
Lógica de Programação

Ricardo Terra

rterrabh [at] gmail.com

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 1 / 120

CV

Nome: Ricardo Terra
Email: rterrabh [at] gmail.com
www: ricardoterra.com.br
Twitter: rterrabh
Lattes: lattes.cnpq.br/ 0162081093970868

Ph.D. (UFMG/UWaterloo),
Post-Ph.D. (INRIA/Université Lille 1)

Background
Acadêmico : UFLA (desde 2014), UFSJ (1 ano), FUMEC (3 anos), UNIPAC (1 ano), FAMINAS (3 anos)

Profissional : DBA Eng. (1 ano), Synos (2 anos), Stefanini (1 ano)

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 2 / 120

http://www.ricardoterra.com.br
http://twitter.com/rterrabh
http://lattes.cnpq.br{/}0162081093970868

Conteúdo

1 Introdução
Arquitetura de um Sistema de Computador
Histórico da Computação
Utilização dos Computadores

2 Lógica Proposicional

3 Algoritmos e Programação Estruturada

4 Portucol

5 Algoritmos com Qualidade

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 3 / 120

Introdução

Arquitetura de um Sistema de Computador

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 4 / 120

Introdução – Arquitetura de um Sistema de Computador

Nessa seção, veremos:

Arquitetura de um sistema de computação

Memória

Unidade Central de Processamento (CPU)

Periféricos (dispositivos de entrada e saída)

Teclado

Mouse

Monitor

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 5 / 120

Introdução – Arquitetura de um Sistema de Computador

Explicando...

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 6 / 120

Introdução – Arquitetura de um Sistema de Computador

Periféricos (dispositivos de entrada e saída)
Objetivo: prover dados ao computador e obter respostas
do processamento

Dispositivos
Teclado e mouse

Dispositivos de entrada comum. Existe mais algum?

Monitor
Dispositivo de saída comum. Existe mais algum?

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 7 / 120

Introdução – Arquitetura de um Sistema de Computador

Memória
Objetivo: armazenar dados ou programas (sequências de
instruções) em um base temporária ou permanente

Dispositivos
ROM, RAM, HD... Existe mais algum?

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 8 / 120

Introdução – Arquitetura de um Sistema de Computador

Unidade Central de Processamento (CPU)
Também conhecido como processador

É a parte de um computador que realiza a maior parte do
processamento

CPU e memória constituem a parte central de um
computador, no qual os periféricos serão anexados

Veremos a arquitetura Von Neumann

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 9 / 120

Introdução – Arquitetura de um Sistema de Computador

Resumo do que realmente importa

Programas residem na memória

As instruções de um programa – soma, divisão, atribuição,
laços de repetição, instruções condicionais etc – são
executadas pela CPU

Os dados necessários para execução do programa são
obtidos pelos dispositivos de entrada (mouse, teclado, por
exemplo) e os resultados são apresentados através dos
dispositivos de saída (monitor, por exemplo)

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 10 / 120

Introdução

Histórico da Computação

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 11 / 120

Introdução – Histórico da Computação

Nessa seção, veremos:

Histórico da Computação
Existem mil modos de abordar esse assunto, mas aqui vamos
falar o mais relevante ao curso

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 12 / 120

Introdução – Histórico da Computação

Arquitetura Von Neumann
Von Neumann, temático húngaro, naturalizado
norte-americano, propôs nos anos 40 do século XX, um
padrão de arquitetura de computadores utilizado até os
dias de hoje

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 13 / 120

Introdução – Histórico da Computação

Necessidade
Antigamente, processamentos em geral, como cálculos
matemáticos complexos, folhas de pagamento etc

Atualmente, sistemas bancários, ERP, sistemas de gestão,
sistemas web etc

Necessidade
Enfim, o que um computador faz bem?

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 14 / 120

Introdução – Histórico da Computação

Necessidade
Antigamente, processamentos em geral, como cálculos
matemáticos complexos, folhas de pagamento etc

Atualmente, sistemas bancários, ERP, sistemas de gestão,
sistemas web etc

Necessidade

Enfim, o que um computador faz bem? REPETIÇÃO!

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 14 / 120

Introdução – Histórico da Computação

Paradigmas de Programação

Procedural (imperativo) – Antigamente e atualmente
É um paradigma de programação que descreve a
computação como ações (instruções) que mudam o estado
(variáveis) de um programa. Muito parecido com o
comportamento imperativo das linguagens naturais que
expressam ordens, programas imperativos são uma
sequência de comandos para o computador executar

Orientado a objetos – Atualmente
É um paradigma de programação que utiliza “objetos” e a
interação entre eles para projetar aplicações e programas
de computador. Suas técnicas de programação podem
incluir características como encapsulamento, polimorfismo e
herança. Esse paradigma não era comumente usado no
desenvolvimento de aplicações de grande porte até início
de 1990. Atualmente, várias linguagens modernas suportam
POO

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 15 / 120

Introdução – Histórico da Computação

Linguagens – Evolução

Assembly

Pascal

C

C++

PHP

Java

.NET (C#, J#...)

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 16 / 120

Introdução

Utilização dos Computadores

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 17 / 120

Introdução – Utilização dos Computadores

Nessa seção, veremos:

Conceito de programa e sistema

Linguagem de alto nível e baixo nível

Compiladores / Interpretadores

Codificação ASCII

Áreas de aplicação dos computadores

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 18 / 120

Introdução – Utilização dos Computadores

Programa x Sistema

Programa
Concretização de um algoritmo em alguma linguagem de
programação

ou

Uma sequência de instruções que descrevem uma tarefa a
ser realizada por um computador

Sistema
Grupo de componentes de hardware e sistemas de software,
projetados e montados para executar uma função
específica ou grupo de funções

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 19 / 120

Introdução – Utilização dos Computadores

Níveis de linguagem

Representa o nível de abstração da linguagem

Quanto mais longe do código de máquina (ou, em outras
palavras, quanto mais próximo à linguagem humana) mais
alto é o seu nível

Níveis:

Alto: Pascal, COBOL, Java...

Médio: C, C++...

Baixo: Assembly...

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 20 / 120

Introdução – Utilização dos Computadores

Compiladores X Interpretadores
Interpretador lê o código-fonte linha a linha, executando a
instrução específica daquela linha

Compilador lê o programa inteiro, converte-o em um
código-objeto (ou código de máquina) de modo que o
computador consiga executá-lo diretamente

Qual é mais rápido?

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 21 / 120

Introdução – Utilização dos Computadores

Codificação ASCII

Códigos ASCII representam texto em computadores,
equipamentos de comunicação e outros dispositivos que
utilizam texto

Por exemplo, o computador não sabe o que é A, mas se
você informar 65 e dizer que é um caractere, ele saberá
que refere-se ao caractere A

Na verdade, na verdade mesmo, ele nem sabe o que é 65,
sabe o que é 01000001

Veja a tabela ASCII em: http://www.asciitable.com

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 22 / 120

http://www.asciitable.com

Introdução – Utilização dos Computadores

Áreas de aplicação de computadores

Praticamente TODAS, alguns exemplos:

Sistemas de grande porte

Sistemas web

Banco de dados

Bolsa de valores

Processamentos pesados

Estatística

...

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 23 / 120

Conteúdo

1 Introdução

2 Lógica Proposicional
Introdução
Material

3 Algoritmos e Programação Estruturada

4 Portucol

5 Algoritmos com Qualidade

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 24 / 120

Lógica Proposicional

Introdução

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 25 / 120

Lógica Proposicional – Introdução

Introdução

Antes de entrarmos com desenvolvimento de algoritmos, é
interessante aprendermos a organizar nossas ideias e saber
como organizá-las

Nesse intuito, é apresentada um pouco da lógica
proposicional para que vocês treinem formalização em
linguagens não naturais

No caso, uma linguagem matemática
No futuro, Portugol e C

Este capítulo servirá como uma base forte para a nossa
disciplina, cujos resultados começarão a logo perceber

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 26 / 120

Lógica Proposicional – Introdução

Problema do Bezerro
Em uma fazenda existem 20 vacas e seus 21 bezerros. Nenhuma
possui dois bezerros.

É possível existir tal fazenda?

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 27 / 120

Lógica Proposicional – Introdução

Paradoxo do Barbeiro
Em uma determinada cidade:

Todo homem que é capaz de se barbear, o faz

O barbeiro da cidade faz a barba daqueles – e apenas
daqueles – que não são capazes de se barbear

É possível existir tal cidade?

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 28 / 120

Lógica Proposicional – Introdução

Problema do Peão e do Cavaleiro
Peões mentem, cavaleiros dizem a verdade.

Em um grupo, você pergunta para a pessoa A: “Quantos de vocês
são cavaleiros?”. A responde, mas você não entende a resposta.

Você então pergunta para a pessoa B: “O que ele disse?” e a
resposta é: “Ele disse que exatamente dois de nós somos peões”.
Então, C comenta: "Ele (B) está mentindo".

C é um cavaleiro ou um peão?

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 29 / 120

Lógica Proposicional

Material

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 30 / 120

Lógica Proposicional – Material

Material
Iremos utilizar o material do Prof. Dr. Newton José Vieiraa,
um dos melhores e mais renomados professores da
Universidade Federal de Minas Gerais (UFMG)

Vejam materiais:

logicaproposicional_apostila.pdf

logicaproposicional_slides.pdf

awww.dcc.ufmg.br/~nvieira

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 31 / 120

Conteúdo

1 Introdução

2 Lógica Proposicional

3 Algoritmos e Programação Estruturada
Conceitos Importantes

4 Portucol

5 Algoritmos com Qualidade

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 32 / 120

Algoritmos e Programação Estruturada

Conceitos Importantes

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 33 / 120

Algoritmos e Programação Estruturada – Conceitos Importantes

Nessa seção, veremos:

Algoritmos e Programação Estruturada

Algoritmo

Estrutura de dados

Programação estruturada

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 34 / 120

Algoritmos e Programação Estruturada – Conceitos Importantes

Algoritmo

“Um algoritmo é a descrição de um padrão de
comportamento, expressado em termos de um repertório
bem definido e finito de ações “primitivas”, das quais
damos por certo que elas podem ser executadas.”

ou

“Um algoritmo é, em outras palavras, uma norma
executável para estabelecer um certo efeito desejado, que
na prática será geralmente a obtenção de uma solução a
um certo tipo de problema.”

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 35 / 120

Algoritmos e Programação Estruturada – Conceitos Importantes

Exemplo – Algoritmo para descascar as batatas para o jantar

" traga a cesta com batatas do porão" ;
"pegue a panela no armár i o " ;
se (" saia é clara ") {

" coloque avental " ;
}
enquanto (" número de batatas é in su f ic ien te ") {

" descasque uma batata " ;
}
" devolva a cesta ao porão" ;

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 36 / 120

Algoritmos e Programação Estruturada – Conceitos Importantes

Estrutura de dados
Representam as informações do problema a ser resolvido

A formulação do algoritmo e a definição das estruturas de
dados estão intimamente ligadas

Enfim
“decisões sobre a estruturação de dados não podem ser
feitas sem conhecimento dos algoritmos aplicados a eles”

e

“a estrutura e a escolha dos algoritmos depende muitas
vezes fortemente da estrutura dos dados”

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 37 / 120

Algoritmos e Programação Estruturada – Conceitos Importantes

Estrutura de dados

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 38 / 120

Algoritmos e Programação Estruturada – Conceitos Importantes

Qual das estruturas de dados anteriores é melhor para:
retornar os elementos ordenados?

pesquisar um elemento?

acrescentar um elemento?

inserir um elemento?

remover um elemento?

alterar o valor de um elemento?

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 39 / 120

Algoritmos e Programação Estruturada – Conceitos Importantes

Programa

Programas são formulações concretas de algoritmos
abstratos, baseados em representações e estruturas
específicas de dados

Programar é basicamente construir algoritmos

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 40 / 120

Algoritmos e Programação Estruturada – Conceitos Importantes

Programação Estruturada

Basicamente, uma metodologia de projeto de programas
visando:

Facilitar a escrita dos programas

Facilitar a leitura (o entendimento) dos programas

permitir a verificação a priori dos programas

facilitar a manutenção e modificação dos programas

Todos os programas podem ser reduzidos a apenas três
estruturas:

sequência
decisão
iteração

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 41 / 120

Algoritmos e Programação Estruturada – Conceitos Importantes

Programação Estruturada – Exemplo

1 pr incipal () {
i n t e i r o i = 1; /∗ Declarando um i n t e i r o ∗/

3 imprima ("Números pares até 100: ") ;
enquanto (i <= 100) {

5 se (i mod 2 == 0) {
imprima (i) ;

7 }
i = i + 1;

9 }
}

Observações

Observe a sequência, a decisão e a iteração

Não se preocupe com sintaxe, veremos o PortuCol logo

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 42 / 120

Algoritmos e Programação Estruturada – Conceitos Importantes

Exercícios Propostos
Escreva um algoritmo para:

Ler um número e dizer se é par ou ímpar

Ler dois números x e y e imprimir xy

Ler um caractere e dizer se é vogal ou consoante

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 43 / 120

Algoritmos e Programação Estruturada – Conceitos Importantes

Exercício Proposto

Dada a modelagem acima, pense em um algoritmo para:

descobrir o menor caminho entre duas cidades (Dijsktra)
resolver o problema do caixeiro viajante

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 44 / 120

Conteúdo

1 Introdução

2 Lógica Proposicional

3 Algoritmos e Programação Estruturada

4 Portucol
Introdução
Comandos Básicos
Arranjos
Funções

5 Algoritmos com Qualidade

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 45 / 120

Portucol

Introdução

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 46 / 120

Portucol – Introdução

Nessa seção, veremos:
Portucol

Introdução à linguagem (adaptação do Portugol para C)

Sintaxe e semântica dos comandos básicos

Leitura e escrita de algoritmos

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 47 / 120

Portucol – Introdução

Portucol

Pseudolinguagem de programação inspirada no
conhecido Portugol

Objetivo:
Obter uma notação para algoritmos a ser utilizada na
definição, na criação, no desenvolvimento e na
documentação de um programa

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 48 / 120

Portucol – Introdução

Regras Básicas

Os comandos devem ser escritos sempre em caixa baixa

Ao final de cada comando deverá ser colocado um ponto
e vírgula (;)

Os nomes das variáveis e identificadores devem:

ser compostos por letras (caixa baixa) e números, mas
devem começar com uma letra
Ex: idade, nome, a4...

O algoritmo deve ser escrito de forma estruturada e
indentada

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 49 / 120

Portucol – Introdução

Tipos de Dados
Inteiro

qualquer número inteiro, negativo, nulo ou positivo
Ex: -5, 0, 12 ...

Real
qualquer número real, negativo, nulo ou positivo
Ex: -5, 30.5, 0, 40.1, -5.2 ...

Caractere
um caractere alfanumérico, exemplo: ‘A’, ‘a’, ‘0’ ...

String
conjunto de caracteres alfanuméricos
Ex: “Lógica”, “LP”, “Carnaval” ...

Lógico
verdadeiro ou falso

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 50 / 120

Portucol – Introdução

Declaração de variáveis
inteiro idade;

real preco;

caractere inicial;

String nome;

lógico flag;

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 51 / 120

Portucol – Introdução

Comentários

É recomendado e muito importante inserir comentários em
seus códigos

Os comentários devem estar entre /* e */

Exemplo

pr incipal () {
2 i n t e i r o i = 1; /∗ Declarando um i n t e i r o ∗/

imprima ("Números pares até 100: ") ;
4 enquanto (i <= 100) {

se (i mod 2 == 0) { /∗ se o resto fo r 0 é par ∗/
6 imprima (i) ;

}
8 i = i + 1; /∗ incrementa contador ∗/

}
10 } /∗ f im da funćão pr inc ipal ∗/

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 52 / 120

Portucol – Introdução

Operadores
= atribuição

+ soma

- subtração

* multiplicação

/ divisão

% resto (pode ser mod também)

Funções mais comuns

sqrt raiz quadrada ex: sqrt(4)

pow exponenciação ex: pow(3,2) (equivale a 32)

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 53 / 120

Portucol – Introdução

Operadores Relacionais
== comparação

!= diferente

<= menor ou igual

>= maior ou igual

> maior

< menor

Operadores Lógicos

e conjunção

ou disjunção

não negação
Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 54 / 120

Portucol – Introdução

Precedência
1 ()

2 funções

3 * /

4 + -

5 ==, !=, <, <=, >, >=

6 não

7 e

8 ou

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 55 / 120

Portucol – Introdução

Comando de entrada
leia

Faz a leitura de qualquer variável

Ex: leia(x)

imprima
Faz a impressão de qualquer variável e texto

Exemplos:
imprima(x);

imprima(“O valor digitado foi $x”)

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 56 / 120

Portucol

Comandos Básicos

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 57 / 120

Portucol – Comandos Básicos

Comandos condicionais - se
Sintaxe do comando se

se (condicao) {
comando1;
comando2;
comando3;

}

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 58 / 120

Portucol – Comandos Básicos

Observações:

Os parênteses que envolvem a condição são
OBRIGATÓRIOS

A condição deverá retornar um tipo lógico

Os comandos somente serão executados se a condição for
verdadeira

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 59 / 120

Portucol – Comandos Básicos

Comandos condicionais - se

O uso dos braços NÃO é obrigatório caso seja apenas um
único comando

Porém, a boa prática recomenda a utilização de braços
independente do número de comandos

Melhor indentação do código

se (verdade) comando;

equivale a:

se (verdade) {
comando;

}

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 60 / 120

Portucol – Comandos Básicos

Comandos condicionais - se
Como faço o conhecido:

se verdade então . . . senão . . .

se (condicao) {
comando1;
comando2;
comando3;

} senão {
comando4;
comando5;
comando6;

}

Pergunta-se

Quais comandos serão executados se a condição for
verdadeira? E se for falsa?

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 61 / 120

Portucol – Comandos Básicos

Comandos condicionais - se

1 pr incipal () {
i n t e i r o a, b;

3 le ia (a) ;
le ia (b) ;

5 se (a >= b) {
imprima ("$a e maior ou igual a $b ! ") ;

7 } senão {
imprima ("$a e menor que $b ! ") ;

9 }
}

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 62 / 120

Portucol – Comandos Básicos

Comandos condicionais - se
Comando se podem ser aninhados

1 pr incipal () {
i n t e i r o nota ;

3 le ia (nota) ;
se (nota >= 90) {

5 imprima (" Nota A") ;
} senão se (nota >= 80) {

7 imprima (" Nota B ") ;
} senão se (nota >= 70) {

9 imprima (" Nota C") ;
} senão {

11 imprima ("Reprovado") ;
}

13 }

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 63 / 120

Portucol – Comandos Básicos

Exemplo se

pr incipal () {
2 caractere op;

le ia (op) ;
4 se (op == ’+ ’ ou op == ’−’) {

imprima (" Operador de Baixa Prior idade ") ;
6 } senão se (op == ’ / ’ ou op == ’∗ ’) {

imprima (" Operador de Alta Pr ior idade ") ;
8 } senão {

imprima (" Operador Invál ido ") ;
10 }

}

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 64 / 120

Portucol – Comandos Básicos

Exercício de Fixação 01

Crie um algoritmo que leia dois números inteiros e imprima a
soma, a subtração, a multiplicação, a divisão e o resto da
divisão entre esses dois números.

Observe que o valor do segundo número não deve ser 0,
portanto faça um se para evitar isto.

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 65 / 120

Portucol – Comandos Básicos

Exercício de Fixação 02

Crie um algoritmo que leia os dois catetos de um triângulo
(números reais a e b) e calcule a hipotenusa:

h2 = a2 + b2

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 66 / 120

Portucol – Comandos Básicos

Comandos repetição (enquanto, faça...enquanto e para)

Comandos de repetição são utilizados para repetir um
bloco de código

Veremos três comandos de repetição:

enquanto

faça...enquanto

para

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 67 / 120

Portucol – Comandos Básicos

Comandos repetição - enquanto

O comando enquanto é utilizado para repetir um bloco de
acordo com uma condição

É considerado um loop de pré-teste

Isto é, testa a condição antes de executar o bloco

Sintaxe:

enquanto (condicao) {
comando1;
comando2;
comandoN;

}

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 68 / 120

Portucol – Comandos Básicos

Comandos repetição - enquanto

1 pr incipal () {
i n t e i r o i = 0;

3

enquanto (i < 10) {
5 imprima (i) ;

i = i + 1;
7 }

}

Pergunta-se

Qual a saída?

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 69 / 120

Portucol – Comandos Básicos

Exercício de Fixação

Faça um algoritmo que liste todos os números de 0 a 100
divisíveis por 3

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 70 / 120

Portucol – Comandos Básicos

Comandos repetição - faça...enquanto

O comando faça...enquanto é semelhante ao enquanto,
contudo é um comando de repetição de pós-teste

Isto é, somente ao final da execução do bloco que se
verifica a condição

Geralmente, é utilizado quando se deseja testar a
condição somente a partir da segunda iteração

Por exemplo, uma leitura da opção de um menu. Pede para
digitar uma primeira vez. Somente se não digitar uma opção
válida que pede para digitar novamente

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 71 / 120

Portucol – Comandos Básicos

Sintaxe:

faća {
comando1;
comando2;
comandoN;

} enquanto (condicao) ;

Observe o ponto-e-vírgula após os parênteses da condição. Não o esqueça!

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 72 / 120

Portucol – Comandos Básicos

Comandos repetição - faça...enquanto

pr incipal () {
i n t e i r o i = 0;

faća {
imprima (i) ;

} enquanto (1 != 1) ;
}

Pergunta-se

Qual a saída?

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 73 / 120

Portucol – Comandos Básicos

Exemplo

pr incipal () {
i n t e i r o i ;
faća {

imprima (" D ig i te um numero entre 0 e 10: ") ;
le ia (i) ;

} enquanto (i < 0 ou i > 10) ;

imprima (" "Numero digitado : $ i ") ;
}

Pergunta-se

Qual a saída?

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 74 / 120

Portucol – Comandos Básicos

Exercício de Fixação

Faça um algoritmo que estipule um número mágico (entre 0 e
100) e peça para o usuário digitar números até que ele acerte.

Quando não acertar, diga se o número mágico é menor ou
maior que o número que ele digitou.

Por exemplo:
Número mágico estipulado: 7
1a tentativa: 90 (número mágico é menor)
2a tentativa: 4 (número mágico é maior)
3a tentativa: 7 (parabéns!)

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 75 / 120

Portucol – Comandos Básicos

Comandos de repetição - para

Comando de repetição mais poderoso do Portucol

É composto por:
Inicialização: executado uma única vez no início do loop

Condição: executado sempre antes de cada iteração. Se
verdadeira, o bloco é executado. Se falsa, é finalizado

Operação : executado sempre ao término de cada iteração

Sintaxe

para (i n ic ia l i zacao ; condicao ; operacao) {
comando1;
comando2;
. . .

comandoN;
}

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 76 / 120

Portucol – Comandos Básicos

Exemplo

pr incipal () {
2 i n t e i r o i ;

4 para (i = 0; i < 10; i = i +1) {
imprima (i) ;

6 }
}

Pergunta-se

Qual a saída?

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 77 / 120

Portucol – Comandos Básicos

Sintaxe
No laço para, a inicialização, condição e operação são
todas opcionais

Exemplo

1 pr incipal () {
i n t e i r o i ;

3

para (; ;) {
5 imprima (i) ;

}
7 }

Pergunta-se

Qual a saída?

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 78 / 120

Portucol – Comandos Básicos

Comandos de repetição - para

Podemos ter um para dentro de outro, e outro dentro de
outro, e outro dentro de outro...

1 pr incipal () {
i n t e i r o i , j ;

3

para (i = 0; i <= 2; i = i +1) {
5 para (j = 0; j < 2; j = j +1) {

imprima (" $ i $ j ")
7 }

}
9 }

Pergunta-se

Qual a saída?

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 79 / 120

Portucol – Comandos Básicos

Comandos de repetição - para

Um comando para pode ter várias inicializações, uma
condição complexa e várias operações

Exemplo

1 pr incipal () {
i n t e i r o i , d ;

3

para (i = 1 , d = 2 ∗ i ; i <= 10 ou d == 22; i = i +1 , d = i ∗ 2) {
5 imprima (" $ i $d ") ;

}
7 }

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 80 / 120

Portucol – Comandos Básicos

Comando abandone

Inserido dentro de um bloco de repetição (pode também
ser enquanto ou faça...enquanto)

Caso seja executado, o bloco de repetição é finalizado

Exemplo

1 pr incipal () {
i n t e i r o i = 0;

3

para (; i < 10; i = i + 1) {
5 se (i == 3) {

abandone ;
7 }

imprima (i) ;
9 }

}

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 81 / 120

Portucol – Comandos Básicos

Comando continue

Inserido dentro de um bloco de repetição

Caso seja executado, a iteração atual do bloco de
repetição é interrompida e parte para a próxima iteração

Exemplo

pr incipal () {
2 i n t e i r o i ;

4 para (i = 0; i < 10; i = i + 1) {
se (i == 3 ou i == 5) {

6 continue ;
}

8 imprima (i) ;
}

10 }

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 82 / 120

Portucol – Comandos Básicos

Comando de repetição - para

Logicamente, pode-se utilizar abandone e continue
conjuntamente

Exemplo

pr incipal () {
2 i n t e i r o i , j ;

4 para (i = 0; i < 3; i = i + 1) {
se (i == 1) {

6 continue ;
}

8 para (j = 0; j < 2; j ++) {
imprima (" $ i $ j ") ;

10 abandone ; /∗ abandona sempre o laćo mais interno ∗/
}

12 }
}

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 83 / 120

Portucol – Comandos Básicos

Exercício de Fixação

Faça um algoritmo que leia diversas idades e depois exiba a
média.

Duas considerações:
- O algoritmo deverá ignorar idades acima de 120 anos;
- O algoritmo só para de ler idades quando receber o valor -1.

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 84 / 120

Portucol – Comandos Básicos

Funções importantes

tamanho retorna o tamanho de um string ou arranjo. Por
exemplo, suponha que str contenha “ANA”, assim
tamanho(str) retornará 3

encerra encerra o programa abruptamente

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 85 / 120

Portucol – Comandos Básicos

Importante
Ao ler um string, você pode acessar cada posição
utilizando colchetes []

Índices vão de 0 a tam-1

Exemplo

1 pr incipal () {
s t r i n g s t r = "ANA" ;

3 i n t e i r o i , contador = 0;
para (i =0; i < tamanho(s t r) ; i = i + 1) {

5 se (s t r [i] == ’A’) {
contador = contador + 1;

7 }
}

9 imprime ("Numero de A’ s : $contador ") ;
}

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 86 / 120

Portucol

Arranjos

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 87 / 120

Portucol – Arranjos

Arranjos - Conceito
Arranjos – também conhecidos como vetor, array etc – são
coleções de um mesmo tipo em sequência

Arranjos podem ser de qualquer tipo visto (inteiro, real,
caractere, string ou lógico)

Pode se ter um arranjo de inteiros ou um arranjo de
caracteres ou um arranjo de arranjo de reais

Contudo, não se pode ter um arranjo que contenha inteiros
e strings

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 88 / 120

Portucol – Arranjos

Arranjos - Declaração

Declaração:
i n t e i r o notas [5] ; /∗ Arranjo de 5 i n t e i r o s ∗/

2 caractere l e t r a s [5] ; /∗ Arranjo de 5 caracteres ∗/

Assim como variáveis comuns, os elementos do arranjo não
são inicializados automaticamente. Contudo, você pode
declarar já inicializando:

i n t e i r o notas [5] = {4 ,6 ,6 ,9 ,8 } ;
2 caractere l e t r a s [5] = { ’A’ , ’E ’ , ’ I ’ , ’O’ , ’U ’ } ;

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 89 / 120

Portucol – Arranjos

Arranjos - Declaração

Um arranjo de tamanho n, tem suas posições indexadas de
0 a n-1

Para obter o tamanho de um arranjo, basta chamar a
função tamanho

Exemplo

pr incipal () {
2 i n t e i r o v [5] = {1 , 2 , 3 , 4 , 5 } ;

i n t e i r o i ;
4 para (i =0; i < tamanho(v) ; i = i + 1) {

imprima (v [i]) ;
6 }

}

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 90 / 120

Portucol – Arranjos

Arranjos - Acesso aos elementos
Arranjos permite recuperar ou alterar qualquer um de seus
elementos

Os arranjos sempre iniciam-se na posição 0
Isto indica que ele termina em uma posição inferior ao
tamanho (n-1)

Exemplo

1 pr incipal () {
caractere v [5] = { ’A’ , ’E ’ , ’Y ’ , ’O’ , ’U ’ } ;

3

imprima ("A primeira vogal é $v [0] ") ;
5

v [2] = ’ I ’ ;
7

imprima ("A últ ima vogal é $v [4] ") ;
9 }

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 91 / 120

Portucol – Arranjos

Arranjos Multidimensionais
Pode-se criar um arranjo de arranjos

O mais comum é o bidimensional que vemos como uma
matriz

A declaração é somente acrescentar o número de colunas

Por exemplo: inteiro matriz[4][3] declara-se uma
matriz de 4 linhas e 3 colunas

matriz[4][3] = {{1,0,0},{0,1,2},{2,3,4},{0,6,7}};

Representação :

1 0 0
0 1 2
2 3 4
0 6 7

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 92 / 120

Portucol – Arranjos

Arranjo Bidimensional – Exemplo
Declarando e inicializando uma matriz 3x2 e imprimindo a
soma dos valores

1 pr incipal () {
i n t e i r o v [3] [2] = { {1 , 4 } , {5 , 6 } , {9 , −11} } ;

3 i n t e i r o i , j , soma = 0;
para (i =0; i < tamanho(v) ; i = i + 1) {

5 para (j =0; j < tamanho(v [i]) ; j = j + 1) {
soma = soma + v [i] [j] ;

7 }
}

9 imprima ("Soma da matr iz : $soma") ;
}

matriz
1 4
5 6
9 -11

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 93 / 120

Portucol – Arranjos

Exercício de Fixação 01

Crie um algoritmo que declare e leia cada posição de um
arranjo de inteiros de tamanho 5 e imprima a soma e a média
aritmética

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 94 / 120

Portucol – Arranjos

Exercício de Fixação 02

Crie um algoritmo que declare e leia cada posição de um
arranjo de reais de tamanho 10 e imprima a soma total deste
arranjo considerando a seguinte fórmula:

soma = 1 * array[0] + 2 * array[1] + ... +
9 * array[8] + 10 * array[9]

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 95 / 120

Portucol

Funções

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 96 / 120

Portucol – Funções

Função

Um algoritmo é uma coleção de funções

Uma das funções deve se chamar principal

por onde começa a execução do algoritmo

Uma função pode:

receber parâmetros

declarar variáveis locais

conter instruções executáveis

retornar um valor

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 97 / 120

Portucol – Funções

Função

O comando retorna efetua o retorno (término) da função

Uma função pode ou não ter um retorno

Uma função pode ou não ter parâmetros formais

Exemplos

m1() { . . . } /∗ sem retorno e sem parãmetros formais ∗/
2

m2(real x) { . . . } /∗ sem retorno e com um par . formal ∗/
4

i n t e i r o m3() { . . . } /∗ com retorno e sem parãmetros formais ∗/
6

i n t e i r o m4(caractere c, i n t e i r o i) { . . . } /∗ com retorno e 2 par . ∗/

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 98 / 120

Portucol – Funções

Função

Sintaxe:
retorno nome (< param { , param} >) { corpo }

Exemplos

1 imprimir () { . . . }

3 i n t e i r o dobro (i n t e i r o x) { . . . }

5 real somar (real a, real b) { . . . }

7 l i s t a r (i n t e i r o notas []) { . . . }

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 99 / 120

Portucol – Funções

Função

Retorno de funções

Uma função pode retornar valores de qualquer tipo

Uma função que retorna nada, não declara retorno

A expressão que segue o retorna, é o valor retornado pela
função

não é necessário parênteses

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 100 / 120

Portucol – Funções

Função

Término de uma função

Ao encontrar a chave de fechamento

Ao ser retornada (retorna)

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 101 / 120

Portucol – Funções

Exercícios de Fixação

Implementar as funções:

soma

fatorial

escreveMaior

retornaMenorElemento

retornaMaiorElemento

retornaMedia

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 102 / 120

Portucol – Funções

Exercício - Soma

1 pr incipal () {
real x , y , to ta l ;

3 le ia (x) ;
le ia (y) ;

5 to ta l = soma(x , y) ;
imprima (" $x + $y = $tota l ") ;

7 }

9 real soma (real x , real y) {
retorna x+y ;

11 }

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 103 / 120

Portucol – Funções

Exercício - Fatorial

1 pr incipal () {
i n t e i r o n ;

3 le ia (n) ;
imprima (fat (n)) ;

5 }

7 i n t e i r o fat (i n t e i r o n) {
i n t e i r o i , resultado = 1;

9 se (n == 0 ou n == 1) {
retorna 1;

11 }
para (i =2; i <= n ; i = i +1) {

13 resultado = resultado ∗ i ;
}

15 retorna resultado ;
}

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 104 / 120

Portucol – Funções

Exercício - Escreve Maior

pr incipal () {
2 i n t e i r o n ;

le ia (n) ;
4 retornaMaior (n) ;

}
6

retornaMaior (i n t e i r o n) {
8 i n t e i r o i ;

para (i = n ; i >= 1; i = i − 1) {
10 imprime (i) ;

se (i != 1) {
12 imprime (" > ") ;

}
14 }

}

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 105 / 120

Portucol – Funções

Exercício - Retorna Menor Elemento

1 pr incipal () {
i n t e i r o v [5] = { 2 , 4 , 5 , 1 , 3 } , min ;

3 min = menorElemento(v) ;
imprima ("Menor elemento : $min ") ;

5 }

7 i n t e i r o retornaMenorElemento (i n t e i r o v []) {
i n t e i r o i ;

9 i n t e i r o menor = v [0] ;
para (i = 1; i < tamanho(v) ; i = i +1) {

11 se (v [i] < menor) {
menor = v [i] ;

13 }
}

15 retorna menor ;
}

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 106 / 120

Conteúdo

1 Introdução

2 Lógica Proposicional

3 Algoritmos e Programação Estruturada

4 Portucol

5 Algoritmos com Qualidade
Introdução
Boas práticas de programação
Metodologia para o desenvolvimento de algoritmos

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 107 / 120

Algoritmos com Qualidade

Introdução

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 108 / 120

Algoritmos com Qualidade – Introdução

Nessa seção, veremos:

Boas práticas de programação

Metodologia para o desenvolvimento de algoritmos

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 109 / 120

Algoritmos com Qualidade

Boas práticas de programação

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 110 / 120

Algoritmos com Qualidade – Boas práticas de programação

1. Algoritmos devem ser feitos para serem lidos por seres
humanos

Outras pessoas poderão ter que corrigí-lo, adaptá-lo,
modificá-lo...

Ainda, talvez você mesmo tenha que entendê-lo depois de
um ano que escreveu

2. Comente seu código

Comentário é sinal de saber desenvolver

Facilita o entendimento do código

Existem coisas que você faz que – poucos segundos depois
– nem lembra como fez

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 111 / 120

Algoritmos com Qualidade – Boas práticas de programação

3. No entanto, comentários devem acrescentar algo não
apenas frasear os comandos

Comentários não dizem o que está sendo feito, mas sim, por
quê

Exemplo de comentário que não se deve fazer:
imprima(total); /* imprime o total */

Exemplo de comentário que se deve fazer:
/* implementação da RN021 */
se (taxaJuros < 3.0 e selic > taxaJuros) {

...
}

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 112 / 120

Algoritmos com Qualidade – Boas práticas de programação

4. Use comentários no prólogo de funções

É interessante que funções tenham comentários contendo:

um descrição sucinta do que faz

autor

data de escrita

5. Utilize espaços em branco para melhorar a legibilidade

melhoram substancialmente a aparência de algoritmos

principalmente no início do algoritmo, pois pode ser que
haja a necessidade de mais variáveis

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 113 / 120

Algoritmos com Qualidade – Boas práticas de programação

6. Variáveis com nomes representativos
Nomes de variáveis devem identificar o que representam

Por exemplo, x = y + z é muito menos claro que preco =
custo + lucro

Outras dicas:

Para variáveis de iteração, use i, j, k...

Para variáveis auxiliares, use aux

7. Um comando por linha
Vários comandos por linha, prejudicam a legibilidade

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 114 / 120

Algoritmos com Qualidade – Boas práticas de programação

8. Utilize parênteses para aumentar a legibilidade e prevenir
erros bobos

Por exemplo:
A * B * C / (D * E * F)

seria ainda mais claro se fosse:
(A * B * C) / (D * E * F)

9. Identação é imprencidível

Melhora a legibilidade

Apresenta a estrutura lógica do algortimo

Deve seguir o padrão (novos blocos são identados)

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 115 / 120

Algoritmos com Qualidade – Boas práticas de programação

10. Alteração no algoritmo → Alteração no comentário

Sempre que um algoritmo for alterado, os comentários
também devem ser alterados, não apenas os comandos

Antes não comentar do que deixar um comentário errado

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 116 / 120

Algoritmos com Qualidade

Metodologia para o desenvolvimento de algoritmos

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 117 / 120

Algoritmos com Qualidade – Metodologia para o
desenvolvimento de algoritmos

Uma boa sequência a ser seguida:

Passo 1: leia o enunciado do problema até o final (sem
fazer nenhum tipo de anotação)

Passo 2: repita o “Passo 1” até entender

Passo 3: levantar e analisar todas as saídas do problema

Passo 4: levantar e analisar todas as entradas do problema

Passo 5: levantar as variáveis necessárias

Passo 6: pensar como transformar entradas em saídas

Passo 7: testar cada parte do algoritmo (simule entradas e
confira saídas)

Passo 8: testar o algoritmo como um todo (simule entradas
e confira saídas)

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 118 / 120

Algoritmos com Qualidade – Metodologia para o
desenvolvimento de algoritmos

Exercício de Fixação

De acordo com a metodologia, desenvolva um algoritmo que
leia as três variáveis da equação de 2o grau (a, b e c) e imprima
se a parábola gerada pela equação toca o eixo das abcissas
ou não. Se tocar, imprima também as raízes resultantes

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 119 / 120

Referencias

Angelo de Moura Guimarães e Newton Albert de
Castilho Lages.
Algoritmos e Estruturas de Dados.
Editora LTC, 1994.

Victorine Viviane Mizrahi.
Treinamento em Linguagem C.
Prentice-Hall, 2 edition, 2008.

Newton José Vieira.
Lógica aplicada à computação.
http://homepages.dcc.ufmg.br/ nvieira/cursos/ldt/
notas-de-aulas/logica1.pdf, 2007.

Ricardo Terra (rterrabh [at] gmail.com) Lógica de Programação Abril, 2011 120 / 120

	Introdução
	Arquitetura de um Sistema de Computador
	Histórico da Computação
	Utilização dos Computadores

	Lógica Proposicional
	Introdução
	Material

	Algoritmos e Programação Estruturada
	Conceitos Importantes

	Portucol
	Introdução
	Comandos Básicos
	Arranjos
	Funções

	Algoritmos com Qualidade
	Introdução
	Boas práticas de programação
	Metodologia para o desenvolvimento de algoritmos

