
SOFTWARE – PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2015; 45:315–342
Published online 25 September 2013 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.2228

A recommendation system for repairing violations detected by
static architecture conformance checking

Ricardo Terra1,2,*,†, Marco Tulio Valente1, Krzysztof Czarnecki2 and
Roberto S. Bigonha1

1Universidade Federal de Minas Gerais, Brazil
2University of Waterloo, Canada

SUMMARY

This paper describes a recommendation system that provides refactoring guidelines for maintainers when
tackling architectural erosion. The paper formalizes 32 refactoring recommendations to repair violations
raised by static architecture conformance checking approaches; it describes a tool—called ArchFix—that
triggers the proposed recommendations; and it evaluates the application of this tool in two industrial-strength
systems. For the first system—a 21 KLOC open-source strategic management system—our approach has
indicated correct refactoring recommendations for 31 out of 41 violations detected as the result of an
architecture conformance process. For the second system—a 728 KLOC customer care system used by a
major telecommunication company—our approach has triggered correct recommendations for 624 out of
787 violations, as asserted by the system’s architect. Moreover, the architects have scored 82% of these
recommendations as having moderate or major complexity. Copyright © 2013 John Wiley & Sons, Ltd.

Received 24 August 2012; Revised 17 August 2013; Accepted 19 August 2013

KEY WORDS: software architecture; refactoring; recommendation system

1. INTRODUCTION

Software architecture erosion is one of the most evident manifestations of software aging [1–3].
The phenomenon designates the progressive gap normally observed between two architectures: the
intended architecture defined during the architectural design phase and the concrete architecture
defined by the current implementation of the software system [4–6]. Causes of architectural ero-
sion include deadline pressures, conflicting requirements, miscommunication, developers’ unaware-
ness, and the lack of an explicit correspondence between architectural and programming language
abstractions. Regardless the causes, when the erosion is neglected over long periods, it can reduce
the concrete architecture to a small set of strongly coupled and weakly cohesive components, whose
maintenance and evolution become increasingly more difficult and costly [3, 7].

To tackle the erosion process, the first task is to check whether the concrete architecture conforms
to the intended one [3, 8–10]. More specifically, the goal of an architecture conformance process is
to reveal the implementation decisions that denote architectural violations, that is, the concrete state-
ments, expressions, or declarations in the source code that do not match the constraints imposed by
the intended architecture. For this purpose, several architecture conformance techniques have been
proposed, including reflexion models [11], intensional views [12], design tests [13], architecture
description languages [14], and domain-specific languages [15–17].

After the conformance phase, the next task is to replace the detected violations with implementa-
tion decisions consistent with the intended architecture. However, this reengineering effort is usually

*Correspondence to: Ricardo Terra, Universidade Federal de Minas Gerais, Brazil.
†E-mail: terra@dcc.ufmg.br

Copyright © 2013 John Wiley & Sons, Ltd.

316 R. TERRA ET AL.

Figure 1. Proposed architectural repair recommendation approach.

a nontrivial and time-consuming task. For example, Knodel et al. described their experience of
applying an architecture conformance process to a product line in the domain of portable measure-
ment devices. As a result, they identified almost 5000 architectural divergences in three products of
this product line [18]. In previous work [16], we described our own experience in applying confor-
mance techniques to a human resource management system. In this process, we have been able to
detect more than 2200 architectural violations. As a last example, Sarkar et al. reported their experi-
ence in remodularizing a large banking application. Reconstructing the original architecture of this
system demanded 2100 person-days just for coding and testing [7].

However, despite of its relevance and in contrast to the variety of techniques available for archi-
tecture conformance, the task of fixing architectural violations is usually performed in an ad hoc
way. Usually, the only employed tools are the automatic refactorings provided by today’s inte-
grated development environments or simple program analysis tools, such as those that extract
function call information [7]. In view of such circumstances, a solution based on recommenda-
tion system principles may represent a promising approach. Such a solution may provide refac-
toring guidelines for developers and maintainers when fixing architectural violations. Moreover,
by definition, an approach based on recommendations does not have the ambition to provide a
fully automatic solution to remove architectural violations, which is certainly a task ahead the
state of the art in reengineering tools. In fact, even a bug-free implementation for typical refac-
torings, that is, refactorings whose scope are limited to a few classes, has been proved to be a
complex task [19, 20].

In this paper, we propose an architectural repair recommendation system whose main purpose is to
provide refactoring guidelines for developers and maintainers when fixing violations in the module
architecture view of object-oriented systems. As illustrated in Figure 1, considering a set of archi-
tectural violations raised by a static architecture conformance tool, the proposed recommendation
engine—called ArchFix—provides refactoring recommendations to guide the process of repair-
ing each detected violation. For example, we may suggest the use of a Move Method refactoring to
fix a given violation, including a suggestion of a target class.

In a recent short paper, we discussed the preliminary design of our recommendation
approach [21]. This paper extends our earlier work with the following contributions: (a) an extensive
set of 32 recommendations for fixing architectural violations, including violations due to diver-
gences and absences (in our previous work, we presented a preliminary set of 10 recommendations
targeting only divergences); (b) the design and implementation of ArchFix, a recommendation
system that triggers the proposed architectural refactoring recommendations; and (c) an evaluation
of our approach in two real-world systems. For the first system—a 21 KLOC open-source strate-
gic management system—our approach indicated the correct refactoring for 75% of the detected
violations. For the second system—a 728 KLOC customer care system used by a major telecom-
munication company—our approach triggered correct recommendations for 79% of the violations,
as endorsed by the architects. Moreover, the architects marked 82% of these recommendations as
having moderate or major complexity.

The remainder of this paper is structured as follows. Section 2 provides a definition for cen-
tral concepts needed to follow our approach, such as architectural model, architectural violations,
and refactoring recommendations. Section 3 presents a formal specification of the proposed archi-
tectural repair recommendation system, including the description of a subset of recommendations,
underlying algorithms, and similarity functions. Section 4 describes the design and implementation
of the ArchFix tool. Section 5 presents and discusses results on applying these recommenda-
tions in two real-world systems. Finally, Section 6 presents related work and Section 7 concludes
the paper.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:315–342
DOI: 10.1002/spe

A RECOMMENDATION SYSTEM FOR REPAIRING ARCHITECTURAL VIOLATIONS 317

2. BASIC CONCEPTS

In this section, we provide definitions of the following fundamental concepts employed in this paper:
recommendation system, architectural model, architectural violation, architecturally defective code,
and refactoring recommendation.

Recommendation system

A recommendation system is a software system that provides potentially valuable information in a
given context [22–24]. In the particular context of software engineering, recommendation systems
can recommend, for example, relevant source code fragments to help developers use frameworks and
APIs (e.g., Strathcona [25]), software artifacts that should be changed together (e.g., eRose [26]),
and replacement methods for adapting code to a new library version (e.g., SemDiff [27]). In this
paper, we propose a novel recommendation system, called ArchFix, which provides refactoring
recommendations to repair architectural violations. The proposed system is defined by the following
function:

Arch. Model x Arch. Violation x Arch. Defective Code �! Refactoring Recommendation

In short, our system receives as input the intended architectural model (Arch. Model), the descrip-
tion of the violation (Arch. Violation), and the piece of source code that raised the architectural vio-
lation (Arch. Defective Code). ArchFix then returns a Refactoring Recommendation that might
be useful to repair such violation. In the remainder of this section, we discuss such elements in
more detail.

Architectural model

Kruchten defines software architecture using five concurrent views, each one addressing a spe-
cific set of concerns of interest to different stakeholders [28]. Particularly, our work is centered
on the development view (a.k.a. module view), which describes the software’s static organization
in its development environment. It concerns low-level design decisions, patterns, and best prac-
tices. From this viewpoint, an object-oriented software architecture is defined by a set of modules
and their interactions, where we will consider a module as a set of classes [16]. Therefore, we
model relations at the level of classes. More specifically, a dependency .A,dep,B/ is established
whenever a class A uses services provided by a target class B. We consider that dependencies can
be established using the following types of common operations in object-oriented languages (i.e.,
these types are possible values of the dep field): calling methods or attributes (access), declar-
ing variables (declare), creating objects (create), extending classes or implementing interfaces
(derive), throwing exceptions (throw), or using annotations (useannotation). For example,
the relations .A,create,B/ and .A,access,B/ indicate that class A creates and calls methods of
an object of type B, respectively.

The architectural model considered by ArchFix is expressed in terms of architectural con-
straints, which are formalized as follows:

Module1 Œcannotjmust��dep Module2

where dep denotes the dependency type, that is, dep can be access, declare, create,
and so on. As an illustrative example, assume that MA and MB are modules, that is, sets of
classes. A constraint in the form MA cannot-dep MB indicates that types from module MA
cannot establish a dependency of the dep kind with types from module MB, for example,
ViewLayer cannot-access ModelLayer. On the other hand, a constraint in the form
MA must-dep MB indicates that types from module MA must establish a dependency of the dep
kind with types from module MB, for example, DTO must-implement Serializable.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:315–342
DOI: 10.1002/spe

318 R. TERRA ET AL.

Architectural violation

Basically, there are two types of violations in the static architecture of software systems: divergences
(when an existing dependency in the source code violates the architectural model) and absences
(when the source code does not establish a dependency, that is, prescribed by the architectural
model) [8,9,11]. In our approach, divergences occur when architectural constraints of type cannot
are not respected by the source code. Conversely, absences occur when architectural constraints of
type must are not respected.

We consider that an architectural violation is defined by a tuple ŒA,viol_type,dep,B�, where
.A,dep,B/ is the dependency that caused the violation and viol_type indicates whether the vio-
lation is due to a divergence or an absence. To increase readability, when expressing a value for
viol_type, we use the words cannot and must to denote divergences and absences, respec-
tively. For example, a violation ŒProductView,cannot,access,ProductModel� denotes
a divergence where a class ProductView is accessing an object of type ProductModel.
As another example, a violation ŒProductDTO,must,extend,Serializable� denotes an
absence when the class ProductDTO is not extending the class Serializable.

Formal definition: Assume that MA and MB are modules, A and B are classes, and dep denotes a
dependency type, that is, dep can be access, declare, create, and so on. A violation of a
constraint in the form MA cannot-dep MB happens whenever

9A 9B ŒA 2 MA ^ B 2 MB ^ establishes.A,dep,B/ �

where the predicate establishes checks whether there is a dependency of type dep from A to
B. Conversely, a violation of a constraint in the form MA must-dep MB happens whenever

9A ÀB ŒA 2 MA ^ B 2 MB ^ establishes.A,dep,B/ �

Architecturally defective code

An architectural violation, as defined before, statically occurs in a piece of code. In our recom-
mendation system, we consider that the code responsible for a violation (i.e., the architecturally
defective code) follows one of the code templates defined in Table I. As an example, the template
new B.exp/ covers instantiations of a given class B. As another example, consider the architectural
constraint UI cannot�access Bar and the class Screen presented in Code 1.

Assuming that Screen is located in module UI, a violation ŒScreen,cannot,access,Bar�
is raised by the call bar.foo.13,‘b’/ located at line 6. This call matches the template b.f.exp/
with b bound to the target object bar, f bound to the method foo, and exp bound to the list of
expressions .13,‘b’/.

Refactoring recommendation

In ArchFix, the recommendations consist in a refactoring activity to repair an architectural
violation. In fact, a refactoring recommendation is a sequence of refactoring operations, using
the functions described in Table II. Although most refactoring functions are familiar, Appendix A

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:315–342
DOI: 10.1002/spe

A RECOMMENDATION SYSTEM FOR REPAIRING ARCHITECTURAL VIOLATIONS 319

Table I. Code templates.

Template Interpretation

class A Class implementation
class A derive B Class that extends or implements type B
@B class A Class with an annotation of type B
g .p/¹ S º Implementation of a method g, with formal

parameters p and body S
@B g .p/¹ S º Implementation of a method g, with annotation @B,

formal parameters p, and body S
g .B b/¹ S º Implementation of a method g, with a formal parameter

of type B, and body S
g .p/¹T vD exp_b º Implementation of a method g, with formal parameters

p and whose body declares a local variable
v of type T initialized with exp_b
(which returns an object of type B)

g .p/¹return new B.exp/ º Implementation of a method g, with formal parameters p,
returning an object of type B created
using parameters exp

g .p/ throws B ¹ S º Implementation of a method g, with formal parameters p,
and body S that can throw an exception of type B

B bI S Declaration of a variable b of type B followed by statements S
B bD expI S Declaration of a variable b of type B, initialized with

exp and followed by statements S
catch .B b/ ¹ S º Implementation of a catch clause for exceptions of type

B and with a body S
b.f.exp/ Invocation of a method f using the target object b and

actual parameters exp
new B.exp/ Instantiation of an object of type B using parameters exp

Table II. Refactoring functions.

Function Description Type

extract.stm/ Applies an Extract Method refactoring [29] lt
with the set of statements stm

inline.exp,v,S/ Inlines exp in the uses of variable v in the lt
block of code S (Appendix A)

move.f,M/ Moves method f to the most suitable class in mv
module M, that is, applies a Move Method refactoring [29]

move.C,M/ Moves class C to module M, that is, applies a mv
Move Class refactoring [29]

promote_param.f,v,exp/ Promotes variable v to a formal parameter lt
of method f; exp is used as the additional a
rgument in the calls to f (Appendix A)

replace.S1,S2/ Replaces block of code S1 with S2 lt
remove.S/ Removes block of code S, which is equivalent lt

to replace.S, ffi/
remove_catch.Ex,S/ Removes the catch clause for exception Ex lt

from the try-catch block S
unwrap_return.f,T,exp/ Modifies the return type of method f to the lt

type of exp and moves the instantiations of the wrapper
type T to the respective call sites (Appendix A)

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:315–342
DOI: 10.1002/spe

320 R. TERRA ET AL.

provides a detailed description of the following particular functions: promote_param, inline,
and unwrap_return.

As can be observed in Table II, the recommendations include two types of refactorings:

� (lt) stands for a local transformation restricted to the method or class, which is a refac-
toring more common to handle divergences. For instance, suppose that a given module
should not use List objects, but can use Collection. In this case, function
replace.ŒList�, ŒCollection�/ locally replaces a declaration of the unauthorized
type List with its supertype Collection. As another example, we can mention a
refactoring that replaces an unauthorized class instantiation with a call to its factory
method—replace.Œnew ProductDAO./�, ŒDAOFactory.getProductDAO./�/.

� (mv) stands for a transformation that requires moving code, which may be useful to handle
both divergences and absences, as will be largely discussed in Section 3.5. As an exam-
ple, suppose that a class ProductReport is implemented in module View, whereas the
architectural model prescribes that all reports must be implemented in module Report.
In this case, function move.ProductReport, Report/ can indicate the correct repair
action to handle this particular violation.

3. ARCHITECTURAL REFACTORING RECOMMENDATIONS

This section defines the architectural refactoring recommendations triggered by ArchFix. We
start by explaining how the recommendations have emerged, and then, we define and illustrate our
recommendations.

3.1. Training system

The proposed recommendations emerged after an in-depth investigation of possible fixes for more
than 2200 violations we detected in a previously evaluated system called SGP (our training set sys-
tem is different from the systems used for evaluation in this paper) [16]. The choice of SGP was
motivated by the following facts: (i) it is a large web system with around 240 KLOC, (ii) its archi-
tecture reflects the one commonly used in Java-based web systems, and (iii) the system was facing
a serious architecture erosion process, that is, we detected 2241 architectural violations.

We considered this set of violations as our training set to define our recommendations. We ana-
lyzed and generalized the solution (refactoring task) employed by the system architect for each
violation. More important, we also documented the preconditions that allow each refactoring to
be applied. As a result, we reached a catalog of 32 architectural refactoring recommendations.
We hypothesized that many of the recommendations would be applicable to other systems. Our
evaluation confirms this hypothesis; however, we acknowledge that the catalog is likely incomplete.

3.2. Syntax and auxiliary functions

Assuming the definitions and concepts outlined in Section 2, the architectural refactoring recom-
mendations triggered by our system are defined using the following syntax:

This recommendation syntax is interpreted as follows: whenever the indicated violation
ŒA,viol_type,dep,B� is found in a piece of code that matches the code_template and the
preconditions hold, the recommendation is triggered (i.e., suggested to the user).

A recommendation consists of one or more refactoring functions, as defined in Table II. Table III
lists a set of auxiliary functions used to define the preconditions. Some of such functions
define a simple source code query language, including functions such as call_sites.f/, which

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:315–342
DOI: 10.1002/spe

A RECOMMENDATION SYSTEM FOR REPAIRING ARCHITECTURAL VIOLATIONS 321

Table III. Auxiliary functions.

Function Description

call_sites.f/ Returns the statements that call function f
can.T1,dep,T2/ Checks whether a dependency of the dep type

from type T1 to type T2 does not raise any violation,
that is, respects the architectural model

has_catch.Ex,S/ Checks whether there is a catch clause for exception
Ex in the try-catch block S

delegate.f/ Searches for a delegate method for f, that is, a method
that just encapsulates a call to f (Appendix B)

equals_sig.f1,f2/ Checks whether methods f1 and f2 have the same signature
factory.C,exp/ Searches for a factory method for class C, accepting

exp as input (Appendix B)
gen_decl.f/ Declares a variable of type C, which defines the type C, to be the target of a

call to method f (Appendix B)
gen_factory.C,exp/ Generates a factory for class C, accepting exp as

parameter (Appendix B)
override.C1,C2/ Checks whether class C1 overrides a method defined

in superclass C2
sub.T/ Returns the subtypes of type T
suitable_module.E/ Returns the most suitable module for a source code

entity E (Section 3.5)
super.T/ Returns the supertypes of type T
target.A/ Returns the target entity of an annotation A, which can

be a type or a method
type.v/ Returns the type of variable v
typecheck.stm/ Checks whether code stm type checks
user_code./ Returns a block of code with only a TODO comment,

which the user must fill

returns the call sites of a given method f, and super.T/, which returns the supertypes of a
given type T. Other functions are slightly more complex, such as can.T1,dep,T2/, which checks
whether the establishment of a dependency .T1,dep,T2/ raises an architectural violation, and
typecheck.stm/, which checks whether a piece of code compiles without type errors. In addi-
tion, Appendix B provides a detailed description of the following nontrivial functions: delegate,
factory, gen_decl, and gen_factory.

3.3. Recommendations

Table IV specifies the recommendations using the aforementioned syntax and functions. The
table formalizes recommendations to address both divergences (recs. D1 to D24) and absences
(recs.A1 toA8). In the specifications, we consider that M.A/—or just MA for the sake of simplicity—
is a total function that returns the module of a given class A. We also consider that MA is the
complement of the module returned by MA, that is, all classes in the project under analysis except
those in MA. Furthermore, the recommendations are listed according to their priority. For instance,
assume a violation ŒA,cannot,throw,B�. In this particular case, a recommendation for remov-
ing the throws clause (rec. D15) has a higher priority than the recommendation to handle the
exception internally (rec. D16). In this case, the order was defined considering the complexity of
the recommended refactorings. More specifically, it is simpler to remove a throws clause than to
include a catch statement and the respective exception handling code.

To provide an overview of our architectural refactoring recommendations, we describe next a
small subset of our recommendations:

� D2: Replace the unauthorized type B with one of its subtypes B0. As an example,
developers when implementing web-based systems using Google Web Toolkit (GWT)
should avoid the use of generic types (e.g., java.util.Collection) on GWT

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:315–342
DOI: 10.1002/spe

322 R. TERRA ET AL.

Table IV. Refactoring recommendation.

interfaces to reduce the size of the generated JavaScript code. Therefore, whenever pos-
sible, they should rely on more specialized types (e.g., java.util.ArrayList instead
of java.util.Collection).
� D9: Remove a call to a given method f when no class in the system can access the class

where f is implemented. It is particularly useful when developers access methods whose
usage is restricted. For instance, developers tend to establish dependencies with the Java
API System class (e.g., by calling System.out.println) as a practice of rudimentary
debugging. Nevertheless, these calls must be removed, especially in web-based systems.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:315–342
DOI: 10.1002/spe

A RECOMMENDATION SYSTEM FOR REPAIRING ARCHITECTURAL VIOLATIONS 323

� D11: Replace a new operator with a call to the get method of a Factory FB. It
addresses the situation where developers—due to unawareness or forgetfulness—create
directly objects of classes that have a well-defined factory.
� D16: Remove the throws clause and insert a try�catch block around the body of

the method to handle a given exception internally. In this particular case, the developers
must provide the code that handles the exception, as required by the auxiliary function
user_code.
� D20: Move a class A to a most suitable module M. It is particularly useful when develop-

ers mistakenly implement a class in the wrong module, for example, a ProductReport
class in the View layer.
� A3: Make class A extend or implement B. It addresses the situation where developers

have failed to derive from the base types of the module. For instance, an Entity class
must implement Serializable to provide persistence. However, assume that a given
entity class Product does not implement Serializable. Because Entity classes
rely extensively on the same types, the suitable_module function will likely infer that
Product is indeed in its correct module and therefore, must implement Serializable.

Section 5 provides concrete examples on the use of the proposed recommendations in two real
systems. Furthermore, a detailed description of all architectural refactoring recommendations is
available in a companion website.‡

3.4. Algorithm

In order to provide an operational description for our approach, Algorithm 1 presents the algo-
rithm followed by ArchFix to trigger architectural refactoring recommendations. First, function
getRecommendations./ returns a list with the possible recommendations for a particular vio-
lation (line 1). For instance, assume a violation ŒA,must,useannotation,B�, the function
returns the priority-sorted list of recommendations ŒA5,A6,A7,A8�. Next, we iterate over this
list (lines 2–6). Whenever the code responsible for the violation matches the code template of
a possible recommendation and the preconditions hold (line 3), the recommendation is returned
(line 4). When none of the possible recommendations follows our conditions, we do not return any
recommendation (line 7).

Algorithm 1 Recommendation Algorithm
Input: Architectural model (arch), violation (viol), and defective code (code)
Output: Refactoring recommendation
1: potentialRecs getRecommendations.viol/ F Sorted by priority

2: for each rec in potentialRecs do
3: if (code matches rec.code_template and hcode,viol ,archi satisfies rec.preconditions) then
4: return rec.recommendation
5: end if
6: end for

7: return � F No recommendation

Note that when multiple recommendations match a given violation, the algorithm returns only the
one with the highest priority.

3.5. Module suitability

In Table IV, 14 out of 32 recommendations (e.g., D18, D20, D21, A4, etc.) include a sug-
gestion to move methods or classes to more suitable modules, as computed by the function
suitable_module. In essence, this function considers the structural similarity among source

‡http://www.dcc.ufmg.br/~terra/spe2013

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:315–342
DOI: 10.1002/spe

324 R. TERRA ET AL.

code entities to make a recommendation. In order to measure this similarity, we use the Jaccard
similarity coefficient [30], which is a statistical measure for the similarity between two sets. To cal-
culate this coefficient, we assume that a given module is represented by the set of dependencies it
establishes with the other modules. This assumption is based on the fact that our recommendations
are proposed to remove divergences or absences in the structural dependencies established between
the modules of object-oriented software architectures.

Based on such assumptions, the Jaccard similarity between modulesM1 andM2 is defined by the
following:

sim .M1,M2, dep/D
jDeps.M1, dep/\Deps.M2, dep/j

jDeps.M1, dep/[Deps.M2, dep/j

where dep denotes the dependency type (e.g., access, create, etc.) that motivated the simi-
larity calculation. In addition, Deps.M , dep/ is a set of pairs .dep,T /, denoting the existence of a
dependency of type dep between a class Ci and a given type T , where Ci 2 M . When dep D �,
we do not consider a particular dependency type when calculating Deps, that is, all dependencies
of any type are included in the resulting set.

Suppose that a violation is detected in module M1 involving a dependency of type dep. Suppose
also that the recommendation for this violation requires moving the class responsible for the viola-
tion to another module M2. In this case, M2 is defined as the module m that provides the following
maximal value:

max

²
max
8m

sim.M1,m, dep/, max
8m

sim.M1,m,�/

³

In other words, the most suitable module is the module with the highest Jaccard coefficient—as
returned by the sim function—considering two possible sets of dependencies: (1) only dependencies
of type dep and (2) all dependencies, independently of their type (i.e., dep D �). This second alter-
native is particularly important when making recommendations for absences, because by definition,
the module M1 in this case misses a dependency of type dep, that is, Deps.M1, dep/D ;.

4. THE ARCHFIX TOOL

We developed a prototype tool called ArchFix that implements our approach. In its current
implementation, ArchFix relies on violations raised by the Dependency Constraint Language
(DCL) [16, 31], which is a domain-specific language for defining structural constraints between
modules in Java. Compared with other approaches, DCL relies on a simple syntax and supports
architecture compliance by construction, in order to proactively prevent architecture decay [32].
For example, to capture divergences, DCL supports constraints expressing that dependencies only
can, can only, or cannot be established by specified modules. In addition, to capture absences,
it is possible to specify constraints to check that particular dependencies must be present in the
source code.

More specifically, we implemented ArchFix as an extension of DCLcheck, an Eclipse-based
conformance tool that checks architectural constraints defined in DCL. As illustrated in Figure 2,
ArchFix exploits some preexisting data structures available in DCLcheck, such as the graph of
existing dependencies, the defined architectural constraints, and the detected violations. Moreover,
ArchFix also reuses some auxiliary functions from DCLcheck, for example, a function that
checks whether a type can establish a particular dependency with another type (function can,
Table III).

ArchFix follows an architecture with three main modules:

� Recommendation engine: Based on the specification shown in Table IV, this module is
responsible for suggesting the appropriate refactoring recommendation for a particular vio-
lation (when applicable). In fact, this module implements the Algorithm 1 presented in

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:315–342
DOI: 10.1002/spe

A RECOMMENDATION SYSTEM FOR REPAIRING ARCHITECTURAL VIOLATIONS 325

Figure 2. ArchFix architecture.

Section 3.4. In our current implementation, ArchFix was designed as a marker resolu-
tion because DCLcheck marks architectural violations in the source code. In other words,
ArchFix is invoked whenever the developers request Quick Fixes for problem markers§

that represent architectural violations.
As illustrated in Figure 2, the module Recommendation Engine

inspects the recommendations using services from modules Auxiliary and
Refactoring Functions. More specifically, the Recommendation Engine exports
the public method getResolutions that receives a problem marker as input —
which contains information on the architectural violation (e.g., violated constraint and
the architecturally defective code)—and then returns a list of potential refactoring
recommendations.

� Auxiliary functions: This module implements the auxiliary functions listed in Table III.
� Refactoring functions: This module is responsible for applying the refactorings listed in

Table II. In the current stage of its implementation, ArchFix is mostly a recommen-
dation engine, that is, the tool suggests refactorings to repair architectural violations.
Nevertheless, ArchFix already supports some simple refactorings, such as replacing a
type and removing annotations (which are only executed when the user accepts a given
recommendation).

To illustrate ArchFix’s interface, assume an architectural constraint of the form
ControllerLayer cannot�declare HibernateDAO.

Assume also a class ProductController that declares a variable of a type
ProductHibernateDAO, that is, a class that introduces a violation in the form
ŒProductController,cannot,declare,HibernateDAO�. When the maintainer requests
a recommendation to fix such violation, ArchFix indicates the most appropriate refactoring
(Figure 3). The provided recommendation suggests replacing the declaration of the unauthorized
type ProductHibernateDAO with its interface IProductDAO (which corresponds to recom-
mendation D1 in Table IV). This recommendation is particularly useful to handle violations due to
references to a concrete implementation of a service, instead to its general interface.

§A problem marker (an object of type org.eclipse.core.resources.problemmarker) represents an error or
warning listed in the Problems view of the Eclipse integrated development environment.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:315–342
DOI: 10.1002/spe

326 R. TERRA ET AL.

Figure 3. ArchFix interface.

5. EVALUATION

5.1. Research questions

We designed a study to address the following research questions:

� RQ #1 – For what portion of architectural violations detected in a real-world system can the
proposed approach provide refactoring recommendations?

� RQ #2 – Does the proposed approach provide correct recommendations for repairing architec-
tural violations?

� RQ #3 – How complex is to discover a correct refactoring without the support of our recom-
mendation system?

� RQ #4 – How complex is to reject an incorrect refactoring provided by our recommendation
system?

The strategies we follow to assert correctness (RQ #2) and to measure complexity (RQ #3 and
RQ #4) are presented in Section 5.3 (respectively in Sections 5.3.2 and 5.3.3).

5.2. Target systems

Our evaluation relies on two Java-based systems. The first one is a 21 KLOC open-source strate-
gic management system, called Geplanes.¶ The system handles strategic management activities,
including management plans, goals, performance indicators, actions, and so on. The second one is
a large and complex customer care platform of a major Brazilian telecommunication company. Due
to a nondisclosure agreement, we will omit the company’s name in this paper and will refer to this
second system just as BrTCom. The system has 728 KLOC, and it handles a full range of customer
related services, including account activation, claims and inquiries, offers, and so on. Table V shows
information on the size of both systems.

5.3. Methodology

To provide answers to our research questions, we performed the following major steps:

¶http://www.softwarepublico.gov.br

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:315–342
DOI: 10.1002/spe

A RECOMMENDATION SYSTEM FOR REPAIRING ARCHITECTURAL VIOLATIONS 327

Table V. Target systems.

Geplanes BrTCom

LOC 21799 728814
Subsystems 1 146
Packages 25 2289
Classes 278 4724
Interfaces 1 1893
External libraries 47 58

Figure 4. Methodology followed in the evaluation.

5.3.1. Triggering recommendations. As illustrated in Figure 4, the chief architect of each system
first defined the architectural constraints based on an existing high-level model of their systems.
Because the constraints were provided in natural language, we translated the informal definitions to
DCL and validated them with the architects in a 30-min individual meeting.

Next, we executed the DCLcheck tool to detect violations in both systems. A second meet-
ing was scheduled with the architects to validate the architectural violations raised by DCLcheck.
Although Geplanes’ meeting lasted 25 min, BrTCom’s meeting lasted almost 1 h due to the con-
siderable number of violations unrecognized by the architect. This additional time was necessary to
refine the initial definitions of modules and to disregard violations that in fact represent exceptions
to general rules or that are not relevant (e.g., violations detected in test classes). Finally, we executed
ArchFix to provide refactoring recommendations for the true violations asserted by the architects.

5.3.2. Correctness evaluation. We showed the recommendations to the chief architect of each sys-
tem who classified them as correct, partially correct, or incorrect. We instructed the architects to
classify a recommendation as correct when it is the appropriate solution to the detected violation
(e.g., a violation whose fixing involves replacing an instantiation with the respective factory method,
and our approach has precisely suggested this refactoring), as incorrect when it is definitively not
part of the architectural fix (e.g., a violation whose fixing involves making the class implement a
particular interface, but our approach has suggested moving the class to another module), and as
partially correct when the recommendation is only part of the required refactoring (e.g., a violation
whose fixing involves replacing an annotation with a new one, but our approach has only suggested
inserting the new annotation, without a suggestion to remove the existing one).

A third meeting was scheduled with the architects to evaluate the correctness of the triggered
recommendations. Because Geplanes triggered few violations (only 41 in total), this classification
was possible during a 30-min meeting. For each recommendation, we reminded the architect of the
constraint, presented the code responsible by the violation, and the recommendation triggered by
our approach. For BrTCom, due to the large number of detected violations in this system (787 in
total), we grouped similar recommendations before the meeting and asked the architect to classify
only a subset of the recommendations in a given group. For instance, a single constraint (named
TC11) raised 270 violations due to forbidden declarations. Because the violations were very sim-
ilar, we randomly selected six to be scored by the architect. In this way, in two 30-min meetings
with the architect, it was possible to classify 89 recommendations that represent the whole set of
recommendations triggered for the BrTCom system.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:315–342
DOI: 10.1002/spe

328 R. TERRA ET AL.

5.3.3. Complexity evaluation. We conducted a 30-min meeting with the Geplanes’ architect to
assess the complexity of all triggered recommendations. In the case of BrTCom, similarly to
the correctness evaluation, we asked the architect to assess the complexity of the subset of 89
recommendations in a single 50-min meeting.

During these meetings, for each correct recommendation, we asked the architects to assess how
complex would be for a typical developer to discover the suggested refactorings without the support
of our recommendation system. More specifically, we instructed the architects to consider the scope
of the classes that might be inspected by the developers as the most relevant property to assess this
complexity. We defined three levels of complexity: minor (when discovering the correct refactor-
ings does not require inspecting other classes), moderate (when discovering the correct refactorings
might require inspecting classes located in well-known modules), or major (when discovering the
correct refactorings might require inspecting classes whose location is not known a priori).

As an example of a recommendation with minor complexity, assume a violation in which a View
class misses a required annotation, and our approach correctly suggests adding the annotation. In this
case, a typical developer can conclude after a local inspection that the class is indeed a View class
and requires the annotation. On the other hand, as an example of a recommendation with moderate
complexity, assume a violation in which an object of a Product class is created in a module, that
is, not allowed to perform this operation, and our approach correctly suggests replacing the direct
instantiation with the respective factory method. In this case, a typical developer needs to inspect
other classes in the current module or even in the Factory module to find the appropriate factory
method. Finally, as an example of a recommendation with major complexity, assume a violation in
which a class is located in the wrong module, and our approach correctly suggests moving the class
to another module. In this case, a typical developer may need to perform a system-wide inspection
to determine the most suitable module.

Finally, we also asked the architects to assess how complex would be for a typical developer to
discover that a given recommendation is incorrect. In this case, we also relied on the scope of the
classes that might be inspected by the developers to make the decision.

5.4. Geplanes results

The results achieved by applying our methodology to Geplanes are discussed next.

Recommendations (RQ #1). Table VI lists the architectural constraints prescribed by the Geplanes’
chief architect. Figure 5 illustrates such constraints and the detected architectural violations in
the form of a reflexion model [11].|| They are mainly related to the model-view-controller-based
framework used by Geplanes’ current implementation. In general, constraints GP1�GP7 require
that classes from some modules receive particular annotations, constraints GP8�GP9 restrict the
modules that are allowed to receive particular annotations, and constraints GP10�GP11 forbid
some modules to create classes of specific modules. As reported in Table VI, we have found 41
architectural violations, and ArchFix was able to provide recommendations for all of them.

Correctness (RQ #2). Table VI also presents the results of the correctness classification, accord-
ing to Geplanes’ architect. As reported, 31 recommendations were classified as correct (75%),
eight recommendations were classified as partially correct (20%), and two recommendations were
classified as incorrect (5%).

As reported in Table VI, most violations are related to constraints GP1�GP7. In such cases, the
usual recommendation was adding the required annotation to the class or method where the violation
was detected (recs. A6 and A8). For example, as can be observed in Code 2, class AnomaliaCrud
is missing annotation @Controller required by the underlying model-view-controller-based
framework. Therefore, this absence represents a violation of constraint GP6, as illustrated by an

|| We are using this reflexion model just for illustrative purposes. In fact, as mentioned in Section 5.3.1, we relied on DCL
to detect architectural violations in our target systems.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:315–342
DOI: 10.1002/spe

A RECOMMENDATION SYSTEM FOR REPAIRING ARCHITECTURAL VIOLATIONS 329

Table VI. Recommendations and correctness evaluation (Geplanes).

Recommendations
Violations Number (correct – pr. cor. – incor.) Total

GP1 [Entities, must, useannotation, javax.persistence.Entity] 3 A5.1�0�1/I A6.1�0�0/ 2�0�1

GP2 [Entities, must, useannotation, javax.persistence.Id] 1 A8.1�0�0/ 1�0�0

GP3 [Entities, must, useannotation, javax.persistence.GeneratedValue] 1 A8.1�0�0/ 1�0�0

GP4 [Entities, must, useannotation, linkcom.neo.bean.DescriptionProperty] 18 A6.18�0�0/ 18�0�0

GP5 [Controllers, must, useannotation, linkcom.neo.controller.DefaultAction] 1 A6.1�0�0/ 1�0�0

GP6 [Controllers, must, useannotation, linkcom.neo.controller.Controller] 2 A6.1�0�1/ 1�0�1

GP7 [Services, must, useannotation, linkcom.neo.bean.ServiceBean] 1 A6.1�0�0/ 1�0�0

GP8 [Entities, cannot, useannotation, javax.persistence.Entity] 1 D21.1�0�0/ 1�0�0

GP9 [Controllers, cannot, useannotation, linkcom.neo.controller.Input] 1 D24.1�0�0/ 1�0�0

GP10 [System, cannot, create, [Services, DAOs, Controllers]] 5 D12.2�3�0/ 2�3�0

GP11 [DAOs, cannot, create, linkcom.neo.persistence.QueryBuilder] 7 D11.2�0�0/I D13.0�5�0/ 2�5�0

41 31�8�2

Pr. cor.: partially correct; incor.: incorrect.

Figure 5. Geplanes’ reflexion model (an ‘x’ denotes absences and a ‘Š’ denotes divergences).

arrow with an ‘x’ mark from Controllers to @Controller in Figure 5. In this particu-
lar case, our approach correctly suggested adding annotation @Controller (rec. A6) to the
AnomaliaCrud class.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:315–342
DOI: 10.1002/spe

330 R. TERRA ET AL.

ArchFix also suggested removing instantiations of objects that are provided by dependency
injection techniques (rec. D12). For example, the AnomaliaCrud class (Code 2) creates an
object of FerramentaAnomaliaService (line 4). This instantiation represents a divergence
regarding constraint GP10, as illustrated by an arrow with an ‘Š’ mark from Controllers to
Services in Figure 5.

This particular divergence was regarded as partially correct because, besides removing the instan-
tiation, the architect also indicated the need to create a local setter method for the respective
attribute fas.

As a final example, class Verbo—located in module Controllers—has an annotation
@Entity, as can be observed at line 3 in Code 3. The use of this annotation represents a diver-
gence regarding constraint GP8, as illustrated by an arrow with an ‘Š’ mark from Controllers
to @Entity in Figure 5. In this case, our approach correctly suggested moving Verbo to
module Entities (rec. D21). More specifically, the suitable_module function returned
Entities as the module with the highest similarity —sim.Verbo,Entities,�/D 0.4216—,
whereas the current module of the class (Controllers) has a significant lower similarity—
sim.Verbo,Controllers,�/D 0.0763.

Complexity (RQ #3, RQ #4). In the case of correct recommendations, two recommendations have
been scored as having a minor complexity (A5 and A6), four recommendations (D11, D21,
D24, and A8) as having a moderate complexity, and another recommendation (D12) as hav-
ing a major complexity. For example, rec. A5 for violations GP1 was classified as having a
minor complexity, because it just requires adding an annotation to classes that represent database
entities (which can be inferred by the presence of other database annotations). On the other
hand, rec. D11 for violations GP11 was classified as having a moderate complexity, because it
requires replacing the direct instantiation of a query builder object with its factory method. In
this case, the developer should search for the factory inspecting classes located in the DAO mod-
ule (i.e., a previously known module). Finally, rec. D12 for violations GP10 has been scored as
major complexity. Although it solely suggests to remove the instantiation of DataSource and
Controller objects, the developer must be aware that such objects are provided by a dependency
injection framework.

In the case of incorrect recommendations, rec. A5 has been considered as having moderate com-
plexity and rec. A6 as presenting a minor complexity. Rec. A5 suggests moving a class without a
particular annotation to other module. In this case, the developer must inspect the classes of the
target module to realize that the moving is incorrect. On the other side, rec. A6 suggests adding a
specific annotation and the developer can infer that this annotation is incorrect by considering only
the class itself.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:315–342
DOI: 10.1002/spe

A RECOMMENDATION SYSTEM FOR REPAIRING ARCHITECTURAL VIOLATIONS 331

Table VII. Recommendations and correctness evaluation (BrTCom).

Recommendations
Violations Number (correct – pr. cor. – incor.) Total

TC1 [DTOs, must, implement, java.io.Serializable] 63 A3.50�0�0/IA4.0�0�13/ 50�0�13

TC2 [SAOs, must, extend, brtcom.server.sao.AbstractSAO] 1 A4.0�1�0/ 0�1�0

TC3 [Controllers, must, useannotation, brtcom.client.controller.Controller] 1 A6.1�0�0/ 1�0�0

TC4 [DataSources, must, useannotation, brtcom.client.datasource.DataSource] 1 A6.1�0�0/ 1�0�0

TC5 [brtcom.server.dao.BaseJPADAO, cannot, create, DAOs] 13 D11.13�0�0/ 13�0�0

TC6 [DAOs, cannot, throw, brtcom.server.dao.DAOException] 15 D15.11�0�0/ID16.2�0�0/ 13�0�0

TC7 [[CtrlLayer, DSLayer], cannot, useannotation, CtrlDSAnnotations] 20 D21.2�0�0/ID22.18�0�0/ 20�0�0

TC8 [[Services, SAOLayer], cannot, depend, SAOs] 5 D20.1�0�0/ 1�0�0

TC9 [System, cannot, create, [Controllers, DataSources]] 3 D12.3�0�0/ 3�0�0

TC10 [CtrlLayer, cannot, create, java.util.Date] 84 D13.0�84�0/ 0�84�0

TC11 [ScreenWrappers, cannot, useannotation, JavaLangAnnotations] 18 D21.0�0�5/ID22.13�0�0/ 13�0�5

TC12 [System, cannot, depend, java.lang.System] 14 D9.14�0�0/ 14�0�0

TC13 [ServicesAsync, cannot, declare, UnallowedAbstractTypes] 270 D2.270�0�0/ 270�0�0

TC14 [ServerLayer, cannot, depend, ClientUtil] 279 D7.225�0�0/ 225�0�0

787 624�85�18

Pr. cor.: partially correct; incor.: incorrect.

5.5. BrTCom results

The results for BrTCom are discussed next.

Recommendations (RQ #1). Table VII lists the 14 architectural constraints prescribed by the
BrTCom’s chief architect. These constraints are mainly used to enforce several architectural rules,
such as decomposition in layers (e.g., TC8), factories (e.g., TC5), interfaces (e.g., TC13), persis-
tence patterns (e.g., TC1), and so on. ArchFix raised 727 recommendations for the 787 violations
we have detected using the constraints in Table VII (92%). Regarding the 60 violations without rec-
ommendation, 54 violations are associated to TC14. Particularly in such violations, ServerLayer
classes were calling methods that should not be implemented in ClientUtil classes but rather in
a layer common both to server and client modules.

Correctness (RQ #2). As can be observed in Table VII, BrTCom’s architect has scored 624 recom-
mendations as correct (79%), 85 recommendations as partially correct (11%), and 18 recommen-
dations as incorrect (2%).

For example, constraint TC1, which specifies that DTO classes must implement
Serializable, raised violations in 63 classes. For 50 classes, ArchFix suggested the
correct refactoring, that is, making the class implement Serializable (rec. A3). Nevertheless,
Data Transfer Objects (DTOs) by their nature rely extensively on types from the Java API. For this
reason, ArchFix—based on the most suitable module calculated by the sim function described
in Section 3.5—has improperly recommended moving the other 13 classes to the Constants
module (rec. A4), whose classes are also heavily based on Java’s built-in types.

The highest number of correct recommendations for a single constraint has been raised for the
270 violations associated to constraint TC13, which forbids ServicesAsync classes to declare
abstract types due to a pattern recommended by the GWT framework. For each of such viola-
tions, ArchFix suggested a more specialized type (rec. D2). For instance, most of the violations
were due to references to List and Map in GWT interfaces. In such cases, ArchFix has prop-
erly suggested replacing these abstract types with the concrete types ArrayList and HashMap,
respectively.

Complexity (RQ #3, RQ #4). BrTCom’s architect has assessed the complexity of correct recommen-
dations in the following way: four recommendations as having a minor complexity (D9, D22, A3,

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:315–342
DOI: 10.1002/spe

332 R. TERRA ET AL.

Table VIII. Classification of the detected violations (focusing on correctness).

Architectural defect type Constraints # viols. # recs. # correct recs. Precision

Misusage of persistence patterns GP1�3I TC1 68 68 54 0.79
Misusage of domain-specific patterns GP4�7I TC2�4 25 25 23 0.92
Bypassing layers GP8�9I TC6�8I TC14 321 261 261 1.00
Unintended dependencies GP10I TC9I TC11�12 40 40 32 0.80
Bypassing creational patterns GP11I TC5 20 20 15 0.75
Context exploration TC10 84 84 0 0.00
Misusage of interfaces TC13 270 270 270 1.00

828 768 655

and A6), two recommendations (D2 and D11) as having a moderate complexity, and six recom-
mendations (D7, D12, D15, D16, D20, and D21) as presenting a major complexity. For example,
rec. D2 for violations TC13 has been considered as having a moderate complexity, because the
concrete implementations for an abstract type usually have a well-known location (e.g., the pack-
age java.util). On the other hand, rec. D7 for Server classes making an unauthorized use
of Client services associated to constraint TC14 has been scored as having a major complex-
ity, because it is not trivial to delimit the scope of the task of searching for a class that provides
equivalent services to the ones provided by another class.

Regarding the incorrect recommendations, one recommendation (D21) has been considered as
having a major complexity and another recommendation (A4) as presenting a moderate complexity.
Rec. D21 suggests moving an incorrectly annotated class to another module (where the annotation
does not represent a violation). The task of discarding it has been considered as having a major
complexity, because a global understanding of the system is required to decide whether the
indicated module is correct or not.**

5.6. Qualitative discussion

Based on the experience gained with the Geplanes and BrTCom case studies, we conducted a deeper
analysis on the major themes of the detected violations and the root causes of them. Table VIII clas-
sifies the detected violations according to a set of architectural defect types initially proposed by
Knodel and Popescu [8] and later extended by us [16]. As a general fact, the architects ascribed
most of the detected violations to the lack of awareness about the architectural model [33] and
copy-and-paste procedures [34].

Next, we rely mainly on this classification to answer our research questions.

RQ #1 – For what portion of architectural violations detected in a real-world system can the
proposed approach provide refactoring recommendations?

As reported in Table VIII, our approach was able to trigger recommendations for 768 out of 828
detected violations (93%).

Particularly, we were able to provide recommendations for all architectural defect types, with
the exception of 60 constraints whose violations were classified in the bypassing layers category.
However, we argue that our approach can be improved to handle some of the violations in this
category. As an example, we noticed that an additional recommendation suggesting the replacement
of an exception with another one could correctly repair the two violations without recommendations
in the case of constraint TC6. As another example, BrTCom’s architect mentioned that an additional

**A similar recommendation (A5) was triggered in Geplanes’ case study, and it was considered as a having moderate
complexity. Basically, the recommendations involves moving a Data Transfer Object, a well-known design pattern. On
the other hand, rec. D21 triggered in BrTCom involves moving a domain-specific class, which explains its higher
complexity.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:315–342
DOI: 10.1002/spe

A RECOMMENDATION SYSTEM FOR REPAIRING ARCHITECTURAL VIOLATIONS 333

recommendation suggesting to move the accessed class or method might address the 54 violations
without recommendations in the case of constraint TC14. Currently, ArchFix only suggests
moving the class or method where the violations have been detected. For example, in Code 1,
we can suggest to move the method init to another class, but currently we do not suggest
moving the method foo. In short, our proposed approach handles the vast majority of the detected
violations and further significant improvement are possible and some of them seem to be general to
object-oriented systems.

RQ #2 – Does the proposed approach provide correct recommendations for repairing architectural
violations?

As can be observed in Table VIII, our approach triggered correct recommendations for 655 out
of 828 detected violations (79%). More specifically, we achieved a precision greater than 75% for
all architectural defect types, with the exception of the constraints whose violation were classified
in the context exploration category. We define precision as the number of correct recommendations
by the total number of recs. triggered by ArchFix.

According to the architects’ feedback, ArchFix was very precise handling the architectural
defect types that do not involve complex refactorings. As evidence, BrTCom’s architect highlighted
the 270 violations on constraint TC13 (misusage of interfaces) fixed by recommendation D2—
which suggests replacing the declaration of an unauthorized abstract type (mostly, List) with one
of its concrete subtypes (mostly, ArrayList)— as one of the ‘most important recommendations’.
According to the architect, by not following this recommendation (associated to the correct use of
the GWT framework), the current implementation experiences an overhead in the size of the gen-
erated JavaScript code, with important negative consequences both in terms of CPU performance
and network bandwidth consumption. On the other hand, ArchFix was unable to achieve good
precision on violations related to context exploration. For example, constraint TC10 defines that
Client classes cannot create Date objects (to avoid time synchronization bugs). As a result of
the conformance process, we found 84 violations of this constraint in BrTCom classes. However,
the recommendations suggested by ArchFix just include the removal of the instantiations. This
refactoring was classified by BrTCom’s architect as partially correct. In fact, he indicated that the
correct repair action in this case would require a refactoring in the Server interfaces to return
Date instances in particular cases. Therefore, instead of creating the Date on the client process,
the client code should invoke the refactored interfaces.

As another relevant finding, we noticed that some incorrect recommendations were triggered
because the suitable_module function did not indicate the current (and also correct) module
as the most suitable one. For instance, in the case of the five violations in constraint TC11 due to
unintended dependencies, our approach failed to indicate the most suitable module. However, the
module calculated with the second best similarity was in fact the correct one. For this reason, we
are considering a revision in our suitable_module implementation to indicate more than one
module whenever the similarity value is very close to the highest calculated one, or even boost the
priority of the current module.

Last but not least, as a practical contribution of our evaluation, the architects of both systems
opened a maintenance request in the issue management platform of their systems requesting a
correction for the detected violations and suggesting the use of the recommendations provided by
ArchFix. Particularly, Geplanes’ maintainers have already repaired all detected violations in the
system’s main development trunk.

RQ #3 – How complex is to discover a correct refactoring without the support of our recommen-
dation system?

As reported in Table IX, most correct recommendations were scored as having moderate or major
complexity. Particularly, 241 violations related to bypassing layers were the ones classified predom-
inantly as having a major complexity. After asking the architects for clarification, we realized that
repairing these violations requires a global understanding of the system, including knowledge on

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:315–342
DOI: 10.1002/spe

334 R. TERRA ET AL.

Table IX. Classification of the detected violations (focusing on complexity).

Complexity

Correct recs. Incorrect recs.

Architectural defect type Minor Moderate Major Minor Moderate Major

Misusage of persistence patterns 52 2 — — 14 —
Misusage of domain-specific patterns 23 — — 1 — —
Bypassing layers 18 2 241 — — —
Unintended dependencies 27 — 5 — — 5
Bypassing creational patterns — 15 — — — —
Context exploration — — — — — —
Misusage of interfaces — 270 — — — —

120 289 246 1 14 5

the public interfaces of all layers. On the other hand, recommendations associated to the misusage
of persistence and other domain-specific patterns have been mostly classified as having a minor
complexity. They are usually associated to missing or incorrect use of annotations, which can be
fixed more easily, by just inserting or removing a given annotation.

RQ #4 – How complex is to reject an incorrect refactoring provided by our recommendation
system?

As also reported in Table IX, the results indicate that rejecting an incorrect recommendation has
a higher complexity than accepting a correct one (19 out of 20 incorrect recs. require a moder-
ate or major effort). However, we argue that the number of correct recommendations raised by
our approach outperforms by a large margin, the number of incorrect ones (655 vs 20 recs. in our
case studies).

5.7. Lessons learned

We identified five lessons learned from our experience on evaluating the use of ArchFix in the
Geplanes and BrTCom systems. We learned that we could have avoided many incorrect recom-
mendations if the suitable_module function indicated a set of modules with close similarity
values, rather than a single module. As a related issue, we noticed that for some violations, the cor-
rect fix was a recommendation different than the triggered one. For this reason, we also argue that
our current prioritization policy can be possibly changed to raise multiple recommendations, with
an associated confidence, for particular violations.

Second, the architects highlighted that ArchFix does not target senior developers but mainly
developers who recently joined the project. They typically refer to the lack of awareness about the
architectural rules as the main cause of the violations. According to the architects, our approach
can help less experienced developers to understand the system architecture by showing the correct
repair procedure for the detected violations.

Third, the real value of conformance checking is to be part of the regular development and main-
tenance processes. As evidence, Knodel et at. demonstrate that teams supported by constructive
compliance checking may insert about 60% less structural violations into the architecture [32]. In
this paper, we claim that an architectural repair recommendation system—such as ArchFix—
can also be integrated into the regular processes. In such way, besides the detection of points of
violations, the regular process would also contemplate a mechanism to repair the detected violations.

Fourth, only 17 out of the 32 proposed recommendations, which emerged from our initial
study [16], have been triggered in our case studies. However, we believe that the unused recom-
mendations are generic enough to be triggered in other architecture erosion fixing contexts. For
example, the unused recommendation D1 addresses violations due to the misusage of interfaces,

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:315–342
DOI: 10.1002/spe

A RECOMMENDATION SYSTEM FOR REPAIRING ARCHITECTURAL VIOLATIONS 335

which were commonly detected in other case studies [7,8,16]. In fact, the unused recommendations
instigate new case studies using ArchFix.

Last but not least, most recommendations were scored as having moderate or major complexity.
Therefore, we claim that our approach may save developers’ time when fixing architectural viola-
tions, although we have not measured this aspect in our evaluation. Instead, we assumed that the
more complex the recommendation, more time is required to discover and to apply the suggested
refactorings.

5.8. Threats to validity

Next, we identify threats to validity in our evaluation.

Internal validity. Because many steps of our evaluation require the involvement of architects, they
could be affected negatively (e.g., tired or bored) during the experiment. In order to minimize this
threat, we conducted one meeting for each task: constraints definition, violations validation, correct-
ness assessment, and complexity assessment. More important, we carefully planned each meeting
to last up to 50 min.

External validity. First, although we have used two industrial-strength web systems that have differ-
ent architectures and constraints, we cannot claim that our approach will provide equivalent results
in other systems (as usual in empirical studies in software engineering). Second, because the target
systems presented a moderate number of violations (slightly over 1 violation/KLOC), we cannot
claim that our approach provides the same precision in systems already facing a major architec-
tural erosion process. Fundamentally, a major erosion process may impact the precision of basic
functions, such as suitable_module. Third, because we have detected violations using DCL,
we cannot claim that our approach provides equivalent coverage and precision when using other
architecture conformance tools. More important, the proposed approach targets specific classes of
violations, and many other types of violations may be present in a particular system. However,
DCL was able to express all constraints proposed by the architects of two large and complex sys-
tems (BrTCom, as reported in this paper, and SGP, our training system, as reported in Section 3.1).
Fourth, because we have used half of the proposed refactoring recommendations, it was not possi-
ble to evaluate the remaining recommendations. However, the unused recommendations would have
been useful at least once in our training system [16].

Construct validity. In our evaluation, we relied on two chief architects (one per system) to define
the constraints, to validate whether the detected violations are in fact true positives, to judge the
correctness, and to assess the complexity of the recommendations. As typical in human-based clas-
sifications, our results might be affected by some degree of subjectivity. However, it is important to
highlight that we interviewed the chief architects who designed the evaluated architectures, and are
responsible for their maintenance and evolution. Therefore, they are the right experts to evaluate the
correctness of a given recommendation. Moreover, our assessment of complexity is based on a fairly
precise definition, which relies on the scope of the classes that might be inspected. Furthermore,
instead of assessing each violation separately, we grouped similar recommendations to make the
evaluation easier to the architects. More important, the architects’ answers for the recommendations
in the same group were always consistent.

6. RELATED WORK

We divided the related work into five groups: (i) architectural models, which describes different
architectural views, including the one this paper is based on; (ii) architecture conformance, which
is related to our work in terms of providing the input of our approach; (iii) identification of refac-
toring opportunities, because our approach relies on primitive refactorings to repair architectural
violations; (iv) remodularization approaches, because they are potential alternatives to architecture

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:315–342
DOI: 10.1002/spe

336 R. TERRA ET AL.

degradation; and (v) recommendation systems, because our approach is based on recommendation
principles.

Architectural models. Kruchten defines software architecture using the following five concurrent
views: logical view (which defines the conceptual decomposition of the system), process view
(which partitions the software in independent tasks), physical view (which maps software tasks to
hardware elements), development view (which partitions a system into physical modules or subsys-
tems), and use case view (which defines the functions provided to the users by listing use cases) [28].
Each view addresses concerns of interest to different stakeholders. Particularly, our work is centered
on the development view (a.k.a. module view). In practice, there are studies that refer to the develop-
ment view as a high-level software model [11]. Similarly, there are studies that ascribe the violations
tackled by our approach as due to design erosion rather than architectural erosion [4, 13].

Architecture conformance. Over the past decade, several techniques have been proposed to deal
with the architecture erosion problem [9]. For instance, Silva and Balasubramaniam indicated a
combination of strategies that might help to control architecture erosion [3]. Particularly, they argue
that an architecture restoration strategy—such as ArchFix— should complement an architecture
conformance strategy in order to extend the lifetime of the software.

Reflexion models (RMs) are based on the comparison of two models—representing a high-level
and a low-level view of the target system [11, 35]. As a result, the technique highlights the detected
differences in terms of divergences and absences in what the authors called a reflexion model. There
are commercial tools that are based on RM principles [5, 6, 32]. Furthermore, there are also several
works extending the original RM to support, for example, hierarchical structures [36], behavioral
design [37], and software variants [38, 39].

Dependency structure matrices (DSMs) can be used to provide a scalable view of the established
dependencies among classes of a system [40, 41]. A DSM is a weighted square matrix whose both
rows and columns denote classes from an object-oriented system. The Lattix Dependency Manager
(LDM) tool†† provides a simple language to declare design rules that the target system implemen-
tation must follow (e.g., A cannot-use B) and visually represents the detected violations in a
DSM. Currently, ArchFix relies on architectural violations detected by DCL [16, 31]. However,
we claim that it would be straightforward to adapt our approach to the aforementioned conformance
techniques and tools.

Identification of refactoring opportunities. Tsantalis and Chatzigeorgiou have proposed a semiau-
tomatic approach to identify Move Method refactoring opportunities [42]. Their general goal is to
tackle coupling and cohesion anomalies manifested in the form of the Feature Envy bad smell [29].
Similarly to our work, they employed the notion of Jaccard distance between an entity (attribute or
method) and a class. Later, using an adaptation of program slicing techniques, they extended their
tool to identify Extract Method refactorings [43].

O’Keeffe and Ó Cinnéide have proposed a search-based software maintenance tool that relies on
search algorithms, such as hill climbing and simulated annealing, to suggest six inheritance-related
refactorings [44]. They evaluated their approach in two packages of the spec.benchmarks and
demonstrated that some programs can be automatically refactored to improve quality in terms of
flexibility, reusability, and understandability.

In general terms, the ultimate goal of the aforementioned tools is to suggest refactorings
that improve the internal quality of the code—for example, in terms of coupling and cohe-
sion. On the other hand, the refactoring recommendation system we described in this paper aims
to help developers to handle violations exposed as the result of an architecture conformance process.

††http://www.lattix.com

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:315–342
DOI: 10.1002/spe

A RECOMMENDATION SYSTEM FOR REPAIRING ARCHITECTURAL VIOLATIONS 337

Remodularization approaches. When architecture erosion is neglected over the years, it can reduce
the architecture to a set of strongly coupled and weakly cohesive components [45]. At a certain
point, architecture conformance and repair techniques—such as ArchFix— present themselves
mostly ineffective, and a complete remodularization can be the only solution [46].

Rama and Patel analyzed several remodularization efforts in order to define recurring modulariza-
tion operators [47]. More specifically, they formalized the following operators: module decompo-
sition/union, file/function/data transfer, and function to API promotion. Their case study on Linux
shows that some operators are applied as the software evolves, and therefore, they argue that modu-
larization is not necessarily a one shot process. Analogously, ArchFix can be continuously applied
as the system evolves. However, in contrast to our approach, Rama and Patel do not provide tool
support for applying the proposed operators.

Hierarchical clustering is another technique commonly proposed to evaluate alternative soft-
ware decompositions [48, 49]. However, the effectiveness of clustering in reengineering tasks is
often challenged. For example, using Eclipse as case study, Anquetil et al. reported that restruc-
turings manually performed by developers do not necessarily improve modularity in terms of
cohesion/coupling [50]. Therefore, this finding undermines the validity of clustering techniques
that aim to minimize coupling and maximize cohesion. On the other hand, instead of quality met-
rics, ArchFix relies on structural similarity among source code entities, as computed by the
suitable_module function.

Moghadam et al. have proposed a remodularization approach that automatically refactors the
source code of a system toward a desired design, provided in the format of a UML class dia-
gram [44]. The proposed approach automatically compares the current and desired models and
express the design differences as a set of detected refactorings. In contrast, instead of a desired
UML model, our approach aims to respect a set of constraints that defines an architectural model.
Moreover, our evaluation was conducted in a real context using two industrial-strength systems.

In conclusion, most of the difficulties faced during remodularizations are caused by the accumu-
lation of the architectural erosion process over the years. On the other hand, our approach aims to
prevent large restructurings by providing suggestions to repair a violation as soon as it is detected.

Recommendation systems. Recommendation systems for software engineering (RSSEs) are an
emerging research area [22]. For example, current RSSEs can recommend relevant source code
fragments to help developers to use frameworks and APIs (CodeBroker [51], PARSEWeb [52], and
Strathcona [25]), software artifacts that must be changed together (eRose [26]), parts of the software
that should be tested more cautiously (Suade [53]), and replacement methods for adapting code to a
new library version (SemDiff [27]). However, RSSEs usually present little or no information about
the consequences of the recommended changes. An exception is the system proposed by Muşlu
et al. to inform developers on the consequences of code transformations [54]. They have built an
Eclipse plug-in—called Quick Fix Scout—that augments the Quick Fix dialog by adding the number
of compilation errors that remain after each proposal’s application (a technique they called specula-
tive analysis). Their experiments demonstrate that developers complete compilation-error removal
tasks 10% faster when using their tool. Although their technique originally focuses on compilation
errors, the proposed idea can also be used to prioritize refactoring recommendations when more
than one can be triggered to repair an architectural violation.

7. CONCLUSION

Architectural erosion is a recurrent problem faced by software architects. However, a clear
dichotomy is perceived in the tools already designed to tackle this problem. On the one hand,
there are several approaches and commercial tools proposed to uncover architectural viola-
tions [11, 12, 14, 16, 17]. On the other hand, the task of fixing the hundreds of violations raised after
an architecture conformance process is normally conducted with limited tool support. To address
this shortcoming, we described a recommendation system that provides refactoring guidelines for
maintainers and developers when repairing architectural violations. The proposed system provides

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:315–342
DOI: 10.1002/spe

338 R. TERRA ET AL.

recommendations for violations—divergences and absences—raised by static architecture confor-
mance checking approaches. Furthermore, we conducted an evaluation with two industrial-strength
systems that provided us with encouraging feedback on the applicability and correctness of our rec-
ommendations. Considering both systems, ArchFix has indicated the correct refactoring for 655
(79%) out of 828 violations detected as the result of an architecture conformance process. Moreover,
the architects scored 82% of these recommendations as having moderate or major complexity.

Ideas for future work include (i) refining and extending our current list of recommendations
and considering the possibility to raise multiple recommendations, with an associated priority, for
particular architectural violations; (ii) evaluating ArchFix on other systems; (iii) designing an
architecture-repair recommendation language, in order to allow maintainers to extend ArchFix
with their own domain-specific refactorings; (iv) conducting a crossover study to compare the effort
required to apply the correct refactoring tasks with and without ArchFix; (v) refining the suit-
able module heuristic; and (vi) improving our current prioritization heuristic through elements of a
learning system or by means of speculative analysis [54].

The ArchFix tool—including its complete source code—is publicly available at
httpW==github.com=rterrabh=DCL.

ACKNOWLEDGEMENTS

Our research has been supported by CAPES, FAPEMIG, and CNPq. We would like to thank the software
architects Gessé Dafé (BrTCom) and Rógel Garcia (Geplanes) for the valuable collaboration in the case
studies.

APPENDIX

In this appendix, we provide detailed descriptions and illustrative examples on the nontrivial func-
tions used by ArchFix to recommend architectural refactorings. Appendix A addresses nontrivial
refactoring functions as introduced in Table II, whereas Appendix B addresses nontrivial auxiliary
functions as introduced in Table III.

APPENDIX A: REFACTORING FUNCTIONS

Function promote_param.f,v,exp/: Promotes variable v to a formal parameter of method f;
exp is the corresponding argument in the calls to f. To illustrate, assume a constraint in the
form Facade cannot�access Foo, but Facade is allowed to declare Foo as presented in
Figure A.1(before). Therefore, a violation ŒFacade,cannot,access,Foo� occurs at line 9 in
this figure.

Assuming that MainClass is allowed to access Foo, a potential refactoring to repair such viola-
tion may be defined as follows: promote_param.setup.Foo/, d, Œfoo.getDate./� /. As can

Figure A.1. promote_param.setup.Foo/, d, Œfoo.getDate./� /.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:315–342
DOI: 10.1002/spe

A RECOMMENDATION SYSTEM FOR REPAIRING ARCHITECTURAL VIOLATIONS 339

be observed in Figure A.1(after), after this refactoring, (i) variable d is promoted to a formal param-
eter of setup.Foo/ (line 8), and (ii) calls to setup.Foo, Date/ are adjusted to include the actual
parameter foo.getDate./ (line 4).

Function inline.exp,v,S/: inlines exp in the uses of variable v in the block of code S. To
illustrate, assume a constraint in the form Bar cannot�declare Foo, but it is allowed to access
Foo as presented in Figure A.2(before). Therefore, a violation ŒBar,cannot,declare,Foo�
occurs at line 3 in this figure.

Figure A.2. inline. Œctx.getFoo./�, foo, S /.

Because class Bar is allowed to access Foo, a potential refactoring to repair such violation is as
follows: inline. Œctx.getFoo./�, foo, S /, where S is the body of method init.Context/.
As can be observed in Figure A.2(after), this refactoring removes the declaration of variable foo
(line 3) and inlines the expression ctx.getFoo./ to its previous uses (lines 4–5).

Function unwrap_return.f,T,exp/: Considering a method f that returns new T.exp/,
this function modifies this statement to just return exp and moves the instantiations of
the wrapper type T to the respective call sites. To illustrate, assume a constraint in the
form Model cannot�create Foo as presented in Figure A.3(before). Therefore, a violation
ŒModel,cannot,create,Foo� occurs at line 10 in this figure.

Figure A.3. unwrap_return.retrieve./, Foo, Œobj� /.

Assuming that class MainClass is allowed to create Foo, a potential refactoring to repair this
violation is as follows: unwrap_return.retrieve./, Foo, Œobj� /. As can be observed in
Figure A.3(after), (i) the return statement is refactored to return just obj (line 10); (ii) the return
type of retrieve is refactored to ObjType (i.e., the type of obj) (line 8); and (iii) an object of
Foo is created to wrap the results returned by the calls to retrieve (line 3).

APPENDIX B: AUXILIARY FUNCTIONS

Function delegate.f/: searches a delegate method for f, i.e., a method that just encapsulates a
call to f [55]. Basically, our heuristic to find delegate methods consists in finding a method that (i)
only invokes method f and (ii) returns the same type of f. For instance, as presented in Figure B1,
PersistenceWWpersist.Bar/ is a delegate method for BarWWsave.Connection/ because it
only forwards the call (line 5).

Function factory.C,exp/: searches for a factory method for class C, accepting exp as input.
Basically, our heuristic to find a factory method for a class C consists in finding a method that

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:315–342
DOI: 10.1002/spe

340 R. TERRA ET AL.

Figure B1. delegate.BarWWsave.Connection/ /D PersistenceWWpersist.Bar/.

just returns an object of type C created using exp. For instance, as presented in Figure B2,
DAOFactoryWWgetBar.int/ is a factory method for Bar (lines 3–5).

Figure B2. factory.Bar, ¹Œ5�º /D DAOFactoryWWgetBar.int/.

Function gen_decl.f/: returns a declaration D for a variable c of type C, where C is the
class that defines the method f. The simplest scenario happens when f is a static method and
this function returns the static reference to the class C. However, when f is not static, this func-
tion proceeds as follows: (i) if C is a singleton, it uses the getInstance method, for example,
C c D C.getInstance./; (ii) when C has a factory, it obtains an instance from the factory, for
example, C c D Factory.getC./; and (iii) otherwise the function creates a null-initialized stub
object to make the call, for example, C cD new C.: : :/.

Function gen_factory.C,exp/: generates a factory for class C, accepting exp as input. Basi-
cally, it creates a class using the template illustrated on the left of Figure B3, where <T> is the
target type and <exp_t> is the list of expression types. For instance, the subfigure on the right
illustrates the generated factory class for gen_factory.Bar, ¹Œ‘a’�, Œ5�º /.

Figure B3. gen_factory.Bar, ¹Œ‘a’�, Œ5�º /.

REFERENCES

1. Parnas DL. Software aging. 16th International Conference on Software Engineering (ICSE), 1994; 279–287.
2. Perry DE, Wolf AL. Foundations for the study of software architecture. Software Engineering Notes 1992;

17(4):40–52.
3. de Silva L, Balasubramaniam D. Controlling software architecture erosion: a survey. Journal of Systems and Software

2012; 85(1):132–151.
4. van Gurp J, Bosch J. Design erosion: problems and causes. Journal of Systems and Software 2002; 61:105–119.
5. Knodel J, Muthig D, Naab M, Lindvall M. Static evaluation of software architectures. 10th European Conference on

Software Maintenance and Reengineering (CSMR), 2006; 279–294.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:315–342
DOI: 10.1002/spe

A RECOMMENDATION SYSTEM FOR REPAIRING ARCHITECTURAL VIOLATIONS 341

6. Lindvall M, Muthig D. Bridging the software architecture gap. Computer 2008; 41(6):98–101.
7. Sarkar S, Ramachandran S, Kumar G, Iyengar MK, Rangarajan K, Sivagnanam S. Modularization of a large-scale

business application: a case study. IEEE Software 2009; 26:28–35.
8. Knodel J, Popescu D. A comparison of static architecture compliance checking approaches. 6th Working IEEE/IFIP

Conference on Software Architecture (WICSA), 2007; 12.
9. Passos L, Terra R, Diniz R, Valente MT, Mendonça N. Static architecture-conformance checking: an illustrative

overview. IEEE Software 2010; 27(5):82–89.
10. Ducasse S, Pollet D. Software architecture reconstruction: a process-oriented taxonomy. IEEE Transactions on

Software Engineering 2009; 35(4):573–591.
11. Murphy G, Notkin D, Sullivan K. Software reflexion models: bridging the gap between source and high-level models.

3rd Symposium on Foundations of Software Engineering (FSE), 1995; 18–28.
12. Mens K, Kellens A, Pluquet F, Wuyts R. Co-evolving code and design with intensional views: a case study. Computer

Languages, Systems & Structures 2006; 32(2-3):140–156.
13. ao Brunet J, Guerreiro D, Figueiredo J. Structural conformance checking with design tests: an evaluation of usability

and scalability. 27th International Conference on Software Maintenance (ICSM), 2011; 143–152.
14. Aldrich J, Chambers C, Notkin D. ArchJava: connecting software architecture to implementation. 22nd International

Conference on Software Engineering (ICSE), 2002; 187–197.
15. Hou D, Hoover H. Using SCL to specify and check design intent in source code. IEEE Transactions on Software

Engineering 2006; 32(6):404–423.
16. Terra R, Valente MT. A dependency constraint language to manage object-oriented software architectures. Software:

Practice and Experience 2009; 32(12):1073–1094.
17. Eichberg M, Kloppenburg S, Klose K, Mezini M. Defining and continuous checking of structural program

dependencies. 30th International Conference on Software Engineering (ICSE), 2008; 391–400.
18. Knodel J, Muthig D, Haury U, Meier G. Architecture compliance checking - experiences from successful technology

transfer to industry. 12th European Conference on Software Maintenance and Reengineering (CSMR), 2008; 43–52.
19. Steimann F, Thies A. From public to private to absent: refactoring Java programs under constrained accessibility.

23rd European Conference on Object-Oriented Programming (ECOOP), 2009; 419–443.
20. Soares G, Gheyi R, Massoni T. Automated behavioral testing of refactoring engines. IEEE Transactions on Software

Engineering 2013; 39(2):147–162.
21. Terra R, Valente MT, Czarnecki K, Bigonha R. Recommending refactorings to reverse software architecture erosion.

16th European Conference on Software Maintenance and Reengineering (CSMR), early research achievements track,
2012; 335–340.

22. Robillard M, Walker R, Zimmermann T. Recommendation systems for software engineering. IEEE Software 2010;
27(4):80–86.

23. Resnick P, Varian HR. Recommender systems. Communications of the ACM 1997; 40(3):56–58.
24. Burke R. Hybrid web recommender systems. In The adaptive web, Vol. 4321, Lecture Notes in Computer Science.

Springer Berlin Heidelberg, 2007; 377–408.
25. Holmes R, Walker RJ, Murphy GC. Approximate structural context matching: an approach to recommend relevant

examples. IEEE Transactions on Software Engineering 2006; 32(12):952–970.
26. Zimmermann T, Zeller A, Weissgerber P, Diehl S. Mining version histories to guide software changes. IEEE

Transactions on Software Engineering 2005; 31(6):429–445.
27. Dagenais B, Robillard MP. Recommending adaptive changes for framework evolution. 30th International Confer-

ence on Software Engineering (ICSE), 2008; 481–490.
28. Kruchten P. The 4+1 view model of architecture. IEEE Software 1995; 12(6):42–50.
29. Fowler M. Refactoring: Improving the Design of Existing Code. Addison-Wesley: Boston, 1999.
30. Romesburg H. Cluster Analysis for Researchers. Lulu Press: North Carolina, 2004.
31. Terra R, Valente MT. Towards a dependency constraint language to manage software architectures. 2nd European

Conference on Software Architecture (ECSA), 2008; 256–263.
32. Knodel J, Muthig D, Rost D. Constructive architecture compliance checking – an experiment on support by live

feedback. 24th International Conference on Software Maintenance (ICSM), 2008; 287–296.
33. Unphon H, Dittrich Y. Software architecture awareness in long-term software product evolution. Journal of Systems

and Software 2010; 83(11):2211–2226.
34. Feilkas M, Ratiu D, Jurgens E. The loss of architectural knowledge during system evolution: an industrial case study.

17th IEEE International Conference on Program Comprehension (ICPC), 2009; 188–197.
35. Murphy G, Notkin D, Sullivan K. Software reflexion models. IEEE Transactions on Software Engineering 2001;

27(4):364–380.
36. Koschke R, Simon D. Hierarchical reflexion models. 10th Working Conference on Reverse Engineering (WCRE),

2003; 36–47.
37. Ackermann C, Lindvall M, Cleaveland R. Towards behavioral reflexion models. 20th International Symposium on

Software Reliability Engineering (ISSRE), 2009; 175–184.
38. Koschke R, Frenzel P, Breu APJ, Angstmann K. Extending the reflexion method for consolidating software variants

into product lines. Software Quality Journal 2009; 17:331–366.
39. Frenzel P, Koschke R, Breu APJ, Angstmann K. Extending the reflexion method for consolidating software variants

into product lines. 14th Working Conference on Reverse Engineering (WCRE), 2007; 160 –169.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:315–342
DOI: 10.1002/spe

342 R. TERRA ET AL.

40. Sullivan KJ, Griswold WG, Cai Y, Hallen B. The structure and value of modularity in software design. 9th
International Symposium on Foundations of Software Engineering (FSE), 2001; 99–108.

41. Sangal N, Jordan E, Sinha V, Jackson D. Using dependency models to manage complex software architecture. 20th
Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), 2005; 167–176.

42. Tsantalis N, Chatzigeorgiou A. Identification of move method refactoring opportunities. IEEE Transactions on
Software Engineering 2009; 99:347–367.

43. Tsantalis N, Chatzigeorgiou A. Identification of extract method refactoring opportunities for the decomposition of
methods. Journal of Systems and Software 2011; 84(10):1757–1782.

44. O’Keeffe MK, Cinnéide M. Search-based software maintenance. 10th European Conference on Software Mainte-
nance and Reengineering (CSMR), 2006; 249–260.

45. Borchers J. Invited talk: reengineering from a practitioner’s view – a personal lesson’s learned assessment. 15th
European Conference on Software Maintenance and Reengineering (CSMR), 2011; 1–2.

46. Hochstein L, Lindvall M. Combating architectural degeneration: a survey. Information and Software Technology
2005; 47(10):643–656.

47. Rama GM, Patel N. Software modularization operators. 26th International Conference on Software Maintenance
(ICSM), 2010; 1–10.

48. Anquetil N, Lethbridge T. Experiments with clustering as a software remodularization method. 6th Working
Conference on Reverse Engineering (WCRE), 1999; 235–255.

49. Mitchell BS, Mancoridis S. On the automatic modularization of software systems using the Bunch tool. IEEE
Transactions on Software Engineering 2006; 32(3):193–208.

50. Anquetil N, Laval J. Legacy software restructuring: analyzing a concrete case. 15th European Conference on
Software Maintenance and Reengineering (CSMR), 2011; 279–286.

51. Ye Y, Fischer G. Reuse-conducive development environments. Automated Software Engineering 2005; 12:199–235.
52. Thummalapenta S, Xie T. PARSEWeb: a programmer assistant for reusing open source code on the web. 22nd

International Conference on Automated Software Engineering (ASE), 2007; 204–213.
53. Nagappan N, Ball T, Zeller A. Mining metrics to predict component failures. 28th International Conference on

Software Engineering (ICSE), 2006; 452–461.
54. Muşlu K, Brun Y, Holmes R, Ernst MD, Notkin D. Speculative analysis of integrated development environ-

ment recommendations. 27th Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), 2012; 1–15.

55. Fowler M. Patterns of Enterprise Application Architecture. Addison-Wesley: Boston, 2002.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2015; 45:315–342
DOI: 10.1002/spe

