
A Case Study on Improving Maintainability and Evolvability
using Architectural Constraints

Leonardo Humberto Guimarães Silva1, Ricardo Terra2, Marco Túlio Valente2

1Instituto Federal do Norte de Minas Gerais, Brazil
2Federal University of Minas Gerais, Brazil

leonardo.silva@ifnmg.edu.br, terra@dcc.ufmg.br, mtov@dcc.ufmg.br

Abstract. Developers usually rely on patterns and best practices to increase the
quality of their projects. However, as projects evolve, it is usual to observe
deviations in the use of the patterns and best practices defined during the initial
design of a system. This article aims to illustrate the application of a static,
domain-specific, and declarative dependency constraint language, called DCL,
to express architectural patterns and design principles that contribute to the
maintainability and evolvability – and therefore to the internal quality – of a
software system. We present in the paper several architectural constraints that
demonstrate the benefits achieved by DCL in one motivating system and in five
real-world, open-source object-oriented applications.

1. Introduction
Software architecture is usually defined as a set of design decisions that are critical for
the success and the quality of complex software systems. It includes how systems are
structured in components and constraints on how components must interact [7, 5, 1]. The
definition of an architecture embraces different patterns and best practices. However, as
projects evolve, it is usual to observe deviations in the use of the patterns and best practices
defined during the initial design of a system [3, 12, 8]. The overall result is a negative
impact on quality factors normally achieved by well-planned architectural designs, mainly
maintainability and evolvability [2, 15].

In a previous workshop paper we have provided a preliminary discussion on how
a dependency constraint language could be used to express best practices and patterns
that make software systems easier to evolve and maintain [20]. To illustrate the discus-
sion we have relied on a motivating system whose architecture embraces several pat-
terns and best practices normally found in architectural designs. In the current paper, we
extend and complement this previous work by relying not only on a single illustrative
system but also on architectural constraints extracted from five real-world, open-source
object-oriented applications. In order to express such architectural constraints, we rely
on a static, domain-specific, and declarative language called called DCL (Dependency
Constraint Language) [18, 17, 19]. DCL is a language that allows developers and project
leaders to restrict the spectrum of dependencies than can be established in object-oriented
systems. More specifically, DCL is a language that allows developers, architects and
project managers to define acceptable and unacceptable dependencies (constraints) ac-
cording to the initial design of a system. Once the constraints are defined, they are auto-
matically checked by an integrated tool (actually, an Eclipse plug-in).

Our goals with the paper arethreefold. First, we would like to shed light on the
importance of respecting the architecture’s definition as a system evolves. In fact, ar-
chitecture erosion can have a crucial impact on many software quality factors, including
maintainability and evolvability [8, 2]. Second, we would like to provide insights on the
types of architectural constraints that must be controlled in order to avoid a negative im-
pact on the internal quality of a software system. And third, we would like to demonstrate
that by using a simple language, such as DCL, it is possible to express architectural con-
straints that have a clear importance in the maintainability and evolvability of real-world
object-oriented applications.

The remainder of this paper is organized as follows. Section 2 introduces the DCL
language. Section 3 describes a first case study that illustrates the application of DCL in
a small software system. Section 4 extends the previous study with a presentation on how
DCL can be used in five real-world software systems. Section 5 presents related work.
Finally, Section 6 provides the conclusions and suggestions for future work.

2. The DCL Language
DCL is a declarative, statically checked domain-specific language that supports the defi-
nition of structural constraints between modules [18, 17, 19]. The language supports the
definition of dependencies originated from accessing methods and fields, declaring vari-
ables, creating objects, extending classes, implementing interfaces, throwing exceptions,
and using annotations. Essentially, DCL’s main purpose is to indicate the presence of
structural violations that clearly represent architectural anomalies that contribute to the
architectural erosion of a system.

Figure 1 resumes the syntax used to express architectural constraints on DCL.
These constraints and the main elements of the DCL language are described next.

Figure 1. Architectural constraints provided by DCL

Modules: A module is basically a set of classes. Suppose, for example, the following
modules of a system:

module View: org.foo.view.*
module DataStructure: org.foo.util.**, org.foo.view.Tree
module Remote: java.rmi.UnicastRemoteObject+

According to this syntax, the View module contains all classes from package
org.foo.view. The DataStructure module contains all classes from package
org.foo.util, its subpackages and also the class org.foo.view.Tree. Finally,

the Remote module has all subclasses from java.rmi.UnicastRemoteObject.

Divergences: A divergence happens when a dependency that exists in the source code
violates an initially defined architectural constraint. In order to capture divergences, DCL
supports the definition of the following kinds of constraints between modules:

• only A can-x B1: Only classes of module A can depend on types defined
in module B. For example, the constraint only DAOFactory can-create
DAO defines that only a factory class can create data access objects.

• A can-only-x B: Classes of module A can only depend on types defined
in module B. For example, the constraint Util can-only-depend Util,
$java defines that utility classes can only depend on their own classes or Java
API classes.

• A cannot-x B: Classes of module A cannot depend on types defined in module
B. For example, the constraint Facade cannot-handle DTO defines that
facade classes cannot manipulate entity classes.

These constraints cover all the usual dependencies of object-oriented languages,
including access, declare, create, extend, implement, throw, and useannotation. Since the
purpose of the constraints is to capture divergences, they alert dependencies that cannot
appear in the source code. Basically, constraints only can forbid dependencies originated
from classes not specified in the source modules of the rules. Constraints can-only forbid
dependencies to classes not specified in the target modules of the rules.

Absences: An absence denotes the situation when the source code does not establish a
dependency that is prescribed by the planned architecture. In order to capture absences,
DCL supports the definition of the following constraints:

• A must-x B: Classes of module A must depend on types defined
in module B. For example, the constraint DTO must-implement
java.io.Serializable defines that entity classes must implement
Java’s serializable interface.

A complete description of all constraints in DCL can be found at [19]. The DCL language
and the dclcheck tool – an Eclipse plug-in that implements the proposed language –
are publicly available at: http://www.dcc.ufmg.br/∼mtov/dcl.

3. Initial Case Study: TerraMarket
We will first rely on a motivating system called TerraMarket to illustrate some archi-
tectural patterns and best practices commonly applied in modern object-oriented sys-
tems [20]. The TerraMarket system handles common activities in a grocery store, such as
sales, customer management, ordering etc. The system architecture follows the Model-
View-Presenter architectural pattern [5], as presented on Figure 2. In this figure, the

1The literal x refers to dependency type, which can be either more generic (depend) or more specific
(access, declare, create, extend, implement, throw and useannotation).

Model layer contains Business Objects (BOs), Data Transfer Objects (DTOs), and Data
Access Objects (DAOs). BOs encapsulate business rules and behavior. DTOs represent
domain entities, such as client, product etc. DAOs provide an interface to access an under-
lying persistence framework. Particularly, TerraMarket uses Hibernate2 for persistence.

Figure 2. TerraMarket’s architecture

Finally, the Presenter layer contains classes that intercept events triggered by the
View. It monitors and adapts users entries, manipulating the Model and updating the View.
The View layer uses the Swing Framework to create the User Interface. The requests
activated by the View are sent to the Facade component, which provides a unique access
point to the Model layer. In summary, TerraMarket’s architecture is based on patterns
(MVP, Factory, Facade, Data Access Objects etc) and technologies (Swing, Hibernate,
etc) widely used in the development process of modern object-oriented systems.

We will use TerraMarket to illustrate several architectural patterns and best pro-
gramming and design practices. Initially, we show how patterns could be defined in DCL.
After this, we relate the main benefits of the preservation of these patterns to the internal
quality of the system. To make the understanding of DCL constraints easier and cleaner
the following module’s definition will be used in the rest of this section:

1 module View : com . tm . view . ∗
2 module Model : com . tm . model . ∗
3 module P r e s e n t e r : com . tm . p r e s e n t e r . ∗
4 module Facade : com . tm . p r e s e n t e r . Facade
5 module SwingUI : com . tm . view . SwingUI . ∗
6 module Swing : j a v a x . swing . ∗
7 module BO: com . tm . model . bo . ∗
8 module HibernateDAO : com . tm . model . dao . HibernateDAO
9 module DAOFactory : com . tm . model . dao . DAOFactory

10 module DTO: com . tm . model . d t o . ∗
11 module U t i l : com . tm . U t i l . ∗
12 module A p a c h e U t i l s : o rg . apache . ∗

2http://www.hibernate.org

3.1. Layered Architecture
The Layered Architecture Pattern provides a development model in which components
are organized in hierarchical layers [5]. For example, suppose a strictly layered system
Mi,Mi−1, . . . ,M0 (where M0 represents the module in the lowest level of the hierarchy).
Therefore, Mi can only use services provided by module Mi−1, i > 0. Any change in the
system that violates this rule is, in fact, undermining its planned architecture.

The following DCL constraints can be used to express that TerraMarket follows
an layered architecture:

1 view cannot−depend Model
2 only P r e s e n t e r can−handle Facade

In line 1, a constraint prevents the View from establishing any dependency with
the Model layer. In line 2, a constraint guarantees the access to the system Facade only
to classes from Presenter layer.

Benefits: The previous constraints guarantee that no changes that violate the layered ar-
chitecture can be applied to TerraMarket. In other words, they make the system easier
to maintain and reuse. For example, TerraMarket architecture prescribes that only com-
ponents in the Presenter layer can have access to the Facade. Moreover, it prevents the
View from establishing any kind of dependency with the Model, thus preserving the MVP
pattern.

The strict adherence to these constraints also helps developers to detect defective
program components. For example, if some data access problem is reported by TerraMar-
ket’s users or developers, the failure probably will be located in classes from the Model
layer. Likewise, if developers need to change DAO or BO components, it is guaranteed
that only the Presenter layer might be affected. Finally, suppose we need to change the
Model layer, the View layer will remain intact. In this particular case, only the Facade
needs to be updated.

3.2. Programming to Interfaces
Programming to interfaces is a design principle that advocates that developers should
separate the interface of a component from its implementation. Essentially, it creates an
abstract layer between client and server components [5]. For TerraMarket, the following
DCL constraints can be used to express this principle:

1 P r e s e n t e r cannot−handle SwingUI
2 BO cannot−handle HibernateDAO

In line 1, a constraint prevents the Presenter layer from manipulating UI imple-
mentations directly. Similarly, in line 2, another constraint prevents business objects
(BOs) from manipulating data access objects (DAOs) directly.

Benefits: The preservation of the constraints ensures the separation between clients and
servers, avoiding the users of a service to know its internal implementation details. For

example, in cases developers need to change or replace the whole UI or DAO components,
the other system components will not suffer any impact. As second and third examples,
suppose TerraMarket’s GUI needs to be migrated from Swing to SWT (Standard Widget
Toolkit) or that the persistent layer needs to be migrated from Hibernate to pure JDBC
(Java Database Connectivity). In both examples, the proposed changes will have any
impact in the Presenter layer or in BO components.

3.3. Creational Patterns
The runtime behavior of object-oriented systems is based on the interaction among dif-
ferent objects. However, in some cases, a class may be instantiated many times unnec-
essarily, since its objects might had been created only once and shared by their multi-
ple clients [5]. There are various patterns that provide a better way to create objects
uniquely [6]. For example, the Singleton pattern restricts the instantiation of a class to
just one object. Thus, when an instance of a Singleton is needed, a static method is in-
voked to return the unique instance.

Following the same principle, the Abstract Factory pattern provides a way to en-
capsulate a group of individual factories that have a common goal. These individual
factories usually have a method with an interface as its return type and that returns the
instance (unique in most cases) of the object. Thus, every time a class needs an object,
it just need to request the object’s specific factory. For TerraMarket, the following DCL
constraints can be used to express creational patterns:

1 only Facade can−c r e a t e Facade
2 only DAOFactory can−c r e a t e HibernateDAO

In line 1, the constraint ensures that only the Facade can create its own type,
therefore preserving its Singleton behavior. On the other hand, in line 2, a second con-
straint prevents any class of the system, besides the DAOFactory, to create HibernateDAO
objects.

Benefits: The preservation of the mentioned creational constraints ensures that new ob-
jects will not be created unresctrictely. For example, it is possible to express a centralized
place to create DAOs. Therefore, maintenance related to the creation of DAOs will be
located in this centralized program component. Moreover, changes related to the way
objects are created, the number of instances allowed, the presence of caches are also cen-
tralized in just one class. Likewise, abstract factories provide the advantage of abstraction
as we have mentioned before. BO classes could be mentioned as an example, since they
cannot establish any kind of dependency with DAO implementations. Therefore, when
a DAO implementation is requested to a factory, the corresponding interface will be re-
turned. Furthermore, BO classes do not know what particular implementation they use,
which ensures a complete decoupling from DAO implementations.

3.4. Maximize Reuse
Reuse plays a central role in any system development process. Basically, reuse techniques
must promote the creation of components that can be shared among multiple systems.
Therefore, they must not dependent on specific project classes. For TerraMarket, the

following DCL constraints can be used to enforce reusable components:

1 U t i l can−only−depend U t i l , ApacheUt i l s , $ j a v a
2 DTO can−only−depend DTO, $ j a v a

In line 1, a constraint ensures that utility classes can only establish dependencies
with themselves, with Java API classes and with Apache framework utility classes.
Similarly, in line 2, a constraint ensures that data transfer objects can only depend on
themselves and on Java API classes.

Benefits: The preservation of the mentioned constraints ensures that classes can be reused
by multiple projects. In the long-term, these constraints tend to benefit maintainability
and evolvability because the reusable components have already been verified in many
scenarios and, therefore, they are less error-prone.

3.5. External Dependencies Control
Real systems tend to be coupled to various external systems, especially frameworks.
However, this form of coupling must be controlled in a way that the external framework is
just used be the appropriate classes. For example, a persistence framework must be used
only by data access classes, no other dependencies must be established. For TerraMarket,
the following DCL constraints can be used to minimize coupling to external components
and frameworks:

1 only SwingUI can−depend Swing
2 only HibernateDAO can−depend H i b e r n a t e

These constraints only allow UI and DAO implementations to establish depen-
dencies with the Swing and Hibernate frameworks, respectively.

Benefits: The definition of these constraints ensures that no unintended coupling will
be established with external frameworks. This form of dependency control avoids that
modifications and updates in frameworks, or even a complete change of a framework,
affect unrelated classes.

3.6. Promoting Inheritance
It is normal to have groups of classes that share properties and common behavior in
software systems. A good practice, usually adopted in these circumstances, relies on the
creation of a base class in which the common members are implemented. The following
DCL constraints illustrate this practice in the TerraMarket system:

1 P r e s e n t e r must−extend com . tm . c o n t r o l l e r . p r e s e n t e r . B a s e P r e s e n t e r
2 DTO must−d e r i v e com . tm . model . d t o . BaseDTO , j a v a . i o . S e r i a l i z a b l e
3 IDAO must−extend com . tm . model . dao . IBaseDAO
4 HibernateDAO must−d e r i v e BaseHibernateDAO , IDAO

The previous constraints share the same purpose: to force a group of classes to
inherit from a base class. For example, classes from Presenter layer share properties
and common behavior. Thus, in line 1, a constraint ensures that Presenter classes
must extend a base class. The same occurs with data transfer objects, since they have
the fields code, version and ChangingDate, besides their respective access
methods and generic JPA (Java Persistence API) annotations. For this purpose, the
constraint in line 2 ensures that all DTOs are serializable (i.e. they can be transmitted
in a network) and extend a base class. Finally, in line 3, a constraint ensures that DAO
interfaces must extend a base interface and, in line 4, a constraint ensures that Hibernate
DAO implementations must extend a base class and implement their respective interfaces.

Benefits: The preservation of these constraints avoids code duplicity and promotes reuse
in the development process. For example, by enforcing that every Presenter class extends
a base class developers can not implement operations that have already been implemented
in the superclass. Moreover, a change that affects all Presenter classes can be easily
implemented using their base class. Finally, the explicit definition of these constraints
avoids usual errors, like a non-serializable DTO or a DAO implementation without its
respective interface.

4. Extended Case Study: Five Real-World Object-Oriented Systems
In this section, we reproduced the experiments of the previous section using five real
object-oriented systems. The systems have been evaluated considering the same archi-
tectural constraints: layered architectures, programming to interfaces, creational patterns,
reuse, external dependencies control and inheritance. Since all systems are open-source,
we have just relied on the available documentation to formulate and to validate the pro-
posed DCL constraints. As further work, we have plans to validate such constraints
with the developers of each system (possibly using the discussion forum that open-source
projects usually maintain on the Internet).

4.1. JabRef

JabRef3 is a free, Java-based graphical application for managing bibliographical
databases. The native file format used by JabRef is BibTeX, the standard LaTeX biblio-
graphy format. Among the features provided by JabRef, we can highlight: advanced
BibTeX editor, search functions, classification of entries, various import and export
formats and customization of BibTeX fields.

External Dependencies Control: The following DCL constraints can provide external
dependency control in JabRef:

1 only t e s t s . n e t . s f . j a b r e f . ∗ can−depend j u n i t . f ramework . T e s t C a s e

This constraint ensures that only the packages properly designed for testing can
depend on the external framework JUnit. Therefore, this constraint helps developers to

3http://jabref.sourceforge.net/ - Version 2.6

organize and implement their test cases.

4.2. Jetty

Jetty4 is a free, Java-based application that provides a Web server and javax.servlet
container, plus support for Web Sockets, OSGi, JMX, JNDI, JASPI, AJP and many other
communication and integration technologies. Jetty can be embedded in devices, tools,
frameworks, application servers, and clusters. Figure 3 represents a high level view for
Jetty’s architecture. A Connector module accepts Http connections and passes them
to a Jetty Server. Handlers are responsible for receiving requests, producing
responses and sending them back to the server. The work is done by threads taken from a
thread pool.

Figure 3. Jetty’s architecture

Layered Architecture: The following DCL constraint can be defined to enforce Jetty’s
architecture:

1 module S e r v e r : o rg . mor tbay . h t t p ∗ .∗
2 module ThreadPoo l : o rg . mor tbay . u t i l . Th readPoo l
3

4 only S e r v e r can−handle ThreadPoo l

In line 3, a constraint guarantees the access to the thread pool only to classes from
the Server layer. In this way, Connectors and Handlers cannot manipulate or
select threads from the thread pool.

Creational Patterns: A factory method is used in Jetty in order to create a log mecha-
nism. Therefore, the following DCL constraint can be defined to express that only the

4http://sourceforge.net/projects/jetty - Version 5.1.15

factory can create a log object for the Jetty system:

1 module LogFac to ry : o rg . mor tbay . l o g
2 module Log : o rg . apache . commons . l o g g i n g . Log
3

4 only LogFac to ry can−c r e a t e Log

Programming to Interfaces: The following DCL constraints can be defined in Jetty to
force the use of interfaces:

1 module AJP : org . mor tbay . h t t p . a j p ∗ .∗
2 module H a n d l e r s : o rg . mor tbay . h t t p . h a n d l e r . ∗
3

4 AJP cannot−handle H a n d l e r s

In line 3, a constraint prevents the package that implements the integra-
tion with the web socket AJP from manipulating directly Handlers that receive
requests from the Http server. Instead, AJP sockets can handle the interface
org.mortbay.http.HttpHandler but not its implementations, found in the
Handlers module.

4.3. JHotDraw
JHotDraw5 is a free, Java-based framework to the instantiation of graphic editors. It is a
Java version of the original Smalltalk HotDraw framework developed by Kent Beck and
Ward Cunningham.

Creational Patterns: The Factory method is used in JHotDraw to create the user
interface components at a particular location. This pattern defines an interface for
creating an object, delegating to subclasses the decision about which class to instan-
tiate [5]. Menus and toolbars in JHotDraw are created by a class that implements the
ApplicationModel interface. This interface represents the factory. Therefore, the
following DCL constraints can be defined to specify that only the factory can create
figures:

1 module menus : j a v a x . swing . JMenu+
2 module t o o l b a r s : j a v a x . swing . JToo lBar +
3 module appModels : o rg . j h o t d r a w . app . ∗ A p p l i c a t i o n M o d e l
4

5 only appModels can−c r e a t e menus and t o o l b a r s

In the first two lines we specify the packages that constitute the menus and
toolbars in JHotDraw. In line 3, we define the classes that constitute a module called
appModels. In line 5, a constraint guarantees that every menu and toolbar must be
created through the factory in appModels.

5http://www.jhotdraw.org/ - Version 7.5.1

Reuse: The following DCL constraint can be defined to increase the reuse of a Util
package in the JHotDraw system:

1 U t i l can−only−depend U t i l , j a v a

The previous constraint ensures that utility classes can only establish dependen-
cies among themselves and with Java API classes. A similar constraint has been proposed
in Subsection 3, for the TerraMarket system.

External Dependencies Control: The following DCL constraint illustrates a depen-
dency control in JHotDraw:

1 module dom : org . w3c . dom .∗∗
2 module xmlsax : o rg . xml . sax .∗∗
3

4 only org . j h o t d r a w . xml .∗∗ can−depend dom , xmlsax

In the first two lines we identify and name external modules used to XML manipu-
lation. In line 4 the constraint ensures that only the package org.jhotdraw.xml.**
can depend on the external modules. Therefore, it makes this dependency easier to
understand and update.

Inheritance: The following DCL constraints can be defined to promote the use of
inheritance in JHotDraw system:

1 module f i g u r e s : o rg . j h o t d r a w . ∗ F i g u r e
2 f i g u r e s must−e x t e n d org . j h o t d r a w . draw . A b s t r a c t F i g u r e
3

4 module v iews : o rg . j h o t d r a w . draw . ∗ DrawingView
5 views must−implement org . j h o t d r a w . draw . DrawingView

The first constraint ensures that every figure must extend an abstract class called
AbstractFigure. It guarantees that every figure will inherit the same features pro-
vided by this abstract class. The second constraint ensures that all views must implement
an interface called DrawingView. This interface specify the common behavior for ev-
ery view in JHotDraw.

4.4. JUnit
JUnit6 is a framework for writing and running automated tests. The framework is
integrated with Ant7 and is used by developers to implement unit tests in Java. The
goal is to accelerate programming and increase the quality of the code. Basically, JUnit
provides comprehensive assertion facilities to verify expected versus actual results.

6http://www.junit.org/ - Version 4.9
7http://ant.apache.org/

Reuse: Reuse is a key property of every framework. The following DCL constraint can
be defined to increase the reuse of the framework package in the JUnit system:

1 j u n i t . f ramework .∗ c a n o n l y d e p e n d j u n i t . f ramework . ∗ , j a v a

Basically, this constraint guarantees that the framework package will not depend
on packages that control user interfaces, extensions, or the way test classes are invoked.

Inheritance The following DCL constraint enforces the use of inheritance in the JUnit
system:

1 j u n i t . e x t e n s i o n s .∗ must−e x t e n d j u n i t . f ramework .∗

This constraint ensures that every extension created for the framework must extend
the framework itself. Therefore, it prevents the extension package from being misused.

4.5. Jung
Jung8 is a free, Java-based framework that provides a common and extendible language
for modeling, analysing, and visualizing data that can be represented as a graph or
network. The framework allows Jung-based applications to make use of the extensive
built-in capabilities of the Java API, as well as those of other existing third-party Java
libraries.

Programming to Interfaces The following DCL constraints can be defined to illustrate
the use of interfaces in the JUng system:

1 module V i s u a l i z a t i o n : edu . u c i . i c s . j ung . v i s u a l i z a t i o n .∗
2 module I m p l e m e n t a t i o n : edu . u c i . i c s . j ung . g raph . impl .∗
3

4 V i s u a l i z a t i o n cannot−handle I m p l e m e n t a t i o n

The previous constraint ensures that the classes responsible for the visualization
of a graph cannot handle the implementation of any graph element (vertices and edges).
Instead, visualization classes must use the interfaces in edu.uci.ics.jung.graph
to manipulate graph’s elements.

5. Related Work
Related work on defining constraints to enforce architectural patterns can be organized in
three main groups: Dependency Structure Matrix (DSM), Structural Constraint Language
(SCL), and Reflexion Model Tools (RMT):

Dependency Structure Matrix (DSM): Sangal et al. have proposed the use of Depen-
dency Structure Matrixes (DSM) to reveal existing dependencies and the underlying

8http://jung.sourceforge.net/ - Version 2.0.1

architectural pattern of complex software systems [16]. DSM are simple adjacency
matrixes used to represent dependencies between modules of a software system. Sangal
et al. propose the use of design rules in order to highlight DSM entries that violate the
planned architecture of a system. However, DSM’s design rules support the definition
of only two forms of dependencies: can-use and cannot-use. Lattix Inc’s De-
pendency Manager (LDM) is an architecture visualization and conformance tool based
on dependency matrixes and design rules9. Using the GUI of this tool, architects can
filter the dependencies considered in design rules. For example, they can specify that a
particular cannot-use rule only disallows the creation of objects. On the other hand,
DCL provides architects with concrete syntax to filter dependency relations (including
access, declare, create etc) in a way that is independent from any particular GUI
feature. Moreover, DCL supports other rules, including only can and must.

Structural Constraint Language (SCL): SCL (Structural Constraint Language) [9] –
and its predecessor FCL (Framework Constraint Language) [10] – are logic-based lan-
guages for specifying a wide range of structural design constraints. The central goal of
these languages is to check whether the source code respects its intended design, which
usually requires more detailed constraints than those needed to express only architectural
intent. To support design level constraints, SCL relies on an unrestricted first-order logic
language with a rich set of functions to obtain information about the abstract syntax of
object-oriented systems. However, SCL’s expressiveness comes at the expense of a rather
heavyweight notation – as admitted by the language authors – and poor performance. Fur-
thermore, due to its focus on class and method level constraints, SCL lacks abstractions
to define modules (i.e. logical collection of classes and packages), which are exactly the
key abstractions needed when expressing architectural constraints.

An alternative for tackling the complexity inherent to full Prolog-like languages
consists in defining a small, domain-specific language on top of such languages. For
example, LogEn is an attempt in this direction [4]. In order to reduce complexity and
increase performance, LogEn relies on Datalog, a restricted and optimized subset of Pro-
log. In order to express architectural intent, the language provides means for restricting
dependencies between logical groups of code elements, called ensembles. However,
since logEn’s core is still a logic language, it preserves much of the expressive power
and complexity typical from such languages. Moreover, its syntax is not simple and
self-explaining enough for defining high-level architectural constraints, as recognized by
the language authors. In order to provide a more comprehensive notation for expressing
architectural constraints, LogEn authors have proposed a visual language, called VisEn,
from which LogEn constraints can be automatically generated. In VisEn, boxes denote
ensembles and arrows are used to denote allowed dependencies of any kind (including
access, declare, derive etc). Therefore, VisEn does not allow architects to filter
the various forms of dependency relations that are possible in object-oriented systems.

Reflexion Model Tools (RMT): Reflexion models require developers to provide a
high-level model of the planned system architecture and a declarative mapping between
such model and the source code model [13, 14]. A RM-based tool – such as the SAVE

9http://www.lattix.com.

Eclipse-based plug-in [11, 12] – highlights convergent, divergent, and absent relations
between the high-level model and the source code model. However, we believe that
DCL supports a richer set of relations between modules than the language used in RMs.
Moreover, our language is designed to foster architecture conformance by construction,
i.e. using our language modifications that violate the planned architecture are detected as
soon as they are implemented in the source code.

6. Conclusions
The use of patterns and best practices is always recommended in any software develop-
ment process. However, as projects evolve, it is usual to observe deviations in the use of
the patterns and best practices defined during the initial design of a system. Thereby, soft-
ware maintenance becomes a more difficult task. For that reason, using first a motivating
system, we have demonstrated how to use the DCL language to check design patterns and
best architectural practices that contributes directly to the internal quality of a system. In
addition, we conducted an extended case studies using five real object-oriented systems to
demonstrate how DCL can be used to increase classical software quality factors, mainly
maintainability and evolvability.

As a future work, we aim to go deeper in the case studies mentioned to gather
quantitative data to corroborate the benefits of the use of DCL during the evolution of the
systems. We also intend to integrate DCL with a UML modeling tool in order to be able
to represent DCL constraints while defining UML models. Furthermore, we intend to
propose constraints to be used during the development process of a system.

Acknowledgments: This research has been supported by grants from FAPEMIG,
CAPES, and CNPq.

References
[1] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-Wesley, 2nd,

edition, 2003.

[2] P. Clements and M. Shaw. The golden age of software architecture revisited. IEEE Software,
26(4):70–72, 2009.

[3] S. Ducasse and D. Pollet. Software architecture reconstruction: A process-oriented taxonomy.
IEEE Transactions on Software Engineering, 35(4):573–591, 2009.

[4] M. Eichberg, S. Kloppenburg, K. Klose, and M. Mezini. Defining and continuous checking of
structural program dependencies. In 30th International Conference on Software Engineering
(ICSE), pages 391–400, 2008.

[5] M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley, 2002.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley, 1994.

[7] D. Garlan and M. Shaw. Software Architecture: Perspectives on an Emerging Discipline. Prentice
Hall, 1996.

[8] J. Gurp and J. Bosch. Design erosion: problems and causes. Journal of Systems and Software,
61(2):105–119, 2002.

[9] D. Hou and H. J. Hoover. Using SCL to specify and check design intent in source code. IEEE
Transactions on Software Engineering, 32(6):404–423, 2006.

[10] D. Hou, H. J. Hoover, and P. Rudnicki. Specifying framework constraints with FCL. In Conference
of the Centre for Advanced Studies on Collaborative Research (CASCON), pages 96–110,
2004.

[11] J. Knodel, D. Muthig, M. Naab, and M. Lindvall. Static evaluation of software architectures.
In 10th European Conference on Software Maintenance and Reengineering (CSMR), pages
279–294, 2006.

[12] J. Knodel and D. Popescu. A comparison of static architecture compliance checking approaches.
In 6th Working IEEE/IFIP Conference on Software Architecture (WICSA), page 12, 2007.

[13] G. Murphy, D. Notkin, and K. Sullivan. Software reflexion models: Bridging the gap between
source and high-level models. In 3rd Symposium on Foundations of Software Engineering
(FSE), pages 18–28, 1995.

[14] G. Murphy, D. Notkin, and K. Sullivan. Software reflexion models. IEEE Transactions on Soft-
ware Engineering, 27(4):364–380, 2001.

[15] L. Passos, R. Terra, R. Diniz, M. T. Valente, and N. das Chagas Mendonca. Static architecture
conformance checking – an illustrative overview. IEEE Software, 27(5):82–89, 2010.

[16] N. Sangal, E. Jordan, V. Sinha, and D. Jackson. Using dependency models to manage complex
software architecture. In 20th Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), pages 167–176, 2005.

[17] R. Terra and M. T. Valente. Towards a dependency constraint language to manage software archi-
tectures. In Second European Conference on Software Architecture (ECSA), volume 5292 of
Lecture Notes in Computer Science, pages 256–263. Springer, 2008.

[18] R. Terra and M. T. Valente. Verificação estática de arquiteturas de software utilizando restrições
de dependência. In II Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de
Software (SBCARS), pages 1–14, 2008.

[19] R. Terra and M. T. Valente. A dependency constraint language to manage object-oriented software
architectures. Software: Practice and Experience, 39(12):1073–1094, 2009.

[20] R. Terra and M. T. Valente. Definição de padrões arquiteturais e seu impacto em atividades de
manutenção de software. In VII Workshop de Manutenção de Software Moderna (WMSWM),
pages 1–8, 2010.

