
1 23

����	
����������
����
	��������
������
�
������	�
�����
������	�
�������	
�
���������������������	 !�	�"	���#
$%��	�&	��#'(# ��	����) ��

�����	�
���	����������
���	�������������	��
������

�����	
�����������
��������
�
�����
���
��������	���
������
����

����������������������
��

1 23

Your article is protected by copyright and all
rights are held exclusively by The Brazilian
Computer Society. This e-offprint is for
personal use only and shall not be self-
archived in electronic repositories. If you
wish to self-archive your work, please use the
accepted author’s version for posting to your
own website or your institution’s repository.
You may further deposit the accepted author’s
version on a funder’s repository at a funder’s
request, provided it is not made publicly
available until 12 months after publication.

J Braz Comput Soc (2013) 19:15–27
DOI 10.1007/s13173-012-0083-5

ORIGINAL PAPER

On-the-fly extraction of hierarchical object graphs

Hugo de Brito · Humberto Torres Marques-Neto ·
Ricardo Terra · Henrique Rocha ·
Marco Tulio Valente

Received: 17 November 2011 / Accepted: 16 July 2012 / Published online: 5 September 2012
© The Brazilian Computer Society 2012

Abstract Reverse engineering techniques are usually
applied to extract concrete architecture models. However,
these techniques usually extract models that just reveal static
architectures, such as class diagrams. On the other hand, the
extraction of dynamic architecture models is particularly use-
ful for an initial understanding on how a system works or to
evaluate the impact of possible maintenance tasks. This paper
describes an approach to extract hierarchical object graphs
(OGs) from running systems. The proposed graphs have the
following distinguishing features: (a) they support the sum-
marization of objects in domains, (b) they support the com-
plete spectrum of relations and entities that are common in
object-oriented systems, (c) they support multithreading sys-
tems, and (d) they include a language to alert about expected
(or unexpected) relations between the extracted objects. We
also describe the design and implementation of a tool for
visualizing the proposed OGs. Finally, we provide two case
studies. The first study shows how our approach can con-
tribute to understand the running architecture of two sys-
tems (myAppointments and JHotDraw). The second study

H. de Brito · H. T. Marques-Neto
Department of Computer Science, PUC Minas,
Belo Horizonte, Brazil
e-mail: hugobrito@pucminas.br

H. T. Marques-Neto
e-mail: humberto@pucminas.br

R. Terra · H. Rocha · M. T. Valente (B)
Department of Computer Science, UFMG,
Belo Horizonte, Brazil
e-mail: mtov@dcc.ufmg.br

R. Terra
e-mail: terra@dcc.ufmg.br

H. Rocha
e-mail: hscr@dcc.ufmg.br

illustrates how OGs can help to locate defective software
components in the JHotDraw system.

Keywords Software architecture · Software models ·
Object graphs · Reverse engineering

1 Introduction

A common definition (or view) describes software archi-
tecture as the main components of a system, including
the acceptable and unacceptable relations among them
[7,13,20]. However, despite their unquestionable impor-
tance, architectural models and abstractions are usually not
documented, or when they are, the available documentation
normally does not reflect the actual architecture followed by
the implementation of the target systems [9,16,19].

In such scenarios, reverse engineering techniques can be
applied to reify information about a target system architec-
ture [10,27]. Usually, those techniques extract models that
reveal the static architecture, including class and package
diagrams [12] or dependency structure matrices [22]. As
one of their distinguishing advantages, static models can be
retrieved directly from the source code (i.e. without requiring
the execution of the target system). However, static models
only show a partial snapshot of the relations, connections,
and dependencies that are actually established during the
execution of the modeled system. For example, static dia-
grams cannot reveal relations due to polymorphism, dynamic
method calls, or reflection. Furthermore, they do not include
information on the order in which the represented relations
are established. In other words, static diagrams do not pro-
vide a clear roadmap to developers that need to understand a
given system. Finally, static diagrams do not take into account
relations and dependencies established by distinct threads,

123

Author's personal copy

16 J Braz Comput Soc (2013) 19:15–27

which makes the task of understanding concurrent systems
complex.

On the other hand, reverse engineering techniques can also
be applied to extract models that reveal dynamic architec-
tures, such as object and sequence diagrams [12]. Dynamic
diagrams explicitly represent the control flow of the target
system and therefore they provide an order that can be fol-
lowed when initially reasoning about the system. Moreover,
dynamic diagrams can express relations due to polymor-
phism or reflection [23,29]. In contrast, dynamic diagrams
present major problems regarding their scalability. Because
they typically do not make any distinction between lower-
level objects (such as instances of java.util.Date)
and architectural relevant objects (such as collections of
Customer objects), dynamic diagrams may have thousands
of nodes even for small-sized systems [1,2].

The available solutions to increase the scalability of
dynamic diagrams are centered on the same principle: to
group objects into coarse-grained and hierarchical struc-
tures. In the highest level of such structures, only architec-
tural relevant groups of objects are displayed (usually called
domains [1], components [18], clusters [5], etc.). It is also
possible to expand such higher-level groups to provide more
details about their elements. This process can be repeated
several times, until reaching a flat object graph (OG), where
each node corresponds to a runtime object. Basically, there
are two approaches to group objects into coarser-grained
structures: automatic approaches (for example, using clus-
tering algorithms [5,6]) and manual approaches (for exam-
ple, using annotations [1,2]). Typically, automatic solutions
do not derive groups of objects similar to those expected by
the system’s architects and maintainers. On the other hand,
solutions based on annotations are invasive, requiring the
annotation of each architectural relevant class (for example,
the classes of the Model layer must be annotated with a
@Model annotation).

This paper is a revised and extended version of a previous
conference paper presenting an on-the-fly and non-invasive
approach to extract hierarchical OGs from running systems
[4]. It also describes a non-invasive tool to extract and display
the proposed graphs. This tool can be plugged to existing sys-
tems and thus it supports the on-the-fly visualization of the
proposed graphs (i.e. the graphs are displayed and updated
as the host system executes). This property distinguishes the
proposed tool from other reverse engineering systems, where
it is usually required to first execute the target system to gen-
erate a trace that is then displayed off-line. Finally, we report
two case studies on using OGs. The first study illustrates how
the proposed OGs and supporting tool can help to recover and
to reason about the dynamic architecture of two systems:
myAppointments (a personal information manager system)
and JHotDraw (a well-known framework for creating draw-
ing applications). The second study describes how OGs can

help to locate the defective software components responsible
for an incorrect behavior in the JHotDraw system, as reported
in real corrective maintenance requests retrieved from JHot-
Draw’s bug tracking platform.

The remainder of this paper is organized as follows:
Section 2 describes the proposed OGs, including a descrip-
tion on their main elements and examples. Section 3 describes
the language used to define visual alerts when expected
(or unexpected) dynamic relations are established in the
extracted OGs. Section 4 presents the OG tool that extracts
and displays OGs. In Sect. 5, we present the first case study
(on extracting dynamic architectures). Section 6 presents the
second study (on the use of OGs in real JHotDraw’s cor-
rective maintenance tasks). Finally, Sect. 7 discusses related
work and Sect. 8 concludes the paper.

2 Object graphs

The graphs proposed in the paper have been designed to sup-
port the following requirements: (a) they should be able to
express the different types of relations available in object-
oriented systems, including relations due to dynamic calls
and reflection; (b) they should support the creation of coarse-
grained groups of objects to increase readability and scala-
bility; (c) they should provide means to distinguish objects
created by different threads; (d) in order to provide support
to dynamic architecture conformance, it should be possi-
ble to highlight relations that are expected—or that are not
expected—when running a system. Finally, it should be pos-
sible to extract OGs from running systems in a non-invasive
way.
Formal definition An OG is a directed graph that represents
the dynamic behavior of the objects in an existing system.
In an OG, the nodes denote objects (and classes with static
members) and the edges represent possible relations between
the represented nodes. In formal terms, an OG is defined
as a graph (Nodes, Edges), where Nodes and Edges are the
following sets:

Nodes = T ype × Name

T ype = {object, class}
Name = Unsigned I nt × String × String

Edges = Nodes × Nodes

where Type is a set with the two possible types of a node
(which can represent objects or classes) and Name is a tuple
with three fields: the insertion order of the node (a non-
negative integer), the name of the class of the node (a string),
and the node’s color (a string). Finally, Edges are ordered
pairs of Nodes.

123

Author's personal copy

J Braz Comput Soc (2013) 19:15–27 17

In the following paragraphs, we provide more details on
this definition, including information on how OGs must be
displayed.
Nodes As defined by the set Type, there are two types of
nodes in an OG. Nodes in the form of a circle denote objects.
Nodes in the form of a square represent classes. Circle-
shaped nodes have the same life span of the objects they
model (in other words, a circle node is inserted in an OG
when an object is created in the host program; likewise, it
is removed when the represented object is destroyed by the
garbage collector). Square-shaped nodes are created to model
accesses to static members of a class. Therefore, only classes
with static members accessed by objects are represented in
an OG.

As defined by the set Name, the name of a node is a
tuple with three fields. The first field is a sequential non-
negative integer that indicates the order in which the nodes
have been inserted in the graph. By convention, the first node
receives the number zero (typically, this node denotes the
class containing the application’s main method). The goal
of this number is to guide the developers when “reading”
the graph. The second field indicates the class name of the
represented object (in the case of circular nodes) or the name
of the class whose static member has been accessed (in the
case of square nodes). Finally, the third field represents the
node’s color. In OGs, colors are used to distinguish circu-
lar nodes created by different threads. Nodes created by the
main thread have a white color and a fresh color is automati-
cally assigned to nodes representing objects created by other
threads.
Edges As defined by the set Edges, edges denote relations
between objects and classes. Suppose that o1 and o2 are
circle-shaped nodes (representing objects) and that c1 and c2
are square-shaped nodes (representing classes). The directed
edge (o1, o2) indicates that o1—at some point during its life
span—has obtained a reference to o2. This reference could
have been acquired by an object’s field, by a local variable,
or by a method’s formal parameter. Similarly, the directed
edge (o1, c1) indicates that o1—at some point during its life
span—has called a static method implemented by c1. On the
other hand, an edge (c1, o1) indicates that a static member of
c1—at some point of the program’s execution—has obtained
a reference to o1. Finally, the edge (c1, c2) indicates that c1
has accessed a static member of c2.

Edges are inserted in an OG as soon as the repre-
sented relation is established during the execution of the
host program. When a node is removed from the graph,
its incoming and outcoming edges are also removed. Fur-
thermore, for the sake of readability, edges denoting loops
(i.e. edges starting and ending in the same node) are not
represented.

Example (Nodes and Edges) Consider the code shown in
Listing 1.

In this code, the Main class creates an object of type
Invoice and calls the load method (lines 4–5). This
method creates and adds a Product to an ArrayList
(lines 11–13). Figure 1 presents the OG generated by the
execution of the code fragment shown in this listing. This OG
has one square-shaped node (representing the class with the
main method) and three circle-shaped nodes, representing
the Invoice, ArrayList, and Product objects.

The extracted OG illustrates in a compact way the run-
time behavior of the presented program fragment. Following
the sequential integers associated with each node, it is pos-
sible to conclude that initially the Main class (node 0) has
accessed an Invoice object (node 1). Next, this Invoice
object has accessed an ArrayList object (node 2). Finally,
a Product has been created (node 3). This Product
instance has been accessed by the Invoice object (respon-
sible for its creation) and by theArrayList object (respon-
sible for its storage).
Example (Threads) Consider the code presented in Listing 2.
In this code, the Main class creates and activates two Box
threads (lines 3–4). Each thread creates a Product object
(line 10). Figure 2 presents the OG generated by the execution
of this program. In this OG, the Main class (node 0) has
references to two Box objects (nodes 1 and 3). Moreover,
we can verify that each Box references its own Product

Fig. 1 OG for the nodes and edges example

123

Author's personal copy

18 J Braz Comput Soc (2013) 19:15–27

Fig. 2 OG for the threads example (the names of the colors are only
illustrative)

object (nodes 2 and 4). More importantly, nodes denoting
Product objects have different colors, because they have
been created by different threads.
Packages and domains As it is common when extracting run-
time diagrams, the number of nodes and edges in an OG
can grow rapidly, even for small applications. Therefore,
to promote the scalability of OGs, there are two forms of
summarization: by packages or by domains. When package
summarization is enabled, all the objects and classes from a
given package are represented as a single node. In such com-
pacted graphs, suppose two nodes representing packages p1
and p2. In this case, an edge (p1, p2) indicates that at least
one element summarized by p1 is connected to an element
summarized by p2.

The second form of summarization is by domain. Basi-
cally, in the particular context of this paper, a domain is a
group of nodes explicitly defined by developers using the
following syntax:

where <name> is the domain name and <classes> is a
list of classes separated by commas. For summarization pur-
poses, objects from the specified classes will be represented
in the graph by a single node, in the form of a hexagon.
Moreover, to facilitate the specification of domains, classes
can be defined using regular expressions (e.g.model.*DAO
denotes the classes in the model package whose names end
with DAO).

Domain-based summarization is more flexible than sum-
marization by packages, because developers can explicitly
define the domain names—to resemble, for example, archi-
tectural relevant components and abstractions. Moreover,
developers have the freedom to define the members of a
domain, by mapping classes to their respective domains. By
contrast, summarization by packages is more rigid, since
it assumes that architectural relevant components can be
extracted automatically from the package hierarchy. From
our experience with OGs, the usual procedure is to start by
using OGs with package summarization, especially when no
other form of documentation is available. After an initial
understanding of the architecture, maintainers usually get
enough knowledge to define their own domains (e.g. domains
that summarize packages related to persistence, when the
maintenance task does not require changes in persistence
concerns).
Example (Domains) Consider a hypothetical system fol-
lowing the model–view–controller (MVC) architecture [17].
To provide a high-level picture for this architecture, the
domains presented in Listing 3 have been defined. In
this listing, the View domain denotes instances of the
myapp.view.IView class and of its subclasses (as pre-
scribed by the operator +) (line 1). The Controller
domain includes objects from any class implemented in
the myapp.controller package (line 2). The Model
domain includes objects whose class names begin with
myapp.model and end with the string DAO (line 3). In
the specification of domains, the operator ** denotes classes
from packages with a given prefix. For example, the Swing
and Hibernate domains include, respectively, objects
from classes in the javax.swing and org.hibernate
packages, as well as objects from classes implemented in
inner packages (lines 4 and 5).

Figure 3 presents the OG extracted for the MVC-based
system considered in this example. First, we can observe that
the nodes associated with domains are displayed as hexagons.
However, there is a single node in the form of a circle (node
3, Util), representing an object whose class has not been
included in any of the defined domains. In other words,
objects or classes that are members of a defined domain are
summarized by a hexagonal node; objects or classes that are
not captured by any defined domain continue to be repre-
sented by circles (in the case of objects) or squares (in the
case of classes).

123

Author's personal copy

J Braz Comput Soc (2013) 19:15–27 19

Fig. 3 OG for a system based on the MVC architecture

As can be observed in the OG presented in Fig. 3, the
target system’s architecture follows the MVC pattern. For
example, there is a bidirectional communication link between
the View and Controller domains, and between the
Controller and Model domains. Furthermore, the OG
reveals that theController acts as a mediator between the
View and theModel, as expected in MVC architectures. We
can also observe that only the View relies on services pro-
vided by the Swing framework (for GUI concerns) and that
only the Model is coupled to the Hibernate framework (for
persistence concerns).
Detailed information on edges It is also possible to display
detailed information on the object-oriented relations modeled
by an OG’s edges. Suppose that o1 and o2 are nodes in an
OG and (o1,o2) is an edge connecting such nodes. An edge’s
name is a structure in the following format:

The members of this structure are

• Edge_Order is a sequential non-negative integer that
indicates the order in which the edges have been created
in the graph. This integer makes possible a sequential
reading of the graph’s edges.

• O1_Order is a sequential non-negative integer enclosed
by brackets that indicates the order in which the node o1
was inserted in the graph.

• Location represents the program location where the
relation was established.

• O2_Order is a sequential non-negative integer enclosed
by brackets that indicates the order in which the node o2
was inserted in the graph.

• O2_Service represents the service provided by o2 that
has been accessed to establish the edge.

• Suffixprovides information about both theLocation
and Target elements. It can assume one of the follow-
ing values:

– () indicates access to methods.
– (MS) indicates access to static methods.

– (C) indicates access to constructors.
– (A) indicates access to attributes.
– (AS) indicates access to static attributes.
– <new> indicates that an object has been created.

Example (information on edges) Listing 4 shows information
on the edges of the OG presented in Fig. 1. In this listing,
line 1 indicates that the static method Main.main (suffix
MS) has a static field (suffix AS) that references an instance
of the class Invoice. Line 3 indicates that at the loca-
tion Invoice.load() the source object has created an
ArrayList. Next, at the same location, this ArrayList
object has been assigned to the field listProducts (suf-
fix A, line 4). Finally, the ArrayList.add() method has
been called (line 6).

3 Alert language

To provide support for dynamic architecture conformance
using OGs, we have defined a small language to trigger
visual alerts when expected (or unexpected) relations are

established in an extracted OG. Since our approach is based
on dynamic analysis, the proposed language can check rela-
tions due to dynamic calls or reflection. For example, con-
sider a system that relies on the data access objects (DAO)
pattern for handling data [11]. In this case, to analyze the
runtime behavior of the system when it is persisting data, we
can define an alert to be triggered whenever an expected DAO
service is called (which in some frameworks is implemented
using reflection).
Syntax Alerts are defined according to following grammar:

In this grammar, non-terminal symbols are written
between and (e.g. domain). Brackets denote optional sym-
bols (e.g. [!], indicating that ! is optional). Braces indicate
that the delimited element may have zero or more repetitions

123

Author's personal copy

20 J Braz Comput Soc (2013) 19:15–27

(e.g.domain). Terminal symbols are written without special
delimiters (e.g. alert, access, etc.). The non-terminal
string denotes a sequence of characters. In the specifi-
cation of domains, the operator ! means complement. For
example, !A denotes a domain containing any object that is
not included in A. Finally, the symbol * matches any object,
regardless of its domain.

According to this grammar, an alert clause defines a rela-
tion between two domains. The alert will be activated when
the defined relation is detected at runtime. When specify-
ing alerts, the following relations between domains can be
specified:

• depend: represents any kind of relation between ele-
ments of an object-oriented program.

• access: represents two particular types of relations:
accesses to fields or method calls. Thus,access is a par-
ticular case of adepend relation. For example, an object
may hold a reference to an object in another domain
(depend), but it may not use its services (access).
A typical example is an object received as argument
in a Facade method and that is just passed to another
method behind the Facade (i.e. the Facade does not call
any method or access any field from this object).

• create: denotes that an object from the source domain
has created an object from the target domain.

To illustrate the proposed syntax, suppose the following
alert clauses—where A, B, and C are domains and R is a
relation type (i.e. depend, access, create):

• alert A R B: This alert will be activated when an
element at the domain A has established a relation of
type R with an element at the domain B.

• alert A R !B: This alert will be activated when an
element at the domain A has established a relation of type
R with an element not included in the domain B.

• alert !A R B: This alert will be activated when an
element not included in the domain A has established a
relation of type R with an element from the domain B.

Visual interface Alerts are displayed in two ways: (a) chang-
ing the edge’s color on the relations responsible for the alert;
(b) generating a message on a dedicated alert window with
detailed information on the alert (e.g. source and target node,
type of relation, etc.).

3.1 Example 1

Listing 5 illustrates three examples of alert specification
(using the domains defined in Fig. 3). In this code, we first
define that an alert must be raised when any object accesses
the Hibernate domain (line 1). We also define an alert
to capture accesses from the myapp.Util class to other

Fig. 4 OG with an alert enabled due to a dependency from Model to
Hibernate

classes (line 2). This alert checks whether utility classes are
self-contained (i.e. whether they only provide services to
client domains). Finally, we define an alert to check whether
DAOImpl objects are created only by their respective Fac-
tory class (line 3).

Figure 4 shows an OG with an alert enabled. In this OG,
the edge between the Model and the Hibernate domains
has the color red, indicating that—at some point during
the program’s execution—an object located in the Model
domain has accessed a service provided by an object in the
Hibernate domain, which represents a violation to the
first alert in Listing 5. Furthermore, this alert is explained
in a separate alert window, with detailed information on the
source and target objects responsible for its activation.

3.2 Example 2

This second example is based on a common scenario when
accessing databases in Java. Usually, this task is performed
by creating an object from a specific DBMS class (that rep-
resents the database driver). Usually, the qualified name for
this class is stored in a text file or is directly hard-coded in
the program, as illustrated in Listing 6 (line 1). More specif-
ically, this example relies on the Java reflection API to open
a connection to the HSQLDB database manager system.

As usual, changing the DBMS without a previous detailed
analysis can raise several problems. For instance, SQL state-
ments that have specific HSQLDB instructions will stop
working. To avoid this problem, we can define an alert to

123

Author's personal copy

J Braz Comput Soc (2013) 19:15–27 21

monitor DBMS changes, as illustrated in Listing 7. This def-
inition alerts when the DB class—responsible for the DBMS
connection—creates an object that is not a HSQLDB driver
or that is not part of the Java SQL API.

4 OG tool

This section presents the OG tool that extracts and displays
OGs. It is a non-invasive tool that can be plugged into an
existing Java system to visualize the graphs proposed in this
paper. Figure 5 shows the tool’s main screen. In order to
describe this interface, labels (from A to I) are used to show
the interface’s main components. The labels in this figure are
described next.

• Label A: represents the number of nodes in the extracted
OG. This information can be used, for example, to start
an investigation on an alternative summarization strategy
(in the case of graphs with a massive number of nodes).

• Label B: represents two visualization features provided
by the tool. The first feature allows users to choose the
graph’s layout and consequently to organize its visualiza-
tion. The second feature is used for transforming or pick-
ing the graph. When users choose Transforming, they can
translate, move, or zoom in/out the graph. On the other
hand, if they want to organize the nodes by themselves,
they can rely on the Picking functionality.

• Label C: embraces two command buttons—Capture and
Clear. The first command is used to enable the retriev-
ing of OGs—from the current state of the target system

execution—and the second command clears the captured
OG.

• LabelsD,E, andF: allow users to show the nodes’ names,
to reduce the size of the text fonts to improve visualiza-
tion, and to enable the summarization of nodes according
to the package structure, respectively.

• Label G: graphical panel where the extracted OG is dis-
played.

• LabelH: embraces two command buttons—All Edges and
Clear. The first command displays information on the
edges in an OG. The second command clears the infor-
mation on the extracted edges.

• Label I: text panel to display information on the OG’s
edges.

4.1 Running the OG tool

In our current implementation, the OG tool instruments
the target program using a generic aspect implemented in
AspectJ [15,26]. Therefore, to execute the tool, the users
must first execute the AspectJ weaver to instrument the tar-
get code with the aspects provided by the tool’s implementa-
tion. After this preliminary instrumentation phase, the target
system can be executed as usual. During its execution, the
target system will behave exactly as prescribed by the origi-
nal code, with the exception the OG tool’s interface (Fig. 5),
which is shown in a separate window.

5 Dynamic architecture extraction examples

This section provides concrete examples of OGs for two
systems: myAppointments and JHotDraw. myAppointments
is a small personal information manager system that fol-
lows the MVC architectural pattern. Basically, myAppoint-
ments allows users to create, search, update, and remove

Fig. 5 OG tool

123

Author's personal copy

22 J Braz Comput Soc (2013) 19:15–27

Fig. 6 myAppointments’ OG for the feature appointment’s removal,
summarized at the package level

appointments. The system has been originally designed to
illustrate the application of static architecture conformance
techniques [19]. The second system, JHotDraw, is a well-
known framework for the creation of drawing applications.

5.1 myAppointments

Suppose that one of the myAppointments’ developers needs
to apply a change in the modules of the system responsi-
ble for removing appointments. Suppose also that the devel-
oper does not have a deep knowledge on such modules (for
example he has started recently to maintain this part of the
system). Therefore, he can use the OG tool to extract an
OG that represents only appointment removals. Initially, this
OG can be extracted using package summarization (since
the developer does not have enough knowledge to define
domains for the system). Later, he can zoom into the extracted
graph, in order to get more information at the level of plain
objects.

Figure 6 shows the first OG extracted for the feature
appointment’s removal. This OG has five nodes representing
the following packages: myapp.controller (Controller
concerns),myapp.view (View concerns),myapp.model
(Model concerns), org.hsqldb.jdbc (Persistence con-
cerns), and myapp.model.domain (domain concerns).
As we can observe, the OG shows that the Controller
communicates with the View and the Model and that the
Model communicates with the Persistence and Domain
packages.

The previous OG can also be viewed at the level of
plain objects, as presented in Fig. 7. Although we have
argued previously in this paper that plain OGs are not
scalable, for a single and delimited feature like the one
in this example, they can show valuable information for
developers. As we can observe, the new graph has seven
nodes (instead of five nodes, as in the case of summarization
at the package level): AgendaController (representing
the application entry point), AgendaView, AgendaDAO,
DB, JDBCConnection, DAOCommand, and App.

Fig. 7 Plain myAppointments’ OG for the feature appointment’s
removal

Fig. 8 myappointments’ OG, with a Model domain enabled

This new graph presents more information on the system’s
behavior. For example, it reveals that DAO objects are used
for database access, and that the communication with the
database relies on JDBC drivers.

Finally, the developer can define domains to better rep-
resent the system’s objects. For example, suppose the
developer defines the following domain for the objects in
myapp.model.** packages:

Figure 8 shows the OG with this domain enabled. In this
third OG, the nodes associated to Model objects or classes—
objects AgendaDAO, DAOCommand, App, and the class
DB—have been summarized in a single node, called Model.
In this way, the new OG has only four nodes, which makes
it easier to understand.

To conclude, depending on the understanding task under
development, the approach can provide graphs with more
information than a standard summarization by package.
On the other hand, whenever needed, it can also provide
higher-level graphs than those retrieved by package summa-
rization.

123

Author's personal copy

J Braz Comput Soc (2013) 19:15–27 23

Fig. 9 JHotDraw’s OG without summarization

5.2 JHotDraw

First, we have extracted a plain graph for JHotDraw, without
any form of summarization. As can be observed in Fig. 9,
the extracted OG has thousands of nodes and edges, which
precludes its application in reengineering tasks.1

Next, to get an initial view of JHotDraw dynamic archi-
tecture, we extracted a second OG using domains for a better
summarization. The domain definition was based on the class
division proposed by Abi-Antoun and Aldrich [2] for JHot-
Draw. According to this definition, presentation objects (such
as DrawingEditor and DrawingView instances) are
located in two domains with theViewprefix. Objects respon-
sible for the presentation logic (such as Tool, Command,
and Undoable instances) are located in the Controller
domain. Finally, model objects (such asDrawing,Figure,
and Handle instances) are located in a domain called
Model.

Therefore, as presented in Fig. 10, we defined five
domains: one for utility classes, two related to the View,
one to the Controller, and one to the Model layer. To
improve readability, we used an OG tool’s resource that pro-
vides bidirectional edges to connect nodes that communicate
in both ways. Unlike Fig. 9, Fig. 10 can be used by architects
and developers to reason about JHotDraw’s implementation.
For example, this OG reveals the three layers that define the
MVC pattern followed by JHotDraw architecture.

This example illustrates the importance of first relying on
a coarse-grained view of the target system (probably based on
domains), which contributes to get a first understanding of the
system’s main components and relations. After retrieving this
first view, architects and maintainers can, for example, zoom
into particular components, to study their internal elements
and relations.
1 More specifically, this graph has 9,950 nodes and 37,976 edges.
Despite this fact, it has been retrieved promptly after JHotDraw has
been started. Indeed, we have not observed any important performance
overhead when using JHotDraw with OGs enabled.

Fig. 10 JHotDraw’s OG using domain-based summarization (edited
to include the layer’s names and dashed lines separating the layers)

6 Case study: corrective maintenance tasks

Using JHotDraw as our target system, we designed a study
to illustrate how OGs support corrective maintenance tasks.
Since our tool provides visualization of OGs in an on-the-fly
way, it can be used to retrieve OGs that describe the run-
time configuration of the objects in the target system just
before or after a given failure has been observed. We claim
that such OGs provide valuable information to locate and to
discover the static components (i.e. classes and methods) that
generated the reported failure.

To support our claim this section illustrates the use of OGs
to correct the following bugs reported by JHotDraw’s users:

• Bug 1850703 (Opened 2007-12-14): “Redoing Figure
delete change order”

• Bug 1989778 (Opened 2008-06-10): “Pick & Apply
Attributes”

We selected these bugs based on the following criteria:
(a) they have been reported in the last five years (i.e. we fil-
tered out requests with more than five years); (b) they denote
corrective maintenance tasks (i.e. we filtered out evolutive
maintenance tasks); (c) they imply an incorrect behavior of
the system (i.e. we filtered out maintenance that just requires
changing the name or color of a UI label, for example); and
(d) they do not abort JHotDraw’s execution with an unhan-
dled exception (in fact, in such cases the stack trace provides
valuable information to locate the failure).

In the following subsections, we describe how we have
used the proposed OGs to locate the components responsible
for these two bugs.

123

Author's personal copy

24 J Braz Comput Soc (2013) 19:15–27

Fig. 11 Example of Bug
1850703

6.1 Bug 1850703: “Redoing Figure delete change order”

To locate the source of this bug, we performed the following
tasks:

Task #1 Based on the bug’s description we reproduced its
occurrence in a concrete drawing, as illustrated in Fig. 11.
Figure 11a shows the original drawing. In Fig. 11b, we have
deleted the rectangle and prepared to execute an undo com-
mand. Figure 11c shows that after the undo the rectangle has
appeared on top of the circle (and not below the circle as in
the original drawing).

Task #2 Figure 12 shows the OG extracted by the OG tool just
before selecting the undo command (i.e. in the state captured
in Fig. 11b).

Task #3 We sequentially inspected the OG’s edges to locate
possible methods related to the “depth” of a figure in a
drawing. As illustrated in Fig. 12, a call to the method
AnimationDecorator.getZValue() (node 6) com-
ing from a BouncingDraw object (node 5) called our
attention (since the suffix Zvalue reminds the depth of a
figure in the current drawing). In fact, by retrieving JHot-
Draw’s code where this bug has been fixed, it was pos-
sible to assert that the changes have been confined to
the method BouncingDraw.add(), which was calling
getZValue() in an incorrect way.

6.2 Bug 1989778: “Pick & Apply Attributes”

To locate the source of this bug, we performed the following
tasks:

Task #1 Following the description at SourceForge, we were
able to reproduce the bug in the following way: (a) we created
a diagram with one circle and one rectangle, with different
filling colors; (b) we marked the circle and selected the “Pick-
Attribute” button; (c) we marked the rectangle and selected
the “ApplyAttribute” button. Differently from the normal
behavior, the rectangle’s color has not changed (in fact, the

Fig. 12 OG for Bug 1850703

change was only applied after we managed to unmark the
box).
Task #2 Figure 13 shows the OG extracted by our supporting
tool just after selecting the “ApplyAttribute” command.

Task #3 In the extracted OG, the existence of an object of the
classApplyAttributeActionhas initially attracted our
attention (node 0, Fig. 13). After discovering this object, we
carefully inspected its outgoing edges and we were attracted
by an edge to an object of the class RectangleFigure
(node 6), since in our example we were applying the selected
attributes to an rectangle. Finally, by inspecting the calls
responsible to this edge—listed in a lower panel in the OG
tool window—we discovered a call to a method named
setAttribute(). In fact, by retrieving JHotDraw’s
code where this bug has been fixed, it was possible to assert
that the method ApplyAttributeAction.apply
Attributes() was the source of the reported bug. More

123

Author's personal copy

J Braz Comput Soc (2013) 19:15–27 25

Fig. 13 OG for Bug 1989778

specifically, in this method, a call to aFigure.changed()
method was missing after calling setAttribute().

6.3 Discussion

Our intention with this case study was to provide initial evi-
dence that the proposed OGs can play an important role
in corrective software maintenance tasks. Particularly, the
study showed that OGs can be a more effective tool to locate
defective program components than for example traditional
debuggers. Basically, debuggers usually require maintainers
to have a previous knowledge of the source code to define
breakpoints near the defective program elements. When this
knowledge is not available, debuggers may require maintain-
ers to navigate through several program elements until they
discover the components related to the bug reported in the
maintenance request. On the other hand, when the bug gen-
erates an incorrect behavior in a particular and reproducible
state of the program’s execution—as in our two examples—
the OG tool promptly provides a snapshot describing the
dynamic state of the instrumented system. As we have
reported, by manually inspecting this snapshot it is possible
to discover the exact methods that must be changed to cor-
rect the failure. However, it is also important to highlight that
the proposed OGs are tightly coupled to the particular execu-
tion in which the bug has been reproduced. Because different
OGs can be extracted on each execution, it is possible that
some graphs do not provide enough information—including
both nodes and edges—to correctly understand and locate
the defective program components. Therefore, to minimize
the chances of having incomplete OGs, it is important that

the bugs under analysis have a precise and non-intermittent
beha .
Threats to validity Our study presents at least two threats
to validity. First, we have evaluated a single system (JHot-
Draw). Therefore, as usual in empirical software engineering
research, we are not claiming that our findings can be gen-
eralized to other systems. On the other hand, we have con-
sidered real bugs from a system commonly used in software
reengineering papers. The second threat is due to the fact
that the failure locations have been discovered by ourselves
(i.e. the maintainers were the authors of the OG tool). On
one hand, this can raise questions on the reproducibility of
our findings when the OG tool is used by maintainers that do
not have the same expertise on our approach. On the other
hand, although we are experts in OGs, we had no knowledge
about JHotDraws’s architecture, source code, and even its
main functionalities, before the study.

7 Related work

Related work can be arranged in three groups: tools and
approaches based on static analysis, tools and approaches
based on dynamic analysis, and languages for architecture
analysis.
Static analysis Scholia is an approach to statically extract
hierarchical runtime architectures from object-oriented sys-
tems [1,2]. However, there are two main differences between
the graphs retrieved by Scholia and the OGs proposed in this
paper. First, Scholia relies exclusively on static analysis tech-
niques to retrieve dynamic object-oriented relations. There-
fore, at the best, the relations retrieved by Scholia represent an
approximation for the concrete relations established in a par-
ticular execution of the target system. For example, Scholia
cannot capture information about the cardinality of a rela-
tion (e.g. the approach can indicate that a collection is com-
posed by elements of a type A, but it cannot infer how many
objects in fact exist in the collection). As a second difference,
Scholia relies on explicit annotations in the code to define
the hierarchy that should be followed to display the runtime
architecture. This requirement may hamper the application
of Scholia in real software development scenarios, due to
the effort required to annotate a large and complex system.
Moreover, developers are usually reluctant to insert annota-
tions in an existing codebase to avoid the well-known mainte-
nance problems that characterize this technique (a phenom-
enon usually referred as the annotation-hell [21]). Finally,
Scholia also provides support to architecture conformance,
i.e. it is possible to check and compare the retrieved diagrams
with an intended architecture model.

Womble is a lightweight approach to recover object dia-
grams by means of static analysis techniques [14]. Therefore,
it shares the same advantages and disadvantages of Scholia

123

Author's personal copy

26 J Braz Comput Soc (2013) 19:15–27

Table 1 Comparison with related tools

Feature OG Scholia Womble Discotect Briand et al. [8]

Static/dynamic analysis Dynamic Static Static Dynamic Dynamic

Extracted model Objects Objects Objects C&C Sequence

Code instrumentation AOP Annotations No Mapping AOP

On-the-fly/off-line On-the-fly Off-line Off-line Off-line Off-line

Summarization Yes Yes No Yes No

Conformance Yes Yes No No No

Distributed systems No No No No Yes

regarding the precision of the retrieved relations. However,
unlike Scholia, Womble does not provide means for sum-
marizing runtime objects into coarse-grained components.
Therefore, the graphs extracted by Womble have thousands
of objects, even for small systems.
Dynamic analysis Discotect is a tool designed to recover
dynamic architectures [23,29]. However, instead of hierar-
chical object diagrams, Discotect extracts flat models based
on connectors and components (C&C). For this purpose,
Discotect requires developers to provide a map between the
runtime trace and architectural events. Although it is less
invasive than source code annotations, this map is more com-
plex and requires more information on the target program
than the definition of domains in OGs.

Briand et al. [8] have proposed an approach for reverse
engineering UML sequence diagrams using dynamic analy-
sis. Similar to the tool described in this paper, their approach
relies on aspect-oriented programming for instrumenting the
target code. However, their approach is off-line, i.e. in a first
step, the instrumented system is executed to generate a trace
file; in a second step, this file is off-line processed to gener-
ate sequence diagrams. Furthermore, their approach retrieves
flat sequence diagrams, and therefore it suffers from the scal-
ability problems that are common to non-hierarchical reverse
engineering approaches based on dynamic analysis. On the
other hand, they can retrieve sequence diagrams both for
centralized and for distributed systems based on Java RMI
[28].

Table 1 summarizes the major differences between our
approach and the aforementioned systems.
Languages ArchJava is an architecture definition language
(ADL) that extends Java with architecture abstractions,
like components and connectors [3]. Therefore, ArchJava
requires developers to migrate their systems to a new
language. OG’s alert language has been inspired by the
language dependency constraint language (DCL) [24,25].
Basically, DCL allows developers to define acceptable and
unacceptable dependencies according to a system’s designed
architecture. Once defined, such constraints are verified
by a conformance tool integrated to the Eclipse platform.

Therefore, DCL is an architecture conformance language
based on static analysis.

8 Conclusions

In this paper we have presented an on-the-fly and non-
invasive approach to extract hierarchical OGs from running
systems. As proposed, OGs have the following distinguish-
ing features: (a) they support the classification of objects in
coarse-grained entities, called domains; (b) they support the
whole spectrum of dynamic relations that can be established
in object-oriented systems; (c) they can distinguish objects
created by different threads; and (d) by means of an alert
language, they can highlight relations that are expected—or
that are not expected—between running objects. We have
also presented a non-invasive tool to extract and display the
proposed graphs. This tool can be weaved to an existing sys-
tem and therefore it supports on-the-fly visualization of the
proposed graphs (i.e. the graphs are displayed and updated
as the host system executes). We used this tool to extract real
OGs for two systems (myAppointments and JHotDraw). We
also reported a study where OGs have been successfully used
to locate the defective program elements responsible for bugs
reported by real users of the JHotDraw system.

As future work, we intend to (a) apply our extraction
tool to other systems, preferably using as subjects profes-
sional software maintainers; (b) implement the OG tool as
an Eclipse plugin; and (c) evaluate the performance overhead
introduced by the instrumentation of the code using aspects;
and (d) investigate the benefits of combining our approach
with static analysis based techniques, for example, to avoid
the extraction of OGs with incomplete sets of nodes or edges.

References

1. Abi-Antoun M, Aldrich J (2009) Static extraction and conformance
analysis of hierarchical runtime architectural structure using anno-
tations. In: 24th Conference on object-oriented programming, sys-
tems, languages, and applications (OOPSLA), pp 321–340

123

Author's personal copy

J Braz Comput Soc (2013) 19:15–27 27

2. Abi-Antoun M, Aldrich J (2009) Static extraction of sound hier-
archical runtime object graphs. In: 4th International workshop on
types in language design and implementation (TLDI), pp 51–64

3. Aldrich J, Chambers C, Notkin D (2002) ArchJava: connecting
software architecture to implementation. In: 22nd International
conference on software engineering (ICSE), pp 187–197

4. Alves H, Rocha H, Terra R, Valente MT (2010) Uma abordagem
para recuperação da arquitetura dinâmica de sistemas de software.
In: IV Simpósio Brasileiro de Componentes, Arquiteturas e Reuti-
lização de Software (SBCARS), pp 145–154

5. Anquetil N, Lethbridge TC (1999) Experiments with clustering as
a software remodularization method. In: 5th Working conference
on reverse engineering (WCRE), pp 235–255

6. Anquetil N, Lethbridge TC (2009) Ten years later, experiments
with clustering as a software remodularization method. In: 16th
Working conference on reverse engineering (WCRE), p 7

7. Bass L, Clements P, Kazman R (2003) Software architecture in
practice, 2nd edn. Addison-Wesley, Reading

8. Briand LC, Labiche Y, Leduc J (2006) Toward the reverse engi-
neering of UML sequence diagrams for distributed Java software.
IEEE Trans Softw Eng 32(9):642–663

9. Clements P, Shaw M (2009) The golden age of software architecture
revisited. IEEE Softw 26(4):70–72

10. Ducasse S, Pollet D (2009) Software architecture reconstruction:
a process-oriented taxonomy. IEEE Trans Softw Eng 35(4):573–
591

11. Fowler M (2002) Patterns of enterprise application architecture.
Addison-Wesley, Reading

12. Fowler M (2003) UML distilled: a brief guide to the standard object
modeling language. Addison-Wesley, Reading

13. Garlan D, Shaw M (1996) Software architecture: perspectives on
an emerging discipline. Prentice-Hall, Englewood Cliffs

14. Jackson D, Waingold A (2001) Lightweight extraction of object
models from bytecode. IEEE Trans Softw Eng 27(2):156–169

15. Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J, Griswold
WG (2001) An overview of AspectJ. In: 15th European confer-
ence on object-oriented programming (ECOOP). LNCS, vol 2072.
Springer, Berlin, pp 327–355

16. Knodel J, Muthig D, Naab M, Lindvall M (2006) Static evaluation
of software architectures. In: 10th European conference on software
maintenance and reengineering (CSMR), pp 279–294

17. Krasner GE, Pope ST (1988) A cookbook for using the model–
view–controller user interface paradigm in Smalltalk-80. J Object
Oriented Program 1(3):26–49

18. Medvidovic N, Taylor RN (2000) A classification and comparison
framework for software architecture description languages. IEEE
Trans Softw Eng 26(1):70–93

19. Passos L, Terra R, Diniz R, Valente MT, Mendonta N (2010) Static
architecture-conformance checking: an illustrative overview. IEEE
Softw 27(5):82–89

20. Perry DE, Wolf AL (1992) Foundations for the study of software
architecture. Softw Eng Notes 17(4):40–52

21. Rocha H, Valente MT (2011) How annotations are used in Java:
an empirical study. In: 23rd International conference on software
engineering and knowledge engineering (SEKE), pp 426–431

22. Sangal N, Jordan E, Sinha V, Jackson D (2005) Using dependency
models to manage complex software architecture. In: 20th Con-
ference on object-oriented programming, systems, languages, and
applications (OOPSLA), pp 167–176

23. Schmerl BR, Aldrich J, Garlan D, Kazman R, Yan H (2006) Dis-
covering architectures from running systems. IEEE Trans Softw
Eng 32(7):454–466

24. Terra R, Valente MT (2008) Towards a dependency constraint
language to manage software architectures. In: Second European
conference on software architecture (ECSA). Lecture notes in
computer science, vol 5292. Springer, Berlin, pp 256–263

25. Terra R, Valente MT (2009) A dependency constraint language to
manage object-oriented software architectures. Softw Pract Exp
32(12):1073–1094

26. Tirelo F, Bigonha R, Bigonha M, Valente MT (2004) Desenvolvi-
mento de Software Orientado por Aspectos. In: XXIII Jornada de
Atualização em Informática (JAI), XXIV Congresso da Sociedade
Brasileira de Computação

27. Tonella P (2005) Reverse engineering of object oriented code (tuto-
rial). In: 27th International conference on software engineering
(ICSE), pp 724–725

28. Wollrath A, Riggs R, Waldo J (1996) A distributed object model
for the Java system. In: 2nd Conference on object-oriented tech-
nologies and systems, pp 219–232

29. Yan H, Garlan D, Schmerl BR, Aldrich J, Kazman R (2004) Disco-
Tect: a system for discovering architectures from running systems.
In: 26th International conference on software engineering (ICSE),
pp 470–479

123

Author's personal copy

	On-the-fly extraction of hierarchical object graphs
	Abstract
	1 Introduction
	2 Object graphs
	3 Alert language
	3.1 Example 1
	3.2 Example 2

	4 OG tool
	4.1 Running the OG tool

	5 Dynamic architecture extraction examples
	5.1 myAppointments
	5.2 JHotDraw

	6 Case study: corrective maintenance tasks
	6.1 Bug 1850703: ``Redoing Figure delete change order''
	6.2 Bug 1989778: ``Pick & Apply Attributes''
	6.3 Discussion

	7 Related work
	8 Conclusions
	References

