and understand (see Sec-
tion .3)). The third most expected feature is the component
router, which allows the dynamic loading of UI components,
followed by the new change detection mechanism.

4.7 Key Findings and Implications
The main findings of our survey are as follows:

* Three characteristics of ANGULARIJS excel by the value
that developers give to them: the ability to create Ul com-

15

ponents by means of custom directives, the use of depen-
dency injection, and the ease to set up two-way data bind-
ing. Therefore, JavaScript MVC framework builders can
embrace these characteristics and improve them by offer-
ing a more simple interface to build reusable UI compo-
nents (without exposing final users to internal concepts
and decisions) and by using better mechanisms to detect
changes in the model (i.e., mechanisms that reduce the
number of details to be considered).

The two problems that arise more frequently regarding
the use of code in ANGULARIJS templates are the emer-
gence of silent failures and the difficulty to dump/debug
the variables referenced in the HTML. New debug tools
and techniques can then be developed to alleviate these
problems faced by developers.

The two main reasons for placing large amounts of logic
in templates are the lack of experience in ANGULARIJS
and the design of the framework. This shows the impor-
tance of correctly training developers before they start to
use ANGULARIJS on complex applications. It also reveals
an opportunity for framework builders to investigate new
framework designs.

The components that are more difficult to test in ANGU-
LARIJS are directives, mainly the ones using transclusion;
the remaining components (i.e., controllers, services, fil-
ters, etc.) are mostly considered easy to test.

5. Threats to Validity

The first threat to validity relates to the execution of the map-
ping study. Due to the large amount of information on the
Internet about ANGULARIJS, it is possible that literature ad-
dressing more specific topics about the framework or pre-
senting different points of view was not included.
Regarding the construction of the questionnaire, the main
threat is the insertion of ambiguous and leading questions.

We made our best to avoid this problem by constantly re-
viewing and improving the proposed questions. Addition-
ally, we ran a pilot survey to identify and correct this type of
questions. In some questions, we also gave the participants
the opportunity to respond with an answer different from the
proposed ones by adding an “Other” option. Furthermore,
with the exception of the background questions, no question
was mandatory. Therefore, participants were not forced to
provide answers when they did not want or when they were
not sure about their answers.

There are also two threats related to the method used
to retrieve the participants’ e-mails. The first one is related
with the match between the Stack Overflow profile and the
GitHub profile of the participants. It is possible that a Stack
Overflow user has been matched with a homonym user in
GitHub (i.e., users who have exactly the same login name,
but who are different people). Additionally, it is possible
that the heuristic used to assess and rank the expertise of
the selected developers does not reflect the reality.

There are also some aspects that limit the generalization
of our results (external validity). First, the sample for the sur-
vey was selected only from the Stack Overflow community.
Therefore, it is possible that the findings in this study do not
apply to a different population. Moreover, constant and rapid
changes in Web development environments, including new
technologies and new versions of ANGULARJS, can lead to
different results if the study is repeated in the future.

Finally, we have to mention threats related to human
behavior. For instance, we can mention the ordering of the
questions since one may provide context for the next one.
Another threat is the attitude of the participants towards the
topic of research. Their responses can introduce bias to make
ANGULARJS appear in a positive or negative light. We can
mention the case of one participant who declared that he is a
contributor of the ANGULARIJS project.

6. Related Work

Some works have been focusing on practitioners’ use of
known technologies. [Dobing and Parsons| (2006) conducted
the first survey on how UML diagrams are used by practi-
tioners and their clients. The authors gathered 182 responses
from analysts with average experience of 4.7 years in UML.
Class diagrams are being used regularly by the majority of
the respondents, followed by Sequence and Use Case dia-
grams. Some of the reasons why a UML diagram is not used
vary from “not well understood by analysts” to “insufficient
value to justify the cost”. In another study, [Petre| (2013) re-
ported two years of interviews with practitioners. Most of
them (35 out of 50) currently do not use UML at all, due to
notation overhead, lack of context, etc. Both work highlight
the complexity of UML. They also suggest that more tooling
is needed for both newcomers and professionals in order to
use the language more effectively.

16

Ocariza et al.| (2015) proposed two types of inconsisten-
cies that can be found in ANGULARIJS applications: (i) when
identifiers used in one layer are undefined in the lower layer;
and (ii) when values assigned to a variable, or returned by
a function, do not match their type in the view. Accord-
ing to the authors, both inconsistencies are not easily caught
during development and might cause bugs. However, in our
survey, only 39% of the respondents considered that silent
failures, corresponding to identifier inconsistency, are real
problems in their daily development. Moreover, 84.5% of
the respondents considered two-way data binding, which re-
lates to type consistency, as a valuable feature. Both results
shed light over real problems developers face when they
use ANGULARJS.

7. Conclusion

This paper reported an empirical study about different as-
pects of ANGULARJS based on opinions and experiences of
developers. Our main contributions include the identification
of the most appreciated features of ANGULARIJS (e.g., cus-
tom interface components, dependency injection, and two-
way data binding) and the most problematic aspects of the
framework (e.g., performance degradation and implementa-
tion of directives). Future work includes an analysis of the
results using statistical tests. Interviews with ANGULARIJS
developers can also contribute to strength our findings.

Acknowledgments

Our research is supported by FAPEMIG and CNPq. We also
deeply thank the 460 developers who answered the survey.

References

B. Dobing and J. Parsons. How UML is used. Commununications
of the ACM, 49(5):109-113, 2006.

H. M. Kienle. It’s about time to take JavaScript (more) seriously.
IEEE Software, 27(3):60-62, 2010.

H. V.Nguyen, H. A. Nguyen, T. T. Nguyen, A. T. Nguyen, and T. N.
Nguyen. Detection of embedded code smells in dynamic web
applications. In 27th International Conference on Automated
Software Engineering (ASE), pages 282-285, 2012.

F. Ocariza, K. Pattabiraman, and A. Mesbah. Detecting inconsis-
tencies in JavaScript MVC applications. In 37th International
Conference on Software Engineering (ICSE), pages 325-335,
2015.

M. Petre. UML in practice. In 35th International Conference on
Software Engineering (ICSE), pages 722-731, 2013.

L. Silva, M. Ramos, M. T. Valente, N. Anquetil, and A. Bergel.
Does Javascript software embrace classes? In 22nd International
Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 73-82, 2015.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and

A. Wesslén. Experimentation in software engineering. Springer,
2012.

	Introduction
	AngularJS in a Nutshell
	Survey Design
	Mapping Study
	Survey Construction and Participants

	Survey Results
	Background
	Key Characteristics and Features of AngularJS
	Code in HTML Templates
	Testing
	Complex Concepts and Features
	AngularJS 2.0
	Key Findings and Implications

	Threats to Validity
	Related Work
	Conclusion

