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Abstract. An earlier proposed temporal-causal network model for mutual
absorption of emotions aims to model emotion contagion in networks using
characteristics such as traits of openness and expressiveness of the members of
the network, and the strengths of the connections between them. The speed
factors describing how fast emotional states change, were modeled based on
these characteristics according to a fixed dependence relation. In this paper,
particular implications of this choice are analyzed. Based on this analysis, a
refinement of the model is proposed, offering alternative ways of modeling
speed factors. This refinement is also analyzed and evaluated.
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1 Introduction

The social phenomenon called emotion contagion indicates the process by which
emotions of a person are affected by emotions of other persons when they are inter-
acting in a social network. This concept has a foundation in neurological findings on
mirror neurons [1], and can be used to understand emotions, for example in situations
where decisions can be affected by the emotional state of a person. This can occur in
urgent situations, when events with a short duration can create disturbances in deci-
sions, but also in processes with longer durations, like mood and depression, com-
mitment with work, et cetera.

Different computational models have been proposed to model emotion contagion.
Among them are temporal-causal network models [2] such as the absorption model,
introduced in [3] and the amplification model introduced in [4]. The current paper
focuses on the absorption model. In this model emotion contagion is modeled using
personal characteristics (or traits) such as openness (how a person is open to be
influenced by others) and expressiveness (how a person expresses him or herself in the
social network), and the strength of the connection between persons. This paper pre-
sents an analysis and refinement of the absorption model, in particular by considering
multiple options for the way in which the speed factor is modeled. In the original
absorption model, a fixed dependence relation is used for the speed factor, describing
how the speed factor relates to the traits and connections in the network. In the
proposed refined absorption model, in addition two alternative ways are offered that
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relate the speed factor in different ways to these network characteristics. The effects and
improvements that are obtained from these alternative options are analyzed and eval-
uated as well. This work also shows a more in depth mathematical analysis to better
understand convergence and stability in the model. These analyses show that the
presented temporal-causal network model is trustworthy and can be very useful to
understand different contexts of emotions in social networks.

The paper has the following structure: Sect. 2 will explain the original absorption
model in detail. In Sect. 3 an analysis is made in particular concerning the speed factor
in the model. Section 4 presents two possible alternative ways to model the speed
factor. A scaled approach and an advanced logistic function approach are the options
explored in this section. Section 5 presents mathematical analysis of the model
regarding monotonicity and equilibria. Section 6 presents results using the new
approach for the model, and Sect. 7 presents the conclusions and future works.

2 Emotion Absorption: The Temporal-Causal Network
Model

In this section, the computational model for mutual absorption of emotions is presented
[3, 5]. This model has been developed as a temporal-causal network model; see [2].
First, the most important concepts used in the model are explained, both in terms of a
conceptual representation and a numerical representation. The section concludes with
examples of applications of this computational model of emotion contagion.

The model distinguishes some characteristics of persons and the connections
between them, represented by parameters. These characteristics affect emotion conta-
gion in the network. The model describes how internal emotion states qA of persons A
affect each other. However, internal states do not affect each other in a direct manner.
First, they have to be expressed, after which they can be observed by another person,
and in turn such an observation can affect the internal state of this other person. So,
internal emotion states qA affect each other by contagion as a three-step process, for
which each step has its own characteristics (indicated by eB, aBA, dA, respectively):

• from internal emotion state qB of B to expressed emotion by B eB
• from expressed emotion by B to observed emotion by A aBA
• from observed emotion by A to internal emotion state qA of A dA

The characteristic for the extent to which a person B expresses him or herself within
the network is captured by the concept of expressiveness, modeled by parameter eB.
Similarly, the characteristic for the extent to which a person A is open to be influenced
is represented by the openness, modeled by parameter dA. The strength of the relation
between two people in the network is described by the channel strength, modeled by
parameter aBA. They are formalized by the numerical representations eB, aBA, and dA as
real numbers between 0 and 1.

Based on the above steps, the overall contagion process is modeled in terms of the
connection weight xBA from sender B to receiver A. This represents the resulting
influence of the internal emotion state of sender B on the internal emotion state of
receiver A and depends on the above three parameters as shown in (1).
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xBA ¼ eBaBAdA ð1Þ

In the model this xBA is used to determine the strength of the impact from the
emotion state of B to the emotion state of A at some time point t:

impactBA tð Þ ¼ xBAqB tð Þ

where qB(t) is the emotion level of B at time t. The overall contagion strength xA to qA
represents the total effect from all nodes that are connected to emotion state qA of
person A; it is modeled as in (2).

xA ¼
X

B6¼A
xBA ð2Þ

The aggregated impact aggimpactA(t) at time t of all connected emotion states qBi
on emotion state qA is modeled by a scaled sum function (see [2]) ssumxA(…) with the
overall connection strength xA as scaling factor, as shown in (3).

aggimpactA tð Þ ¼ ssumxA impactB1A tð Þ; . . .; impactBkA tð Þ� �
¼ impactB1A tð Þþ . . .þ impactBkA tð Þ� �

=xA

¼ xB1AqB1 tð Þþ . . .þxBkAqBk tð Þð Þ=xA

¼ xB1A=xAð ÞqB1 tð Þþ . . .þ xBkA=xAð ÞqBk tð Þ

ð3Þ

From this it follows that aggimpactA(t) is calculated as a weighted average of the
emotion levels of the connected states qB as in (4).

aggimpactA tð Þ ¼
X

B 6¼A
wBAqB tð Þ ð4Þ

with weights

wBA ¼ xBA=xA ¼ eBaBAdA
.X

C 6¼A
eCaCAdA ¼ eBaBA

.X
C 6¼A

eCaCA:

The sum of these weights is 1. The dynamics for the contagion for this
temporal-causal network model (see also [2]) is described in (5).

DqA tþDtð Þ ¼ qA tð ÞþgA aggimpactA tð Þ � qA tð Þ½ �Dt ð5Þ

We denote with ηA the speed factor of A, which is chosen ηA = xA here. Sometimes
the aggregated impact aggimpactA(t) on A is denoted by the shorter notation qA*(t).

This temporal-causal network model of emotion contagion has been investigated
further and applied in a number of studies. For example, it was applied to predict the
emotion levels of team members, in order to maintain emotional balance within a team
[6]. When the teams’ emotion level was found to become deficient, the model, which
was embedded in an ambient agent, provided support to the team by proposing the
team leader to give his employees a pep talk [6]. The pep talk is an example of an
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intervention strategy. Another study experimented with simulations of changes in the
social network structure in order to guide the contagion process in a certain direction
[7]. Yet another study used the model to predict changes on Physical Activity levels of
a group of friends/acquaintances from the same course, applying the model to behavior
contagion [8].

3 Analysis of the Absorption Model

The absorption model is based on two main assumptions, one of which addresses the
level of the emotions and the other one the speed of change of the emotion levels:

(1) The emotion level qA(t) of a person A is affected linearly by the weighted averageP
B 6¼A wBA qB(t) of the emotion levels of the connected persons B.

(2) For each person A the speed of change ηA of his or her emotion level linearly
depends on the overall connection strength xA within the network: ηA = xA

Roughly spoken, assumption (1) entails that the members of the network adapt to
an average emotion level in the network. As a consequence, the emotion levels will
converge to a common emotion level, which is between the minimal and maximal
initial emotion levels of the connected members (see Sect. 3.1 for example simulations
showing this, and Sect. 5 for a mathematical proof). This is in contrast to, for example,
the amplification model introduced in [4] where assumption (1) is not taken as a point
as departure, and as a result emotion contagion spirals can be modeled that reach levels
higher (or lower) than any of the initial levels.

The second assumption (2) makes that the more connected members in the network,
the higher the speed of change will be, in a proportional manner. In the current paper,
assumption (1) is kept, but assumption (2) is critically analyzed in more depth and
loosened in order to create room for alternatives. This second assumption (2) is an
answer on the more open question:

How does the speed of change of the emotion level depend
on the network structure and size?

Specific variants of this question are the following. If a person has more connec-
tions to members with a given average emotion level, will he or she adapt faster to this
average emotion level? Has the number of relations in real life effect on your speed of
change for adapting to them? If a person has more friends, will his or her emotions be
affected faster than the emotions of another person with fewer friends? If so, to which
extent? Is this relation linear or proportional, or is it inherently nonlinear? Is this
increase of the speed going on indefinitely, or is there some bound for it?

In [4] these questions were answered in a most simple, linear, proportional manner,
as expressed by assumption (2) above. However, it is doubtful whether this most
simple linear option is the most plausible option for realistic networks. The initial
studies of the absorption model itself in [4] already highlighted two constraints: (a) In
dynamic property P3 in Sect. 5 (referring to Theorem 5 in Sect. 4) in [4] it is stated that
for some initial emotion values the emotion values eventually can run out of their
boundaries 0 or 1. Also, (b) xA is a cumulative value based on the number of
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connections and their weights; when this number increases, because of the assumption
(2) ηA = xA, also the speed factor ηA increases in a proportional manner, without any
limitation. For (b) Bosse et al. [4] used adaptations to the choice of the step size Dt to
control that the model stays within the boundaries. That can work well for a few nodes,
but this entails that all the time a smaller value for Dt has to be chosen, when the
number of nodes becomes larger. This is possible, but not very practical. The
hypothesis is that problem (a) relates to the strongly increasing value for the speed
factor ηA for larger networks entailed by the choice of taking it equal to xA. Some
experiments were run for analysis keeping the same characteristics of the experiment
done by Bosse et al. [4] but with more nodes. The idea is to analyze if the choice for xA

as a speed factor ηA indeed is the bottleneck for issues (a) and (b) of the absorption
model.

3.1 Analysis of the Original Model

The same simulations in [4] were run again, with more nodes added to the scenario in
order to better understand how the model works, and what alternatives are possible.
7 scenarios were created according to the Appendix A of [4]. The scenarios are:

1. All members have x = 1 – fully open channels (1a)
2. All members have x > 0 – big openness for all (1b)
3. All members have x > 0 – small openness for all (1c)
4. All members have x = 0 – no changes on emotional levels (2)
5. One member has x = 0 (d = 0) (3)
6. Only one member has x 6¼ 0 (all other members have d = 0) (4)
7. One member has x = 0 (d = 0 and e = 0) (5)

Below a brief analysis of the effects on scenario 1a is made, showing what happens
when the number of nodes is increased. The results of the other scenarios can be found
at Appendix A (http://www.few.vu.nl/*efo600/iccci16/ICCCI16_A.pdf). The first
scenario (1a) considers the maximal contagion that can happen. For that, all the
parameters (expressiveness, openness and channel strengths) are set to 1. Moreover,
Dt is set to 0.1. Figure 1 shows the differences between graphs for different numbers of
members, 3, 9, and 18 nodes. As the initial values for the emotion levels for the tests
have been generated at random, different convergence points, according to the average
of the initial values are shown in the graphs. The convergence value for all the nodes
that emerges is an average of the initial emotion levels, as shown in [4].

As all parameters are equal to 1, the speed factor ηA for each member A is the
in-degree of the nodes minus 1: ηA = n – 1, with n = number of nodes. As the speed
factor ηA determines the next emotion level for all the nodes (Eq. (5)), the emotion
levels converge faster, and at some network size (after 12 members) oscillation in the
emotional levels occurs due to the sudden changes caused by the high speed factor.
Note that to see this effect Dt was not decreased, what normally would be a measure
taken; it was kept at 0.1. Such a decrease would be possible; however, decreasing
Dt with the size of the network indefinitely is neither practical nor desirable.

Analysis and Refinement of a Temporal-Causal Network Model 31

http://www.few.vu.nl/%7eefo600/iccci16/ICCCI16_A.pdf


3.2 Mathematical Analysis of the Problem

This section addresses mathematical analysis of the problem concerning the oscillation
of the emotion levels. The sudden changes will be explained showing the effect of the
increase in the value of the choice of the speed factor ηA = xA for larger networks. The
equation for xA is the sum of all the connection strengths generated by the nodes
in-connected to qA. The strength by which the emotion from each B is received by A is
calculated by xBA = eBaBAdA, as seen before. If all nodes have e and d higher than zero,
and if the network is fully connected (in other words, there is no dBA = 0 to any pair B,
A), and the number of neighbors in the network increases, the value of xA also
increases proportionally and by the assumption (2) ηA = xA the same holds for ηA.
While the speed factor increases, the changes from qA(t) to at the next emotion level
qA(t + Dt) become more sudden, and less realistic. As a matter of illustration, imagine a
fully connected network (all the channel strengths aBA equal to 1), where every member
has openness and expressiveness equals 0.5. So, in that case

xBA ¼ eBaBAdA ¼ 0:5� 1� 0:5 ¼ 0:25

Therefore, xBA = 0.25 is the connection strength between the emotion states qA for
each of the members that are connected. So, if n is the number of nodes, xA for any of
the fully connected network will be (n − 1) � 0.25. If the number of nodes is increased
10 times, the speed factor ηA = xA will be increased around 10 times as well. For an
increase to 1000 nodes, the speed factor will be 100 times bigger. Figure 2 (left graph)
shows that this increase follows a linear tendency. As it may be doubted that this
indefinite increase of ηA is realistic, in Sect. 4 alternative options for the speed factor ηA
will be considered, with patterns corresponding to the other graphs in Fig. 2, where
there is some bound in the increase of the speed factor.

So assuming the speed factor ηA = xA (assumption (2) of the original absorption
model) causes unbalanced behaviour of the model. In order to avoid abrupt changes,
usually the value of Dt is made smaller and smaller for larger networks. This approach
is conceptually and practically inadequate as the speed factor refers to the velocity of
the changes in the emotions, whereas Dt refers to the time steps of the model, and has
nothing to do with the speed factor ηA. That incompatibility is a reason to consider
alternative answers on the main question concerning speed factors, as discussed next.
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Fig. 1. Full channel connections for 3 to 18 members
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4 Alternative Ways to Model the Speed Factor ηA

In this section two alternative ways of modeling the speed factor ηA are explored. In
both cases the speed factor increases with the size of the network, but stays under a
certain bound, according to patterns as shown in Fig. 2 middle and right graph. The
first option is by modeling the speed factor as a scaled xA, with scaling factor the
number n of nodes in the network:

gA ¼ xA=n

This option avoids the effect caused by the increasing in the number of members. In
this case, and using the same network as in Fig. 2, it can be seen that the value for ηA
converges to the xBA which is the same for all nodes in this scenario. Figure 2 middle
graph shows the new situation when for ηA the above scaled model is used.

Using this option will assure that the speed factor ηA has boundaries defined
according to the following mathematical analysis. For the new calculation for ηA, it
holds for all A, 0�gA\1.

This can be verified as follows. It holds

X
B 6¼A

eB � aBA � dA � n� 1

as each of the terms of this sum is � 1. Therefore

gA ¼ xA=n ¼
X
B 6¼A

eB � aBA � dA=n� n� 1ð Þ=n\1

In other words the speed factor ηA is now bounded by 1. Note that by a slight
modification this bound can be set to any number η by multiplying this by an extra
parameter η (the same holds for the second alternative discussed below): ηA = η xA/n.

A second alternative is to use an advanced logistic function in order to gradually
increase the speed with network size but keep the values for the speed factors within
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some bound. The advanced logistic function has a S shape, or sigmoid curve, and is
described by the Eq. (6).

alogisticr;s gAð Þ ¼ 1
1þ e�r gA�sð Þð Þ �

1
1þ ersð Þ

� �
1þ e�rsð Þ ð6Þ

Here r is the steepness and s is the threshold value. The values for r and s can be
chosen according to a person’s traits. While some persons respond gradually to the
increasing influence of people to whom they are connected, other persons may respond
by flare-ups. For the situation of a person that responds linearly to the increasing on
their cumulative xA, a low steepness value such as r = 0.3 can be chosen, and, for
example, s = 20. The results for this situation can be seen at Fig. 2, right graph.

As can be seen, the logistic function also keeps the speed factor values between 0
and 1, and if the parameters of the function are well adjusted, the equation can give
more realistic outcomes.

5 Mathematical Analysis

This section presents some of the results of a mathematical analysis for the model after
the changes at the speed factor calculation.

Definition 1. A network is called strongly connected if for every two nodes A and B
there is a directed path from A to B and vice versa.

Lemma 1. Let a temporal-causal network model be given based on scaled sum
functions for states qA:

dqA
�
dt ¼ gA

X
B6¼A

xBAqA=xA � qA
h i

Then the following holds.
(a) If for some state qA at time t for all states qB connected toward qA it holds

qB(t) � qA(t), then qA(t) is increasing at t: dqA(t)/dt � 0; if for all states B connected
toward A it holds qB(t) � qA(t), then qA(t) is decreasing at t: dqA(t)/dt � 0.

(b) If for all states qB connected toward qA it holds qB(t) � qA(t), and at least one
state qB connected toward qA exists with qC(t) > qA(t) then qA(t) is strictly increasing at
t: dqA(t)/dt > 0. If for all states qB connected toward qA it holds qB(t) � qA(t), and at
least one state qB connected toward qA exists with qC(t) < qA(t) then qA(t) is strictly
decreasing at t: dqA(t)/dt < 0.
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Proof of Lemma 1. (a) From the differential equation for qA(t)

dqA
�
dt ¼ gA

X
B 6¼A

xBAqB=xA qA
h i

¼ gA

X
B 6¼A

xBAqB�xA � qA
h i

=xA

¼ gA

X
B 6¼A

xBAqB -
X

B6¼A
xBA qB

h i
=xA

¼ gA

X
B 6¼A

xBA qB � qA½ �=xA

it follows that dqA(t)/dt � 0, so qA(t) is increasing at t. Similar for decreasing.
(b) In this case it follows that dqA(t)/dt > 0, so qA(t) is strictly increasing.
Similar for decreasing. ■

Theorem 1 (convergence to one value). Let a strongly connected temporal-causal
network model be given based on scaled sum functions for the states qA

dqA
�
dt ¼ gA

X
B6¼A

xBAqB=xA � qA
h i

and with equilibrium values qA. Then for all A and B the equilibrium values qA and qB
are equal: qA = qB. Moreover, this equilibrium state is attracting.

Proof of Theorem 1. Take a state qA with highest value qA. Then for all states qC it
holds qC � qA. Suppose for some state qB connected toward qA it holds qB < qA. Take
a time point t and assume qC(t) = qC for all states qC. Now apply Lemma 1b) to state
qA. It follows that dqA(t)/dt < 0, so qA(t) is not in equilibrium for this value qA. This
contradicts that this qA is an equilibrium value for qA. Therefore, the assumption that for
some state qB connected toward qA it holds qB < qA cannot be true. This shows that
qB = qA for all states connected towards qA. Now this argument can be repeated for all
states connected toward qA. By iteration every other state in the network is reached, due
to the strong connectivity assumption; it follows that all other states in the temporal
causal network model have the same equilibrium value as qA. From Lemma 1b) it
follows that such an equilibrium state is attracting: if for any state the value is deviating
it will move to the equilibrium value. ■

Proposition 1 (Monotonicity Conditions). (a) If q�A tð Þ� qA tð Þ then qA tð Þ is mono-
tonically decreasing; it is strictly decreasing when q�A tð Þ[ qA tð Þ.

(b) If q�R tð Þ� qR tð Þ then qR tð Þ is monotonically increasing; it is strictly increasing
when q�R tð Þ[ qR tð Þ.
Proof. This follows from the differential equation

dqC tð Þ=dt ¼ gC q�C tð Þ � qC tð Þ� �

and the fact that 0� qC tð Þ� 1 and 0� q�C tð Þ� 1. ■

Lemma 2. Suppose all xCD are nonzero. Then for an equilibrium the following holds:
(a) q�A ¼ 0 if and only if qC = 0 for all C 6¼ A
(b) q�B ¼ 1 if and only if qC = 1 for all C 6¼ B
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Proof. (a) From

q�A ¼
X

C2Gn Af g wCAqC ¼ 0

and the fact that all terms are nonnegative it follows that wCA qC = 0 for all C 6¼ A and
conversely.

(b) From

q�B ¼
X

C2Gn Bf g wCBqc ¼ 1

and the fact that

X
C2Gn Bf g wCB ¼ 1

it follows that qC = 1 for all C 6¼ B and conversely. ■

Lemma 3. For an equilibrium for any member the following holds:
(a) If qA = 0 then q�A ¼ 0
(b) If qB = 1 then q�B ¼ 1

Proof. (a) From

q�A � qA ¼ 0

with qA = 0 it follows

q�A ¼ 0

(b) From

q�B � qB ¼ 0

with qB = 1 it follows

q�B ¼ 1 �

Proposition 2. Suppose some A is given and all wBA are nonzero. Then for an equi-
librium the following holds:

(a) If qA = 0 then qC = 0 for all C
(b) If qB = 1 then qC = 1 for all C

Proof. This immediately follows from Lemmas 2 and 3. ■

Proposition 3. Suppose all wDC are nonzero. Then for an equilibrium it holds
(i) If qA = 0 for some A then qC = 0 for all C2G.
(ii) If qB = 1 for some then qC = 0 for all C2G.

Proof. This immediately follows from Proposition 2. ■
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6 Results

Using the alternative models for the speed factors ηA and comparing them with the
outcomes for the original model, it turns out that the oscillation is not present anymore
in any of the new approaches. For scenario 1(a), Fig. 3, it is possible to observe that for
3 members the logistic function delays the convergence point, especially because the
logistic function will give a lower value when xA is lower.
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Fig. 3. Comparison for scenario 1(a) between the 3 speed factors
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Fig. 4. Scenario 3 and the different speed factors used to calculate the emotion levels
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For scenario 3, it is clear how the use of both the scaled and or logistic model for
the speed factor corrects the awkward slopes from the original model without needing
any change on the time step Dt used (Fig. 4). As noticed at scenario 1(a), for fewer
nodes, the logistic function still keeps the convergence point later. This can be handled
at the logistic function itself through steepness and threshold adjustments.

More results and analysis for the other scenarios and graphs can be found at
Appendix B (http://www.few.vu.nl/*efo600/iccci16/ICCCI16_B.pdf).

7 Conclusions

Mathematical models are used in order to mimic the real world. Regarding the
temporal-causal network model for absorption of emotions in a network introduced by
[6] it has become clear that the assumption made about the speed factor isn’t perfect,
and gives room to alternatives. Two of such alternatives were explored here: a scaled
model and an advanced logistic model. The expressiveness, openness to changes, and
the strength of links still play a role in modelling the speed of the change of the emotion
level. By these alternative models the speed can be well regulated between boundaries
and do not lead to sudden changes that conflict with our understanding of emotional
evolution over time. Limiting the value of speed factor ηA between 0 and 1 creates a
stable slope in the emotion changes in networks, what brings the model closer to what
it is expected to do.

A mathematical analysis also shows some of the features of the model. Part of the
analysis explains characteristics of the model such as convergence and stability. Future
work can be done to investigate how these alternative models for the speed factor affect
the results of previous research, and how they can be combined with the model for
emotion contagion spirals from [3].
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