
Towards a Dependency Constraint Language to
Manage Software Architectures

Ricardo Terra and Marco Tulio de Oliveira Valente

Institute of Informatics, PUC Minas, Brazil
rterrabh@gmail.com,mtov@pucminas.br

Abstract. This paper presents a dependency constraint language that
allows software architects to restrict the spectrum of dependencies that
can be presented in a given software system. The ultimate goal is to
provide designers with means to define acceptable and unacceptable de-
pendencies according to the planned system architecture. Once defined,
such restrictions will be automatically enforced by a tool, thus avoiding
silent erosions in the architecture. The paper also presents first results
of applying the language in a Web-based system.

1 Introduction

Software architecture is usually defined as the set of design decisions that have
impact on each aspect of the construction and evolution of large software sys-
tems. This includes how systems are structured into components and constraints
on how components should interact [3,2]. Despite its unquestionable importance,
the documented architecture of a system – if available at all – usually does
not reflect its actual implementation. In practice, deviations from the planned
architecture are usually common, due to unawareness by the developers part,
conflicting requirements, technical difficulties etc [6]. More important, such de-
viations are usually not captured and resolved, leading to the phenomena known
as architecture erosion and architectural drift [10].

This paper is centered on the observation that improper inter-module depen-
dencies are one of the principal sources of architectural violations. For instance,
suppose a strictly layered system Mp, Mp−1, . . . , M0 (where M0 represents the
module in the lowest level of the hierarchy). Therefore, in this system, Mi can
only use services provided by module Mi−1, i > 0. Any system change that
violates this rule is, in fact, undermining its planned architecture. As another
example, suppose a web-system that includes a controller module C and a mod-
ule P that encapsulates persistence services. Clearly in this system, C is the only
module that can handle HTTP requests and responses (using servlets or another
similar technology). In the same way, P is the only module that can rely on the
services provided by a persistence framework (such as Hibernate, for example).

Current mainstream programming languages support information hiding by
the means of interfaces and visibility modifiers (such as public, private, and
protected). However, they do not provide means to restrict inter-module de-
pendencies. In practice, any public service provided by a module (or class) M

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 256–263, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Towards a Dependency Constraint Language 257

can be used by any other system module. In order to tackle this problem, we
are working on a dependency constraint language that allows software archi-
tects to restrict the spectrum of dependencies that can be presented in a given
software system. This language should provide designers with means to define
acceptable and unacceptable dependencies according to the planned system ar-
chitecture. Once defined, such restrictions can be automatically enforced by a
tool integrated to common programming environments (such as Eclipse). Thus,
our ultimate goal is to provide architectural conformance by construction, using
a static, declarative dependency constraint language.

The remainder of this paper is organized as follows. Section 2 provides a pre-
liminary description of the dependency language that we are designing. Section
3 illustrates the application of the proposed language in a simple case study.
Section 4 discusses related work and Section 5 concludes.

2 Dependency Constraint Language

The main purpose of the proposed language is to support the definition of con-
straints between modules. In our notation, a module is just a set of classes.
Suppose, for example, the following module definitions:

module A: org.foo.persistence.*
module B: org.foo.view.*, org.foo.model.Ticket, org.foo.model.Driver

Module A includes all public classes from the package org.foo.persistence.
Module B includes all public classes from the package org.foo.view and classes
Ticket and Driver from the package org.foo.model.

The language supports the definition of the following constraints:

– Only classes from module A can depend on types defined in module B, where
the possible dependencies are as follows:

• only A can-access B: only classes declared in module A can access non-
private members of classes declared in module B. Access in this case
means calling methods, reading or writing to fields.

• only A can-declare B: only classes declared in module A can declare
variables of types declared in module B.

• only A can-handle B: only classes declared in module A can access and
declare variables of types declared in module B. In other words, this is
an abbreviation for only A can-access, can-declare B.

• only A can-create B: only classes declared in module A can create ob-
jects of classes declared in module B.

• only A can-extend B: only classes declared in module A can extend
classes declared in module B.

• only A can-implement B: only classes declared in module A can imple-
ment interfaces declared in module B.

• only A can-throw B: only methods from classes declared in module A
can throw exceptions declared in module B.

258 R. Terra and M.T. de Oliveira Valente

– Classes declared in module A cannot depend on types defined in module B,
where the dependencies that can be forbidden are as follows:

• A cannot-access B: no classes declared in module A can access non-
private methods or fields of classes declared in module B.

• A cannot-declare B: no classes declared in module A can declare vari-
ables of types declared in module B.

• A cannot-handle B: no classes declared in module A can access or de-
clare variables of types declared in module B.

• A cannot-create B: no classes declared in module A can create objects
of classes declared in module B.

• A cannot-extend B: no classes declared in module A can extend classes
declared in module B.

• A cannot-implement B: no classes declared in module A can implement
interfaces declared in module B.

• A cannot-throw B: no methods from classes declared in module A can
throw exceptions declared in module B.

– Classes declared in module A must depend on types defined in module B,
where the dependencies that can be required are as follows:

• A must-extend B: all classes declared in module A must extend a class
declared in module B.

• A must-implement B: all classes declared in module A must implement
at least an interface declared in module B.

3 Case Study

In order to illustrate and motivate the need of a dependency language we have
devised and implemented the main modules of an electronic government infor-
mation system used by state’s department of motor vehicles to handle traffic law
violations, such as exceeding the speed limit, parking in an unauthorized area,
driving without license etc. The devised system, called Traffic Ticket Online, has
a web-based user interface that drivers can use to search for detailed informa-
tion about their tickets and also paying tickets online. On the other hand, traffic
authorities use the system to register tickets and perform associated operations.

Architecture: As described in Figure 1, the architecture of the system follows the
Model-View-Controller (MVC) architectural pattern [2]. The Model layer contains
Business Objects (BO), Data Transfer Objects (DTO), and Data Access Objects
(DAO). Business Objects represent objects that encapsulate business rules and be-
havior. Data Transfer Objects represent domain entities such as drivers, tickets,
law violations etc. Data Access Objects provide an abstract interface to the under-
lying persistence framework. Particularly, in the current system implementation
we are using Hibernate for object/relational persistence. The Controller layer con-
tains components that monitor user inputs, manipulate the Model, and update the
View accordingly.The Traffic TicketOnline architecture prescribes that the Struts
framework should be used by the Controller to handle HTTP requests. Such re-
quests are then forwarded to a facade component, which provides a unique point

Towards a Dependency Constraint Language 259

Fig. 1. Traffic Ticket Online Architecture

of access to the model. Finally, the View layer is composed by Java Server Pages
(JSP). In summary, the architecture of the system relies on patterns (MVC, Fac-
tory, Facade,Business andData-AccessObjects etc) and frameworks and technolo-
gies (Hibernate, Struts, JSP etc) that are widely used nowadays when architecting
web-based systems.

Constraints: Figure 2 illustrates how the proposed language can be used to reg-
ulate acceptable and unacceptable dependencies in the Traffic Ticket Online
system. Initially, a sequence of modules definitions are used to group related
classes (lines 1-12). It can be observed that the defined modules closely resem-
ble the modules presented in the architectural view of the system depicted in
Figure 1. This provides evidence that the proposed language can regulate de-
pendencies between entities normally used by software architectures to describe
their systems.

In lines 13-23, sequences of only constraints are defined. Essentially, such con-
straints are fundamental to guarantee that the original MVC architecture is
preserved during the evolution of the system. For example, some of the con-
straints define that only classes from the Controller layer can handle (i.e. access
and declare) types from the Facade module and from the Struts framework (line
16). This avoid for example the View layer to bypass the Controller and access
directly the Model. Moreover, a specific constraint specifies that the Facade is
the only module in the Controller layer that can handle types associated to busi-
ness objects (line 18). In summary, the constraints express a key property about
the dependencies directions in the MVC pattern: the Controller should depend
on the Model, but the Model does not depend on the Controller. Instead, the
Model only depends on the Hibernate persistence framework (line 20).

260 R. Terra and M.T. de Oliveira Valente

1: %Modules
2: module Tags: com.tto.view.taglib.*
3: module Controller: com.tto.controller.action.*
4: module ControllerExcp: com.tto.controller.exception.*
5: module Facade: com.tto.controller.facade.*
6: module BO: com.tto.model.bo.*
7: module DAO: com.tto.model.dao.*
8: module HibernateDAO: com.tto.model.dao.hibernate.*
9: module DTO: com.tto.model.dto.*
10: module ModelExcp: com.tto.model.exception.*
11: module Hibernate: org.hibernate.*
12: module Struts: com.opensymphony.xwork2.*

13: %Can constraints
14: only Controller can-create, can-declare DTO
15: only Controller can-access com.tto.service.FacadeService
16: only Controller can-handle Facade, Struts
17: only Controller, Facade can-throw ControllerExcp
18: only Facade, BO can-handle BO
19: only BO can-handle DAO
20: only HibernateDAO can-handle Hibernate
21: only com.tto.model.BOFactory can-create BO
22: only com.tto.model.DAOFactory can-create DAO
23: only BO, DAO can-throw ModelExcp

24: %Cannot constraints
25: Facade cannot-access DTO

26: %Must constraints
27: BO must-extend com.tto.model.bo.DefaultBO
28: Controller must-extend com.opensymphony.xwork2.ActionSupport
29: DAO must-implement com.tto.model.IDefaultDAO
30: DTO must-extend com.tto.dto.Persistent
31: com.tto.dto.Persistent must-implement java.io.Serializable
32: Facade must-implement com.tto.facade.IFacade
33: HibernateDAO must-extend

com.tto.model.dao.hibernate.DefaultHibernateDAO
34: HibernateDAO must-implement DAO
35: Tags must-implement javax.servlet.jsp.tagext.JspTag

Fig. 2. Dependency Constraints Rules for the Traffic Ticket Online system

It is also important to mention the role of the different can relations types
in the constraints of lines 13-25. For example, using the proposed constraint
language, it was also possible to make explicit the difference between factories
and clients of a given type. For example, there is a constraint that requires that
BOs can only be created in the BOFactory class (line 21). Moreover, another
constraint expresses that only the Facade can rely on BO’s services, (but it cannot
create such objects, as described). As another example, exceptions defined in the

Towards a Dependency Constraint Language 261

module ControllerExcp can only be throwed by methods in the Controller
and Facade modules (line 17).

In lines 26-35, sequences of must constraints are defined. Such constraints
are used to guarantee that all classes that integrate a given module implement
or extend a given type. Usually, this type can be defined in another system
module or can be provided by an external framework. As an example of the first
case, each BO must extend an internal class named DefaultBO (line 27). As an
example of the second case, each class in the Tags module must implement the
javax.servlet.jsp.tagext.JspTag interface (line 35). Such constraints are
important to guarantee that the system correctly reuses services provided by
other classes and frameworks. In some way, they contribute to guide developers
to use external frameworks correctly, as prescribed by the system architecture.

4 Related Work

Over the past decade, at least the following techniques have been proposed to
deal with the architecture erosion and drift problems.

Constraint Languages: Sangal et al. have proposed the use of Dependency Struc-
ture Matrixes (DSM) to reveal existing dependencies and the underlying archi-
tectural pattern of complex software systems [11]. They also propose the use of
design rules in order to highlight DSMs entries that violate the planned archi-
tecture. The dependency constraint language proposed in this paper is inspired
in the design rules language. However, Sangal’s language supports the definition
of only two forms of relations between modules: can-use and cannot-use. On
the other hand, our language allows the definition of a richer set of relations.

Architectural Recovery and Conformance Tools: Architectural recovering frame-
works rely on reengineering technologies to extract high-level architectural mod-
els from existing systems [13,4,8]. The main challenge of such frameworks is
recovering models that are similar to the ones sketched by developers, in terms
of conciseness, abstraction level and architectural elements. Reflexion models
(RM) aim to handle such problem by requiring developers to provide a high-
level model of the planned system architecture and a declarative mapping be-
tween such model and the source code [9]. A RM-based tool (such as the SAVE
Eclipse plug-in [5,6]) highlights convergence, divergence and absence relations
between the high-level model and the source code. However, we believe that
our approach supports a richer set of relations between modules than the lan-
guage used in RMs. Moreover, our language is designed to foster architecture
conformance by construction, i.e. using our language modifications that violate
the planned architecture are detected soon after they are implemented in the
source code.

Architectural Description Languages (ADL): ADLs represent another alternative
to enforce architectural conformance by construction [7]. Such languages allow
developers to express the architectural behavior and software systems structure
in an abstract, declarative language. Code generation tools can then be used to

262 R. Terra and M.T. de Oliveira Valente

map architectural descriptions to source code in a given programming language.
However, such approaches normally require the use of specific architecture-based
development tools and compilers, in order to keep the generated code synchro-
nized with the architectural specification. A variant of this approach advocates
the extension of current programming languages with architectural modeling
constructs, which in practice demand developers to dominate a completely new
programming language [1]. Our approach tackles this problem proposing a sim-
ple and declarative language to define dependencies constraints between mod-
ules. Stafford and Wolf have proposed a dependence analysis technique for use
with ADLs [12]. Therefore, their main objective is to support architectural con-
formance at the ADL-level, i.e. the proposed technique does not require the
availability of the system source code.

5 Conclusions and Future Work

Our research is centered on three hypotheses: (i) that improper inter-module
dependencies are an important source of architectural violations; (ii) that a small,
declarative dependency constraint language as the one presented in the paper
can be employed to detect many of such violations; (iii) that such language
can be integrated with a small overhead to the common edit/compile/run cycle
performed by developers when building software systems with modern IDEs,
thus enforcing architecture conformance by construction.

The Traffic Ticket Online system presented in Section 3 has provided us with
encouraging feedback about the application of our dependency language. How-
ever, in order to provide more robust arguments that can support the first two
hypotheses mentioned above we are starting to apply the proposed language to
a human resource management system, used by the Brazilian Federal Govern-
ment to handle information about public employees. Previous versions of this
system are accessible from a CVS repository, which will allow us to apply our
dependency language to several of such versions. The ultimate goal is to demon-
strate that the proposed language could have been used to prevent important
violations perpetrated to the original system architecture.

Our initial plan is starting the second case study by first defining the depen-
dency constraints of the evaluated system. Next, we will check such constraints
manually, i.e. our plan is starting the implementation of a tool that can check the
proposed constraint language only after finishing this second case study. The rea-
son is that we believe that the study will help us to improve the language, possibly
suggesting new kinds of dependencies not supported by its initial version.

References

1. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: connecting software architecture
to implementation. In: 22nd International Conference on Software Engineering, pp.
187–197 (2002)

2. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley,
Reading (2002)

Towards a Dependency Constraint Language 263

3. Garlan, D., Shaw, M.: Software Architecture Perspectives on an Emerging Disci-
pline. Prentice-Hall, Englewood Cliffs (1996)

4. Kazman, R., Carrière, S.J.: Playing detective: Reconstructing software architecture
from available evidence. Automated Software Engineering 6(2), 107–138 (1999)

5. Knodel, J., Muthig, D., Naab, M., Lindvall, M.: Static evaluation of software ar-
chitectures. In: 10th European Conference on Software Maintenance and Reengi-
neering, pp. 279–294 (2006)

6. Knodel, J., Popescu, D.: A comparison of static architecture compliance checking
approaches. In: IEEE/IFIP Working Conference on Software Architecture, p. 12
(2007)

7. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Transactions on Software Engineer-
ing 26(1), 70–93 (2000)

8. Muller, H.A., Klashinsky, K.: Rigi a system for programming-in-the-large. In: In-
ternational Conference on Software Engineering, pp. 80–87 (1988)

9. Murphy, G.C., Notkin, D., Sullivan, K.J.: Software reflexion models: Bridging the
gap between source and high-level models. In: SIGSOFT Symposium on Founda-
tions of Software Engineering, pp. 18–28 (1995)

10. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. Soft-
ware Engineering Notes 17(4), 40–52 (1992)

11. Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Using dependency models to manage
complex software architecture. In: 20th Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pp. 167–176 (2005)

12. Stafford, J.A., Wolf, A.L.: Architecture-level dependence analysis for software sys-
tems. International Journal of Software Engineering and Knowledge Engineer-
ing 11(4), 431–451 (2001)

13. Yan, H., Garlan, D., Schmerl, B.R., Aldrich, J., Kazman, R.: DiscoTect: A system
for discovering architectures from running systems. In: 26th International Confer-
ence on Software Engineering, pp. 470–479 (2004)

	Introduction
	Dependency Constraint Language
	Case Study
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

