Universidade Federal de Lavras

Departamento de Ciência da Computação

COM142-SISTEMAS DIGITAIS

I – PROGRAMA DA DISCIPLINA

1 - Introdução

- 1.1 Apresentação do professor e dos alunos
- 1.2 Apresentação do plano de curso
- 1.3 Metodologia de ensino-aprendizagem e avaliação

2. Sistemas de Numeração

- 2.1 Sistema binário
- 2.2 Sistema octal
- 2.3 Sistema hexadecimal
- 2.4 Conversão entre bases

3. Portas Lógicas

- 3.1 Portas lógicas básicas: inversora, E, OU
- 3.2 Combinações de portas lógicas
- 3.3 Portas OU-EXCLUSIVO
- 3.4 Aplicações de portas lógicas

4. Circuitos Combinacionais

- 4.1 Álgebra de Boole
- 4.2 Descrição de funções lógicas por somas de produtos
- 4.3 Simplificação de circuitos lógicos
- 4.4 Mapa de Karnaugh
- 4.5 Aplicações de circuitos lógicos

5. Somadores

- 5.1 Adição binária
- 5.2 Representação em Complemento de dois
- 5.3 Meio-somador
- 5.4 Somador completo
- 5.5 Subtrator
- 5.6 Unidade Lógica Aritmética

6. Circuitos Sequenciais

- 6.1 Flip-Flops: RS, D, JK, T
- 6.2 Registradores de deslocamento
- 6.3 Contadores Síncronos e Assíncronos
- 6.4 Máquinas de Estados

- 7. Memórias Digitais
 - 7.1 Memória de Apenas Leitura (ROM)
 - 7.2 Memória de Leitura e Escrita (RAM)
 - 7.3 Lógica Programável: PAL, PLA, GAL, FPGA
 - 7.4 Aplicações
- 8. Ferramentas de Projetos Digitais
 - 8.1 Projetos Assistidos por computador (CAD)
 - 8.2 Simulador de circuitos lógicos
 - 8.3 Gravadores de circuitos programáveis
 - 8.4 Linguagens de descrição de Hardware
- 9. Famílias Lógicas
 - 9.1 Família TTL
 - 9.2 Família CMOS
 - 9.3 Portas de coletor aberto
 - 9.4 Interfaceamento entre TTL e CMOS

BIBLIOGRAFIA:

- 1 IDOETA, I. V. & CAPUANO, F. G. Elementos de Eletrônica Digital. São Paulo: Editora Érica, 1984.
- 2 MALVINO, A. P. & LEACH, D. P. Eletrônica Digital Princípios e Aplicações. São Paulo: Editora McGraw-Hill, vol 1 e 2, 1987.
- 3 MANO, M. Morris. Digital Design. Prentce Hall, 1991.
- 4 BIGNELL, James W. & DONOVAN, Robert L. Eletrônica Digital. São Paulo: Editora Makron Books, vol. 1 e 2, 1995.
- 5 TAUB, H. Circuitos Digitais e Microprocessadores. São Paulo: Editora McGraw-Hill do Brasil, 1984.

AVALIAÇÕES

1 ^a Prova	25 pontos	data	/	/ 2003
2ª Prova	25 pontos	data	/	/ 2003
3 ^a Prova	25 pontos	data	/	/ 2003
<u>Prática</u>	25 pontos			
Trabalho	15 pontos			
Relatórios	10 pontos			

II – Plano de Aula para o segundo semestre e 2003

Aula nº	T/P	Assunto	Semana	
1,2	T	Apresentação, plano de curso, marcação de provas; Sistemas Numéricos		
3,4	T	Introd. à Eletrônica Digital – Funções Lógicas, Portas Lógicas, Tab. Verdade		
5,6	P	Apresentação do laboratório, conhecimento de circuitos integrados digitais		
7,8	Т	Exemplos de Circuitos Combinacionais; Álgebra de Boole		
9,10	T	Teoremas Booleanos – Aplicações e exemplos	2	
11,12	P	Portas Lógicas	2	
13,14	T	Análise de Circuitos Combinacionais e simplificação de expressões lógicas		
15,16	T	Mapas de Karnaugh de 2 e 3 variáveis	3	
17,18	P	Teoremas Booleanos	3	
19,20	T	Mapas de Karnaugh de 4 variáveis – Exemplos de aplicações	4	
21,22	T	Mapas de Karnaugh com condições Don't Care – Lista exerc. 01	4	
23,24	P	Circuitos Combinacionais – Números Primos	4	
25,26	T	Circuitos Combinacionais Conversores de Códigos numéricos - Projetos	5	
27,28	T	Somadores – Soma de números binários – Represent. em complemento de 2	5	
29,30	P	Introdução ao uso do programa de simulação MaxPlusII	5	
31,32	T	Meio somador, Somador completo, Somador de 4 bits	6	
33,34	T	Somador/Subtrator e Detecção de erro – Lista exerc. 02	6	
35,36	P	Somador/Subtrator de 4 bits	6	
37,38	T	1ª Prova – Álgebra de Boole, Circ. Combinacionais, Somador/Subtrator	7	
39,40	T	Multiplexadores	7	
41,42	P	Somador/Subtrator de 4 bits – continuação – Construção do detector de erro	7	
43,44	T	Demultiplexadores	8	
45,46	T	Famílias Lógicas – Níveis lógicos	8	
47,48	P	Multiplexador	8	
49,50	T	Portas de coletor aberto e Tri-State	9	
51,52	T	Introdução à lógica seqüencial – Flip-Flops RS e Flip-Flops RS com clock	9	
53,54	P	Flip-Flops		
55,56	T	Flip-Flop D, JK, JK-ME e T; Sinais de Preset e Clear		
57,58	T	Registradores de Deslocamento – Série-Paralelo, Série-Série, Par-Ser, Par-Par		
59,60	P	Flip-Flops no MaxPlusII		
61,62	T	Contador Assícrono – Contador de zero a 2 ⁿ , 2 ⁿ a zero e contador UP/Down		
63,64	T	Contador Assícrono de zero a N (N<2 $^{\rm n}$) e de N $_{\rm 1}$ a N $_{\rm 2}$		
65,66	P	Contador Assíncrono – divisor por 32 e por 1024 – MaxPlusII		
67,68	T	Contador Síncrono de zero a 2 ⁿ ; Cont. Sínc. seqüência qualquer - Análise	12	
69,70	T	Contador Síncrono de seqüência qualquer – Projetos - <i>Lista exerc.</i> 03	12	
71,72	P	Contador Síncrono	12	
73,74	T	2ª Prova – Multiplex/Demux, Flip-Flops, Registr. de Deslocam, Contadores	13	
75,76	T	Memórias Semicondutoras		
77,78	P	Trabalho prático – Projeto de um circuito digital		
79,80	T	Máquinas de Estados – Introdução	14	
81,82	T	Máquinas de Estados do tipo Mealy – Exemplos de Projetos		
83,84	P	Trabalho prático – Implementação de um circuito digital		
85,86	T	Máquinas de Estados do tipo Moore – Exemplos de Projetos - Lista exerc. 04		
87,88	T	3ª Prova – Memórias e Máquinas de Estados	15	
89,90	P	Apresentação do Trabalho prático	15	