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Abstract—Methods implemented in incorrect classes are com-
mon bad smells in object-oriented systems, especially in the
case of systems maintained and evolved for years. To tackle
this design flaw, we propose a novel approach that recommends
Move Method refactorings based on the set of static dependencies
established by a method. More specifically, our approach com-
pares the similarity of the dependencies established by a source
method with the dependencies established by the methods in
possible target classes. We evaluated our approach using systems
from a compiled version of the Qualitas Corpus. We report that
our approach provides an average precision of 60.63% and an
average recall of 81.07%. Such results are, respectively, 129%
and 49% better than the results achieved by JDeodorant, a well-
known move method recommendation system.

Index Terms—Move method refactorings; Recommendation
systems; Dependency sets.

I. INTRODUCTION

In object-oriented systems, classes encapsulate an inter-
nal state that is manipulated by methods. However, during
software evolution, developers may inadvertently implement
methods in incorrect classes, creating instances of the Feature
Envy bad smell [1]. In fact, there are many studies that rank
Feature Envy as the most recurring code smell [2, 3]. On
one hand, the causes of this design flaw are well-known, and
include deadline pressures, complex requirements or a partial
understanding of the system’s design. On the other hand, the
consequences can be summarized in the form of a negative
impact in the system’s maintainability [4, 5].

Besides the causes and consequences, the refactoring actions
to remove a Feature Envy are also well-documented. Basically,
a Move Method must be applied to move the method from its
current class to the class that it envies [1, 6]. In fact, this
refactoring is usually supported by the automatic refactoring
tools that are part of most modern IDEs. Therefore, applying
the indicated fixing action is not a challenging task in the
case of a Feature Envy. On the other hand, before applying
this refactoring, maintainers must perform two program com-
prehension tasks: (a) detect the Feature Envy instances in the
source code, and (b) determine the correct classes to receive
the methods detected by the first task. Typically, such tasks are
more complex because they require a global understanding
of the system’s design and implementation, which is a skill
that only experienced developers have. However, despite their
complexity, the aforementioned tasks are usually performed
without the support of any program analysis tools, at least in
the case of mainstream IDEs.

To tackle this problem, we propose a novel approach to
recommend Move Method refactorings. Basically, our ap-
proach detects methods displaying a Feature Envy behavior. In
such cases, we also suggest a target class where the detected
methods should be moved to. More specifically, our approach
is centered on the following assumption: methods in well-
designed classes usually establish dependencies to similar
types. For example, suppose that the class CustomerDAO

is used to persist customers in a database. Typically, the
dependency sets of the methods in this class include common
domain types (such as Customer) and also common persis-
tence related types (such as SQLException). Suppose also that
one of such methods, called getAllCustomers, was inadver-
tently implemented in the class CustomerView, responsible
for user interface concerns. In this case, the dependency set
of getAllCustomers contains the same domain types as
the remaining methods in CustomerView, but probably will
not contain dependencies to types like Button, Label, etc,
which are common in the methods from CustomerView.
Therefore, since the dependency set of getAllCustomers

is more similar to the dependency sets in CustomerDAO

than to the dependency sets in CustomerView, our approach
triggers a Move Method recommendation, suggesting to move
getAllCustomers from the former to the latter.

The paper starts by discussing previous research on strate-
gies for detecting Feature Envy instances (Section II). After
that, we detail our recommendation approach, including its
main algorithms and functions (Section III). We also present
a supporting tool we have implemented, called JMove (Sec-
tion IV). Since our approach is based on the similarity of de-
pendency sets, we conducted an exploratory study to define the
best similarity coefficient to be used (Section V). As a result,
we decided to rely on the Sokal and Sneath 2 coefficient [7, 8].
We also evaluate our approach in terms of precision and
recall, using a sample of 14 systems with well-defined Feature
Envy instances we have synthesized manually (Section VI).
We report that our solution provides an average precision of
60.63% and an average recall of 81.07%. Such results are,
respectively, 129% and 49% better than the results achieved
by JDeodorant [6], a well-known refactoring recommendation
system. We also discuss and illustrate with concrete examples
the main benefits and limitations of the proposed approach
(Section VII). We conclude by presenting our contribution and
indicating further research (Section VIII).
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II. RELATED WORK

We organized related work in two groups: (a) JDeodorant,
which is the system closer to our approach; and (b) other
approaches to identify refactoring opportunities, mainly related
to methods implemented in incorrect classes.

A. JDeodorant

Proposed by Tsantalis and Chatzigeorgiou, JDeodorant [6,
9] follows a classical heuristic to detect Feature Envy bad
smells: a method m envies a class C ′ when m accesses
more services from C ′ than from its own class. However,
JDeodorant includes two major improvements to this heuristic.
First, the system defines a rich set of Move Method refactoring
preconditions to check whether the refactoring recommenda-
tions can be applied and preserve behavior and the design
quality. Second, to avoid an explosion in the number of false
positives, JDeodorant defines an entity placement metric to
evaluate the quality of a possible Move Method recommenda-
tion. This metric is used to evaluate whether a recommendation
reduces a system-wide measurement of coupling and at the
same time improves a system-wide measurement of cohesion.
Coupling is defined by the Jaccard distance between all
entities in the system (methods and attributes) not belonging
to a class and the class itself. On the other hand, cohesion
is defined by the Jaccard distance between each entity in
the class and the class itself. JDeodorant has been recently
extended to also identify Extract Method [10] and Extract
Class refactorings [11]. We dedicate an entire subsection to
JDeodorant because Section VI compares our approach with
this tool.

B. Identification of Refactorings Opportunities

Besides JDeodorant, other approaches have been proposed
to help developers and maintainers to identify refactoring op-
portunities. For instance, Marinescu proposed a set of metrics-
based rules to capture deviations from established design
principles, including the detection of methods displaying a
Feature Envy behavior [12]. The proposed rules allow en-
gineers to directly localize classes or methods affected by a
particular design flaw rather than having to infer the problem
from a large set of metric values [13]. However, the task of
setting the thresholds—i.e., the acceptable metrics values—
is not trivial and is usually guided by empirical studies and
past experiences [14]. The iPlasma tool and its commercial
evolution InFusion adopt the proposed strategies [15].

Oliveto et al. proposed an approach, named Method-
Book [16], to identify Move Method refactoring opportunities
using a technique called Relational Topic Model (RTM) [17].
This technique is used for example by Facebook to analyze
users profiles and to suggest new friends or groups. Likewise,
in the MethodBook approach, methods and classes play the
role of users and groups, respectively. Therefore, MethodBook
would recommend the moving of a given method m to the
class C ′ that contains the largest number of m’s “friends”.

O’Keeffe and Ó Cinnéide proposed a search-based software
maintenance tool that relies on search algorithms, such as Hill

Climbing and Simulated Annealing, to suggest six inheritance-
related refactorings [18]. However, they do not handle methods
located in incorrect classes. Similarly, Seng et al. proposed
a search-based approach that uses an evolutionary algorithm
to provide a list of refactorings that leads to a behaviorally
equivalent system structure with better metric values [19].
Since search-based refactoring approaches usually produce a
sequence of refactorings, Harman and Tratt showed how to
apply Pareto optimality in multiple sequences of refactorings
to achieve a better combination of metrics [20].

Finally, the recommendation approach described in this
paper was inspired by our previous work on architecture
conformance and repair [21]. More specifically, we proposed
a recommendation system, called ArchFix [22], that supports
32 refactoring recommendations to repair violations raised by
architecture conformance checking approaches. Five of such
refactorings include a recommendation to move a method to
another class, which is inferred using the set of dependen-
cies established by the source method and the target class.
However, in ArchFix the methods located in the wrong class
are given as an input to the recommendation algorithm (and
represent an architectural violation). On the other hand, in the
current work, our goal is exactly to discover such methods
automatically. Moreover, we investigate methods that do not
necessarily denote an architectural violation.

III. PROPOSED APPROACH

Our recommendation approach first detects methods located
in incorrect classes and then suggests moving such methods
to more suitable ones. More specifically, we first evaluate
the set of static dependencies established by a given method
m located in a class C, as illustrated in Figure 1. After
that, we compute two similarity coefficients: (a) the average
similarity between the set of dependencies established by m
and by the remaining methods in C; and (b) the average
similarity between the dependencies established by m and by
the methods in another class Ci. If the similarity measured in
the step (b) is greater than the similarity measured in (a), we
infer that m is more similar to the methods in Ci than to the
methods in its current class C. Therefore, Ci is a candidate
class to receive m.

In the remainder of this section, we describe the recommen-
dation algorithm proposed in this paper (Subsection III-A), the
similarity functions that play a central role in this algorithm
(Subsection III-B), and the strategy we propose to decide the
most suitable classes to receive a method (Subsection III-C).

A. Recommendation Algorithm

Algorithm 1 presents the proposed recommendation algo-
rithm. Assume a system S with a method m implemented in
a class C. For all class Ci ∈ S, the algorithm verifies whether
m is more similar to the methods in Ci than to the methods
in its original class C (line 6). In the positive cases, we insert
Ci in a list T containing the candidate target classes to receive
m (line 7). Finally, we search in T for the most suitable class
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Dependency  Similarity Recommendations
 Set

Move MethodSource Code
public class C {

  

}

public class C {

}

public class C’ {

}

Algorithm
 void m(){
   ...
   }

 void m(){
   ...
   }

 int getID(){
   ...
   }

int getV( ) {
   ...
   }

 void m(){
   ...
   }

int getV( ) {
   ...
   }

Fig. 1. Proposed approach

to receive m (line 10). In case we find such a class C ′, we
make a recommendation to move m to C ′ (line 11).

Algorithm 1 Recommendation algorithm
Input: Target system S
Output: List with Move Method recommendations
1: Recomendations← ∅
2: for all method m ∈ S do
3: C = get class(m)
4: T ← ∅
5: for all class Ci ∈ S do
6: if similarity(m,Ci) > similarity(m,C) then
7: T = T + Ci

8: end if
9: end for

10: C′ = best class(m,T )
11: Recomendations = Recomendations + move(m,C′)
12: end for

This algorithm relies on two key functions: (a)
similarity(m, C) that computes the average similarity
between method m and the methods in a class C; and (b)
best class(m, T) that receives a list of candidate classes
T to receive m and returns the most suitable one. These
functions are described in the following subsections.

B. Similarity Function

Our approach relies on the set of static dependencies es-
tablished by a method m to compute its similarity with the
methods in a class C, as described in Algorithm 2. Initially,
we compute the similarity between m and each method m′

in C (line 4). In the end, the similarity between m and C is
defined as the arithmetic mean of the similarity coefficients
computed in the previous step. In this algorithm, NOM (C)
denotes the number of methods in a class C (lines 8 and 10).

Algorithm 2 Similarity Algorithm
Input: Method m and a class C
Output: Similarity coefficient between m and C
1: sim← 0
2: for all method m′ ∈ C do
3: if m 6= m′ then
4: sim = sim + meth sim(m,m′)
5: end if
6: end for
7: if f ∈ C then
8: return sim/[NOM(C)− 1]
9: else

10: return sim/NOM(C)
11: end if

The key function in Algorithm 2 is meth sim(m, m′), which
computes the similarity between the sets of dependencies
established by two methods (line 4). Currently, based on an
exploratory study where we evaluated 18 similarity coefficients

(described in Section V), we are recommending the use of the
Sokal and Sneath 2 coefficient [7, 8, 23], defined as:

meth sim(m, m′) =
a

a+ 2(b+ c)
(1)

where
• a = | Dep(m)

⋂
Dep(m′) |

• b = | Dep(m) − Dep(m′) |
• c = | Dep(m′) − Dep(m) |

In this definition, Dep(m) is a set with the dependencies
established by method m. This set includes the types the
implementation of m makes references to. More specifically,
we consider the following dependencies:
• Method calls: if m calls another method m′, the class of

m′ is added to Dep(m).
• Field accesses: if m reads or writes to a field f , the type

of f is added to Dep(m). If f is declared in the same
class of m, then this class is also added to Dep(m).

• Object instantiations: if m creates an object of a type C,
then C is included in Dep(m).

• Local declarations: if m declares a variable or formal
parameter v, the type of v is included in Dep(m).

• Return types: the return type of m is added to Dep(m).
• Exceptions: if m can raise an exception E or if m handles

E internally, then E is added to Dep(m).
• Annotations: if m receives an annotation A, then A is

included in Dep(m).

When building the dependency sets we ignore the following
types: (a) primitive types; (b) types and annotations from
java.lang and java.util (like String, HashTable,
Object, and SupressWarnings). These types are common
to most classes and for that reason they are not relevant when
characterizing the dependencies established by methods. They
are analogous for example to stop words in natural language
processing systems.

Example: Code 1 shows a method foo located in a class Bar.
In this case, we have that

Dep(foo) = { Annot,R,B,Z,A,C,D,Bar }

Next, we explain why each type was included in this set:
Annot (annotation used in line 3), R (return type in line 4),
B (parameter declared in line 4 and method call in line 5),
Z (exception declaration in line 4), A (local variable declaration
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in line 5 and field access in lines 7 and 9), C (method call in
line 7), Bar and D (field access in line 7).

1:public class Bar {
2: private C c;
3: @Annot
4: public R foo(B b) throws Z {
5: A a = b.getA();
6: if (a != null) {
7: a.valueR = this.c.getD().valueR;
8: }
9: return a.valueR;
10: }
11:}

Code 1. Example to illustrate dependency sets

As mentioned, Dep(m) is a set—and not a multiset. There-
fore, multiple dependencies to the same type are represented
only once. As an example, Dep(foo) has a unique reference
to B, even though there is a formal parameter of type B (line 4)
and a method call having a target of type B (line 5). In previous
work, we provide evidences that traditional sets achieve better
precision results than multisets when evaluating the structural
similarity of program entities [24].

For the sake of clarity, we omitted from Algorithm 2 a
test that discards two kinds of methods when calculating the
similarity of dependency sets:
• Methods m that are the only methods in their classes

because our approach is based on the similarity between
a given method and the remaining methods in its class.

• Methods m whose dependency set has less than four de-
pendencies because few dependencies are more subjected
to imprecise or spurious similarity measures. Moreover,
by establishing this lower threshold, we also filter out
accessor methods (getters and setters), which by
their very nature are rarely implemented in incorrect
locations.

C. Target Class Selection

Assume that T is a list with classes C1, C2, . . . , Cn that
are more similar to a method m than its current class C, as
computed by Algorithm 1. Assume also that the classes in
T are ordered by their similarity with m, as computed by
Algorithm 2, the most similar classes first.

To reduce the chances of false positives, a move recommen-
dation is not created when: T has less than three classes and
the difference between the similarity coefficients of C1 (the
first class in the list) and C (the original class of m) is less or
equal to 25%. In such cases, we consider that the difference
between the dependencies established by C1 and C are not
discrepant enough to recommend a move operation.

On the other hand, when such conditions do not hold, a
recommendation move(m,Ci) is created for the first class
Ci ∈ T to which the preconditions of such refactoring are
attended (1 ≤ i ≤ n). Basically, as usual in the case
of refactorings [1, 25], a Move Method has its application
conditioned by a set of preconditions, basically to ensure that
the program’s behavior is preserved after the refactoring. For
example, the target class Ci should not contain a method
with the same signature as m. When such preconditions are

not followed by a pair (C,Ci), we automatically verify the
next pair (C,Ci+1). No recommendation is returned when the
refactoring preconditions fail for all pair of classes (C,Ci+1).

IV. TOOL SUPPORT

We implemented a prototype tool, called JMove, that sup-
ports the approach proposed in this paper. Basically, JMove
is an Eclipse plugin that implements the Algorithms 1 and 2,
defined in Section III. Figure 2 illustrates the tool’s interface,
using as example a method called getAllCustomers incor-
rectly implemented in a class designed to support presentation
concerns, called CustomerView. Basically, JMove extends the
IDE interface with a new report panel, used to show the
recommended Move Method refactorings.

Target ClassSource MethodRefactoring

Fig. 2. JMove’s interface

Figure 3 presents the three main modules defined by
JMove’s implementation. The Dependency Extraction Module
is used to extract the dependency sets that characterize the
methods in our approach. For example, the getAllCustomers
method has the following Dependency Set:

Dep(getAllCustomers) = {Customer,DB,ResultSet,
SQLException, PreparedStatement, Connection}

The Similarity Measurement Module basically implements
the Algorithms 1 and 2. In our running example, this module
computes a list T with the following candidate target classes
to receive getAllCustomers:

T = {[CustomerDAO, 0.94], [ProductDAO, 0.86],
[DepartmentDAO, 0.86], ... }

Finally, module Recommender System implements the func-
tion best class(m, t) that, given a list T of candidate classes,
selects one to receive m, following the criteria defined in
Section III-C. In our running example, this function returns
the class CustomerDAO, since it has many methods similar
to getAllCustomers. In other words, getAllCustomers is
more similar, regarding its dependency set, to the methods in
CustomerDAO than to the other methods in its current class
CustomerView.

235



Fig. 3. JMove’s architecture

Before making a Move Method recommendation, the Rec-
ommender verifies whether the recommendation attends the
refactoring preconditions. Currently, JMove relies on the pre-
conditions defined by the Move Method automatic refactoring
supported by the Eclipse IDE. However, it is well-known
that Eclipse implements weak preconditions for some refactor-
ings [26, 27, 28]. For this reason, we strengthened the Eclipse
preconditions by supporting the following five preconditions
originally proposed by the JDeodorant tool [6].
• The target class should not inherit a method having the

same signature with the moved method.
• The method to be moved should not override an inherited

method in its original class.
• The method to be moved should not be synchronized.
• The method to be moved should not contain assignments

to source class fields (including inherited fields).
• The method to be moved should have a one-to-one

relationship with the target class.

V. EXPLORATORY STUDY: SIMILARITY COEFFICIENTS

In this section, we report the exploratory study we initially
conducted in order to select Sokal and Sneath 2 as the
similarity coefficient used by our approach. Basically, in this
study, we evaluated the 18 similarity coefficients described in
Table I, where a, b, and c are as defined in Section III-B, and
d is defined as follows:

d = | Dep(S)− [Dep(m) ∪ Dep(m′)] |

where Dep(S) is a set with the dependencies established by
all methods in the system S under analysis .

A. Study Design

We conducted the study using JHotDraw (version 7.6),
which is a system commonly used to illustrate object-oriented
programming practices and patterns. Its implementation has
80 KLOC, 674 classes, and 6,533 methods. The system has
a reputation of having a well-defined and mature design,
proposed and implemented by expert developers [29]. For this
reason, we based the study on the conjecture that all methods
in JHotDraw are implemented in the correct class.

We executed Algorithm 1, as described in Section III,
multiple times to JHotDraw, considering in each execution

TABLE I
SIMILARITY COEFFICIENTS

Coefficient Definition Range
1. Jaccard a/(a + b + c) 0–1*
2. Simple matching (a + d)/(a + b + c + d) 0–1*
3. Yule (ad − bc)/(ad + bc) -1–1*
4. Hamann [(a + d) − (b + c)]/[(a + d) + (b + c)] -1–1*
5. Sorenson 2a/(2a + b + c) 0–1*
6. Rogers and Tanimoto (a + d)/[a + 2(b + c) + d] 0–1*
7. Sokal and Sneath 2(a + d)/[2(a + d) + b + c] 0–1*
8. Russelll and Rao a/(a + b + c + d) 0–1*
9. Baroni-Urbani and Buser [a + (ad)

1
2 ]/[a + b + c + (ad)

1
2 ] 0–1*

10. Sokal binary distance [(b + c)/(a + b + c + d)]
1
2 0*–1

11. Ochiai a/[(a + b)(a + c)]
1
2 0–1*

12. Phi (ad − bc)/[(a + b)(a + c)(b + d)(c + d)]
1
2 -1–1*

13. PSC a2/[(b + a)(c + a)] 0–1*
14. Dot-product a/(b + c + 2a) 0–1*
15. Kulczynski 1

2
[a/(a + b) + a/(a + c)] 0–1*

16. Sokal and Sneath 2 a/[a + 2(b + c)] 0–1*
17. Sokal and Sneath 4 1

4
[a/(a + b) + a/(a + c) + d/(b + d) + d/(c + d)] 0–1*

18. Relative Matching [a + (ad)
1
2 ]/[a + b + c + d + (ad)

1
2 ] 0–1*

The symbol “∗” denotes the maximum similarity.

a different similarity coefficient. Based on our conjecture,
any recommendation should be flagged as a false positive.
Therefore, we aim to select the similarity coefficient that
generates few recommendations in JHotDraw.

B. Results

Figure 4 presents the number of recommendations
generated by each similarity coefficient. For the sake of
readability, we do not show the results for the following
coefficients that generated more than 100 recommendations:
Hamann, Rogers and Tanimoto, Sokal and Sneath, SMC, and
Sokal Binary. As reported in Figure 4, the best coefficients
were Sokal and Sneath 2 and Russell and Rao, both with
10 recommendations. We decided to use Sokal and Sneath 2
because it is more simple to compute than Russell and
Rao, whose computation requires counting the dependencies
available in the remaining methods in the system that do not
occur in a given pair of methods m and m′ (term d in the
formula).

Fig. 4. Move Method recommendations in JHotDraw
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C. Threats to Validity

There are two main threats regarding the validity of this
initial study. First, as usual, we cannot extrapolate our results
to other systems (external validity). However, it is not simple
to find systems that confessedly have a mature design, as
JHotDraw. Second, even in JHotDraw, it is possible to have
methods that are in fact not implemented in the most recom-
mended class (conclusion validity). On the other hand, due
to the particular motivation and context behind JHotDraw’s
implementation, we claim the number of such misplaced
methods is really small.

VI. EVALUATION

This section reports a study designed to evaluate our rec-
ommendation approach, as implemented by the JMove tool.

A. Research Questions

The study aims to answer the following research questions:

• RQ #1 – How does our approach compare with
JDeodorant in terms of precision?

• RQ #2 – How does our approach compare with
JDeodorant in terms of recall?

Both questions compare our approach with JDeodorant for
two reasons: (a) JDeodorant is a well-known solution for
identifying Move Method refactoring opportunities; and (b)
JDeodorant has a public implementation, that is robust and
friendly enough to be used in real-world systems.

B. Study Design

In this section, we present the dataset used in our
evaluation, the methodology we followed to generate our
gold sets, i.e., the methods implemented in incorrect classes,
and to calculate precision and recall.

Dataset: We evaluate our approach using the systems in the
Qualitas.class Corpus [30]. This corpus is a compiled version
of 111 systems originally included in the Qualitas Corpus [31],
but only in a source code format. However, to evaluate tools
that depend on the Abstract Syntax Tree (AST) provided by a
given IDE, like the one considered in this paper, we need to
import and compile the source code. However, this effort is not
trivial in the case of systems with many external dependencies.
For this reason, we decided to invest in a parallel project
aiming the creation of a compiled variant of the Qualitas
Corpus.

In fact, our evaluation considers a sample of the systems in
Qualitas.class Corpus. The criteria to select the systems were
as follows: (a) we only considered active projects to avoid
outdated systems; (b) we only considered systems having
between 500 and 5,000 classes to filter out small and huge
systems; (c) we only considered systems whose implementa-
tion consists of a single Eclipse project (otherwise we would
have to execute the tools multiple times for each project).

Among the systems attending our criteria, we selected the
first 15 systems, sorted according to their release date from
newest to oldest, as stated in the original Qualitas Corpus
documentation. In this initial systems selection, JDeodorant
did not raise recommendations for two systems: Lucene and
iReport. We therefore decided to remove both systems from
our sample. Finally, we included JHotDraw to the sample,
for the same reasons that motivated its use in our first study
(Section V).

Table II presents the final 14 systems considered in
the study, including their names, version, number of
classes (NOC), number of methods (NOM), and size in terms
of lines of code (LOC).

TABLE II
TARGET SYSTEMS

System Version NOC NOM LOC
Ant 1.8.2 1,474 12,318 127,507
ArgoUML 0.34 1,291 8,077 67,514
Cayenne 3.0.1 2,795 17,070 192,431
DrJava r5387 788 7,156 89,477
FreeCol 0.10.3 809 7,134 106,412
FreeMind 0.9.0 658 4,885 52,757
JMeter 2.5.1 940 7,990 94,778
JRuby 1.7.3 1,925 18,153 243,984
JTOpen 7.8 1,812 21,630 342,032
Maven 3.0.5 647 4,888 65,685
Megamek 0.35.18 1,775 11369 242,836
WCT 1.5.2 539 5,130 48,191
Weka 3.6.9 1,535 17,851 272,611
JHotDraw 7.6 674 6,533 80,536

Gold Sets: To evaluate precision and recall, it is crucial to
identify the methods implemented in the wrong classes, which
we refer as the gold sets [32]. Typically, generating such
sets would require the participation of expert developers on
the target systems in order to manually analyze and classify
each method. However, in the context of open-source systems,
it is not straightforward to establish a contact with the key
project developers. For this reason, inspired by the evaluation
proposed by Moghadam and Cinnéide in their work on design-
level refactoring [33], we manually synthesized a version
of each system with well-known methods implemented in
incorrect classes, at least with a high probability.

More specifically, we randomly selected a sample including
3% of the classes in each system and manually moved a
method of them to new classes, also randomly selected. Before
each manual move, we verified the following preconditions:
(a) the method selected to be moved must have at least four
dependencies in its dependency set because our approach
automatically filters out methods not attending this condition
(as described in Section III-B); (b) a given class (source or
target) can be selected at most once, in order to avoid multiple
moves to or from the same class and therefore preserving its
current form;1 and (c) given a source method m in a class C

1In practice, multiple moves to or from a same class reduce the chances
of returning the moved methods to the original class. For instance, assume a
class in which all methods have been moved to another class. In this case,
it would be unlikely to recommend the return of the moved methods to the
original one, an empty class.
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and a target class C ′, it must be possible to move m to C ′

and also back to C. This last precondition is important because
otherwise our approach—and also JDeodorant—would never
make a recommendation about m in the synthesized system.
Finally, when a given method and target class do not attend
the proposed preconditions, a new candidate is randomly
generated, until reaching 3% of the classes in the system.

By following this procedure, we synthesized for each
system S a modified system S′ with a well-known GoldSet
of methods with high probability to be located in the wrong
class for the reasons described next:

• In the case of JHotDraw, as claimed in Section V, it is
reasonable to consider that all methods in the original
system are in their correct class, since JHotDraw was
developed and maintained by a small number of expert
developers. Therefore, we argue that in the modified
version of the system, the GoldSet methods are the only
ones located in the wrong classes. Due to this special
condition, for JHotDraw, we generated five instances of
the system with a well-known GoldSet.

• In the case of the other systems, it is not reasonable to
assume that all methods are in the correct place because
such systems are maintained and evolved by different
developers. However, we argue that it is reasonable to
assume that at least most methods are in the correct
class. More specifically, the number of methods in such
systems range from 4,885 methods (FreeMind) to 21,630
methods (JTOpen). As a consequence, in a sample with
this considerable number of methods, the probability
of randomly selecting one located in the correct class
is much higher than otherwise. Therefore, the GoldSet
methods generated according to our methodology have
high chances to denote methods in the wrong class.

In fact, the proposed procedure only inserts a invalid method
in a synthesized GoldSet when the following two unlikely
conditions hold for a randomly selected method m and a ran-
domly selected target class C ′: (a) m is originally implemented
in a wrong class in the original system; and (b) C ′ is exactly
the class where this method should have been implemented.
For example, when condition (a) holds, but condition (b) does
not hold, we still have a valid method in the GoldSet because
we are basically moving a method implemented in a wrong
class to another class that is also not correct.

Table III shows the number of methods in the gold sets
generated for each system. In total, using the Eclipse support
to Move Method refactorings, we moved 475 methods,
including 100 methods in five JHotDraw instances.

Calculating Precision and Recall: We executed JMove and
JDeodorant in the modified systems. Each execution gen-
erated a list of recommendations Rec, whose elements are
triples (m,C,C ′) expressing a suggestion to move m from
C to C ′. A recommendation (m,C,C ′) is classified as a true
recommendation when it matches a method in the GoldSet.

TABLE III
GOLD SETS SIZE

System |GoldSet | System |GoldSet |
Ant 25 JRuby 41
ArgoUML 32 JTOpen 39
Cayenne 47 Maven 24
DrJava 18 Megamek 35
FreeCol 17 WCT 29
FreeMind 12 Weka 31
JMeter 25 JHotDraw 20

Particularly, for a list of recommendations Rec generated by
JMove or JDeodorant and a given GoldSet, the set of true
recommendations is defined as:

TrueRec = { (m,C,C ′) ∈ Rec | ∃(m,C,C ′) ∈ GoldSet }

Furthermore, in the case of the Qualitas.class systems, we
cannot assume that the methods in the gold sets are the only
ones implemented in incorrect classes. For this reason, we
calculated precision only for the five instances of JHotDraw,
as follows:

Precision =
| TrueRec |
| Rec |

In all systems, we calculated a first recall measure defined
as the ratio of the methods covered with the evaluated tools
by the number of methods in the GoldSet, as follows:

Recall1 =
| TrueRec |
| GoldSet |

We also calculated a second recall, defined as:

Recall2 =
| { (m,C, ∗) ∈ Rec | ∃(m,C, ∗) ∈ GoldSet } |

| GoldSet |

This second definition considers the ratio of methods cov-
ered by recommendations suggesting moving m to any other
class (denoted by a ∗), not necessarily the correct one. There-
fore, we always have Recall1 ≤ Recall2.

C. Results

In this section, we provide answers for the proposed
research questions.

RQ #1 (Precision): Table IV shows the precision results for
the five instances of JHotDraw. Our approach—as imple-
mented by the JMove tool—achieved a precision of 60.63%
against 26.47% achieved by JDeodorant. In fact, JMove gen-
erated less recommendations than JDeodorant (26.2 x 39.2
recommendations in average). Besides that, we generated more
true recommendations (15.8 x 10.4 true recommendations
in average). In the best case (instance #4), we achieved a
precision of 66.67%.

RQ #2 (Recall): Table V shows the Recall1 and Recall2
in each system. Regarding the JHotDraw system, the results
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TABLE IV
PRECISION RESULTS FOR JHOTDRAW

System | Rec | | TrueRec | Precision (%)
JMove JDeo∗ JMove JDeo∗ JMove JDeo∗

JHotDraw #1 28 39 16 10 57.14 25.64
JHotDraw #2 27 39 16 10 59.26 25.64
JHotDraw #3 28 38 16 8 57.14 21.05
JHotDraw #4 21 41 14 12 66.67 29.27
JHotDraw #5 27 39 17 12 62.96 30.77
Average 26.20 39.20 15.80 10.40 60.63 26.47
Std Dev 2.95 1.10 1.10 1.67 4.13 3.78
Median 27 39 16 10 59.26 25.64
Max 28 41 17 12 66.67 30.77
Min 21 38 14 8 57.14 21.05

JDeo∗ stands for JDeodorant

TABLE V
RECALL RESULTS

System Recall1 (%) Recall2 (%)
JMove JDeodorant JMove JDeodorant

Ant 84.00 72.00 84.00 84.00
ArgoUML 84.38 56.25 84.38 56.25
Cayenne 72.34 27.66 78.72 38.30
DrJava 83.33 72.22 83.33 72.22
FreeCol 76.47 41.18 76.47 58.82
FreeMind 91.67 58.33 91.67 58.33
JMeter 84.00 60.00 84.00 60.00
JRuby 70.73 58.54 85.37 58.54
JTOpen 89.74 53.85 89.74 58.97
Maven 79.17 45.83 87.50 54,51
Megamek 80.00 51.43 80.00 60.00
WCT 82.76 48.28 86.21 48.28
Weka 77.42 64.52 87.10 74.19
JHotDraw #1-#5 79.00 51.00 79.00 52.00
Average 81.07 54.36 84.11 59.58
Std Dev 5.88 11.83 4.35 11.27
Median 81.38 55.05 84.19 58.68
Max 91.67 72.22 91.67 84.00
Min 70.73 27.66 76.47 38.30

presented in this table are the average of the recall considering
the five instances we generated for this system.

Considering Recall1, JMove achieved a recall of 81.07 ±
5.88 (average plus/minus standard deviation) and JDeodorant
achieved a result of 54.36±11.83. Therefore, on average, our
results are 49.13% better than JDeodorant, in terms of recall.
Moreover, our minimal recall was 70.73% (JRuby) and our
maximal recall was 91.67% (FreeMind). On the other hand,
JDeodorant achieved a maximal recall of 72.22% (DrJava).

Considering Recall2, JMove achieved a recall of
84.11±4.35 and JDeodorant achieved a result of 59.58±11.27.
When comparing the results of Recall1 and Recall2, we can
observe that Recall2 is 3.74% better than Recall1 in our
approach and 9.60% better in JDeodorant. In other words,
in both tools the number of full correct recommendations is
dominant, i.e., when the tools detect a method in the wrong
class, usually they are also able to infer the correct class to
receive the method.

Additional Result: Table VI presents the number of recommen-
dations triggered by JMove and JDeodorant for the systems
in the Qualitas.class Corpus. The results are in the format
tr + r, where tr are the recommendations that matched a

method in the generated gold sets and r are the remaining
recommendations, which is not safe to infer whether they
represent true recommendations or not. In 11 out of the 13
systems, JDeodorant produced more recommendations than
our approach.

TABLE VI
NUMBER OF RECOMMENDATIONS

System Number of Recommenda-
tions

JMove JDeodorant
Ant 21 + 118 21 + 156

ArgoUML 27 + 41 18 + 30

Cayenne 37 + 121 18 + 105

DrJava 15 + 81 13 + 293

FreeCol 13 + 162 10 + 281

FreeMind 11 + 44 7 + 60

JMeter 21 + 50 15 + 102

JRuby 35 + 310 24 + 399

JTOpen 35 + 90 23 + 427

Maven 21 + 32 13 + 56

Megamek 28 + 224 21 + 243

WCT 25 + 31 14 + 72

Weka 27 + 175 23 + 327

D. Threats to Validity

Quite similar to the study in Section V, there are three
main threats regarding the validity of this second study.
First, as usual, we cannot extrapolate our results to other
systems (external validity). However, we argue that at least we
evaluated a credible sample including 14 real-world systems.
Second, we acknowledge that the strategy followed to generate
the gold sets can lead to incorrect classifications in rare cir-
cumstances, as already discussed in Section VI-B (conclusion
validity). However, despite having a low probability of being
synthesized, invalid entries in our gold sets affect equally our
results and the results generated by JDeodorant, making at
least our comparison of the tools fair. Third, we cannot claim
that our approach outperforms JDeodorant in a real scenario,
since our evaluation is based on artificial moves (conclusion
validity). However, we are currently working on a field study,
involving real systems and assertions of expert developers.

VII. DISCUSSION

In this section, we discuss our results in qualitative
terms. More specifically, we present two examples of
Move Method refactorings suggested by our approach for the
first modified version of JHotDraw, as described in Section VI.

Example #1: Code 2 shows our first example. The
calculateLayout2 method does not access any service from
its current class AttributeKey.

Moreover, its dependency set is very different from the
dependency sets of the other methods in the class. In fact,
we have that:

Similarity(calculateLayout2, AttributeKey) = 0.02
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1:Double calculateLayout2(LocatorLayouter locLayouter,
2: CompositeFigure compositeFigure, Double anchor,
3: Double lead) {
4: Double bounds = null;
5: for (Figure child: compositeFigure.getChildren()){
6: Locator loc = locLayouter.getLocator(child);
7: Double r;
8: if (loc == null) {
9: r = child.getBounds();
10: } else {
11: Double p = loc.locate(compositeFigure);
12: Dimension2DDouble d = child.getPreferredSize();
13: r = new Double(p.x, p.y, d.width, d.height);
14: }
15: if (!r.isEmpty()) {
16: if (bounds == null) {
17: bounds = r;
18: } else {
19: bounds.add(r);
20: }
21: }
22: }
23: return (bounds == null) ? new Double() : bounds;
24:}

Code 2. First Move Method Example (JHotDraw)

On the other hand, this method is more similar to the
methods in the LocatorLayouter class. To illustrate, we
show next the similarity between calculateLayout2 and the
three methods in LocatorLayouter:

meth sim(calculateLayout2, layout) = 1.00
meth sim(calculateLayout2, calculateLayout) = 0.33
meth sim(calculateLayout2, getLocator) = 0.27

As result, we have that:

Similarity(calculateLayout2, LocatorLayouter) = 0.53

For this reason, our approach has correctly recommended to
move calculateLayout2 back to LocatorLayouter.

On the other hand, JDeodorant does not make a
recommendation to move this method. Basically, in the
case of getter methods, as the getLocator call in
line 6, JDeodorant considers that the method envies not the
target type (LocatorLayouter), but the type returned by
the call (Locator). However, it is not possible to move
calculateLayout2 to Locator because the refactoring
preconditions fail in this case.

Example #2: Code 3 shows the second example
discussed here. As in the previous example, the
fireAreaInvalidated2 method does not access any
service from its current class DrawingEditorProxy.
However, it calls three methods from AbstractTool (lines
2-4). For this reason, JDeodorant infers that AbstractTool
is a better location for the method. Moreover, it is possible to
move the method to this class.

1:void fireAreaInvalidated2(AbstractTool abt, Double r){
2: Point p1 = abt.getView().drawingToView(...);
3: Point p2 = abt.getView().drawingToView(...);
4: abt.fireAreaInvalidated(
5: new Rectangle(p1.x, p1.y, p2.x - p1.x, p2.y - p1.y));
6:}

Code 3. Second Move Method Example (JHotDraw)

On the other hand, our approach also suggests to move
fireAreaInvalidated2 back to AbstractTool, because

the method is more similar to this target class than to its current
class, as indicated by the following similarity function calls:

Similarity(fireAreaInvalidated2,
DrawingEditorProxy) = 0.00

Similarity(fireAreaInvalidated2, AbstractTool) = 0.10

Limitations: Our approach does not provide recommendations
for methods that have less than four dependencies and also for
methods that are the single methods in their classes. However,
regarding the JHotDraw system, we found only 17 classes
(2.5%) having a single method. Among the 6,533 methods
in the system, 4,250 methods (65.0%) have less than four
dependencies. However, 2,173 of such methods (51.1%) are
getters or setters. We also have 1064 methods (25.0%)
that are graphical user interface listeners or utility methods,
like toString, equals, etc. By their very nature, such meth-
ods are typically implemented in the correct classes. They are
also not considered by other Move Method recommendation
systems, including JDeodorant and the search-based approach
proposed by Seng et. al [19].

Moreover, we do not recommend moving methods that
do not attend the refactoring preconditions because the
operation in this case typically requires a more complex
restructuring in the source and target classes. Finally,
we do not provide suggestions to move fields. However,
it is more rare to observe fields declared in the wrong class [6].

Final Remarks: The distinguishing characteristic of our ap-
proach is the fact that we depart from the traditional heuristics
for detecting move method refactorings. Essentially, such
heuristics consider that a method m should be moved from C1

to C2 when it access more data from C2 than from its current
class C1. Instead, we consider that m should be moved when
it is more similar to the methods in C2 than to the methods in
C1. Moreover, we assumed that the dependencies established
by a method are good estimators of its identity. Therefore, our
notion of similarity relies on a similarity coefficient applied
over dependency sets, calculated at the level of methods.

Besides checking the traditional heuristic for detecting Fea-
ture Envy, JDeodorant only makes a recommendation when
the refactoring improves a system-wide metric, that combines
cohesion and coupling. Basically, this metric is based on the
Jaccard distance between all entities in the system and the
original class with the Feature Envy instance. On the other
hand, we evaluate the gains of a Move Method refactoring
by comparing only the original class of the method with
the target class. In fact, recent work has questioned whether
high-cohesion/low-coupling—when measured at the level of
packages— is able to explain the design decisions behind real
remodularizations tasks [34].

VIII. CONCLUSION

In this paper, we described a novel approach for recom-
mending move method refactorings, based on the similarity of
dependency sets. We evaluated our approach using a sample
of 14 systems with 475 well-defined Feature Envy instances.
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We achieved an average precision of 60.63% and an average
recall of 81.07%. We are currently planning a field study,
involving a real system, with possible Feature Envy instances.
In this case, we plan to use an expert developer in the
system’s design to classify our recommendations as true or
false positives. In a second study, we also intend to rely on real
refactoring, as mined in source code repositories by tools like
Ref-Finder [35]. Finally, we plan to compare our solution with
other tools, including commercial tools like inFusion [15].

JMove and the dataset used in the paper are publicly
available at http : //aserg.labsoft.dcc.ufmg.br/jmove.
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[27] M. Schäefer and O. de Moor, “Specifying and implementing
refactorings,” in 25th Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA), 2010,
pp. 286–301.

[28] G. Soares, R. Gheyi, and T. Massoni, “Automated behavioral
testing of refactoring engines,” IEEE Transactions on Software
Engineering, vol. 39, no. 2, pp. 147–162, 2013.

[29] D. Riehle, “Framework design: A role modeling approach,”
Ph.D. dissertation, Swiss Federal Institute of Technology, 2000.

[30] R. Terra, L. F. Miranda, M. T. Valente, and R. S. Bigonha,
“Qualitas.class Corpus: A compiled version of the Qualitas
Corpus,” Software Engineering Notes, pp. 1–4, 2013.

[31] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe,
H. Melton, and J. Noble, “The Qualitas Corpus: A curated
collection of Java code for empirical studies,” in 17th Asia
Pacific Software Engineering Conference (APSEC), 2010, pp.
336–345.

[32] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature
location in source code: a taxonomy and survey,” Journal of
Software: Evolution and Process, pp. 53–95, 2013.
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