
From Formal Results to UML Model
A MDA Tracing Approach

Vinı́cius Pereira1, Rafael S. Durelli2, Márcio E. Delamaro1

1Instituto de Ciências Matemáticas e de Computação (ICMC)
Universidade de São Paulo (USP) — São Carlos – SP – Brazil

2Departamento de Ciência da Computação (DCC)
Universidade Federal de Lavras (UFLA) — Lavras – MG – Brazil.

{vpereira,delamaro}@icmc.usp.br, rafael.durelli@dcc.ufla.br

Abstract. The Unified Modeling Language (UML) is the de-facto industrial
standard for modeling object-oriented software systems. Nevertheless, the UML
has some limitations such as: (i) ambiguity, (ii) semantic unclear, and (iii) lack
of formal semantics. To deal with this, researchers propose UML transforma-
tions for formal models. These models are precise but difficult to be analyzed by
people with no knowledge of formalism. This paper describes a model-driven
approach which enable traceability of counterexamples from formal results back
into UML Model. The traceability is made via a mapping between existing ele-
ments in the formal results and the elements present in the UML model. Using
our approach, it is feasible to analyze and understand the formal results even
without a thorough knowledge of formal methods, and consequently fix the UML
model where needed.

1. Introduction
Nowadays UML (Unified Modeling Language) is widely used among professionals from
different areas of computer science [Hutchinson et al. 2011]. However, a system modeled
by means of just UML is not complete in the sense of missing relevant information such
as formal notation. For example, considering a car-collision avoidance system (CCAS),
one can use UML to model such system, however, it is not possible to accurately describe
situations where the brakes are triggered automatically. This occurs because the UML
does not have a semantic free of ambiguities – i.e., UML does not have a formal notation.
One possible way to fix this drawback in UML is using a temporal logic. Therefore,
CCAS could be modeled using formal notation, free from ambiguity and with a clear
semantics.

A formal model is almost the opposite model to UML. As formal models do not
have the UML problems, they are more difficult to create and reuse than UML models.
Furthermore, the developer must be a formalism expert to create, read, and understand a
formal model. Consequently, it is more common to find developers working with UML
than developers dealing with formal models. For this reason, over the years, researchers
seek ways to unite the strengths of both formal models and UML. Usually the formaliza-
tion of UML semantics found in the literature uses only one type of diagram [Eshuis 2006,
Lund and Stolen 2006, Bouabana-Tebiel 2009, Micskei and Waeselynck 2011]: (i) State
Diagram or (ii) Activity Diagram.

These researchers provide solutions that involve different formal techniques, but
can be summarized by the following process: (i) it is necessary to formalize semantically



one or more UML diagrams, (ii) these diagrams are then converted to a formal model, (iii)
a model checker formally checks this formal model, and (iv) a analysis is performed and
the results are provided by the model checker. Although they are valid approach, them
assume that the developer has sufficient knowledge of formalism to interpret the formal
results, analyze them and make the necessary corrections in the UML model, and then
repeat this whole process. However, if the developer has sufficient knowledge to perform
this kind of analysis, he probably would use the formal model directly, instead. To the best
of our knowledge, up to this moment, there is no research concentrated on analyzing and
understanding the formal results even without a thorough knowledge of formal methods,
and consequently fix the UML model where needed.

Therefore, this paper presents a generic Model-Driven Architecture (MDA) that
defines a meta-model for the traceability of formal results within the UML model regard-
less of the formalization used in the UML model. By using this approach, the developer
might not possess knowledge in formalism (or have little knowledge) and yet he will be
able to follow step-by-step the formal results given by the model checker. The main con-
tributions of this paper are threefold: (i) we show a new meta-model for describe formal
results, (ii) we demonstrate the feasibility of our meta-model by implementing it as two
DSLs (Mapping and Trace) in the Eclipse environment, (iii) we also show a complete
example of how to use our meta-model and its DSLs.

2. Related Studies
Studies that formalize the UML semantics generally propose formalization of only
one UML diagram, like State Diagram or Activity Diagram [Forster et al. 2007,
Kaliappan and Konig 2012]. Other studies formalize two or more types of diagrams
[Konrad et al. 2004, Broy et al. 2006], where can be cited more specifically the propos-
als of [Graw et al. 2000] and [Baresi et al. 2012] that formalize four and five diagrams,
respectively. However, these proposals assume that the user can read and understand
the formal results. mas All cited studies can have their formalization of UML seman-
tics processes divided into three distinct stages: (i) Modeling, wherein the system to be
developed is modeled using UML and the semantic concepts of each proposal; (ii) Trans-
formation, wherein the UML model (and the assigned semantics) are transformed into a
formal model according to the syntax and semantics of the formal language chosen by the
proposal; and (iii) Verification, wherein the formal model is analyzed by a model checker
that shows the formal results of this verification.

The difference between these studies and the MDA proposed in this paper is that
the latter seeks a viable way to represent the information of the formal results (Traceability
stage) regardless of which UML diagram was formalized. Also, there are two major
details: the MDA represents the formal results in the semi-formal system model (UML
model) itself without creating other UML diagrams for the results; and it might be used
with any kind of formalization of UML semantics.

3. MDA Tracing Approach
Initially, to make it possible to represent the formal results within the UML model, two ar-
tifacts are required: (i) UML Model itself; and (ii) Formal Results, created by the model
checker responsible for analyzing the formal model. Using this two artifacts, the ap-
proach has available both the formal environment and the UML semi-formal graphical



environment. However, the Transformation stage (see Section 2) is very particular to
each type of formalization. To overcome this problem, we defined a third artifact called
UML Mapping [Pereira et al. 2015] that properly connect both environments.

Our UML Mapping is compose of three elements: (i) ID-UML, a unique identifier
to each UML element; (ii) ID-Formal, the identifier which is given to each UML element
when the UML model is transformed to a formal model; and (iii) typeElement, which
holds the element type at the UML model (e.g. Class, State, Message, etc.) Using the
ID-UML, it is possible to identify the equivalent formal element. Similarly, using the
ID-formal, it is also possible to identify the UML element by their respective ID-UML.
We argue that as any UML graphical element owns an ID-UML in the UML Editor, then
this mapping can be applied to any formalized UML diagram.

The UML Mapping is a file generated by an interface that need to be used by the
transformation tool of a formalization of UML semantics process. The interface creates a
“.mapping” file which respect a Domain-specific Language (DSL) called Mapping DSL.
Our MDA then uses another DSL (named as Trace) to parse the Formal Results – together
with the Mapping DSL – to represents the information inside the UML Model. In the next
subsections we discuss both DSL.

3.1. Mapping DSL
The Mapping DSL grammar defines the elements that need to exist inside the mapping
file. Each line of the file contains a tuple with three elements: ID-UML, ID-Formal,
and typeElement. The Figure 1 shows the grammar defined for the Mapping DSL. The
grammar shows that a Mapping might have N Definition (line 5). Each Definition holds a
tuple with the three elements – one of each – separate by a comma (line 7). Finally, each
element – FormalElement, UMLElement, and TypeElement – has its name (lines 9, 11,
and 13).

Figure 1. Mapping DSL Grammar

By using the Xtext framework1, our grammar generate a plug-in to Eclipse IDE2.
Then, the interface builds the mapping file with the tuples every time that a Transforma-
tion stage is performed, and the Eclipse checks if the mapping file respect the Mapping
grammar.

3.2. Interface
Our MDA depends of an interface that create the mapping file during the Transformation
stage. This stage is the only moment in the formalization process where both environ-
ments – UML and formal model – exists together. Our interface is a piece of Java code

1https://eclipse.org/Xtext/
2https://eclipse.org/



which intercepts the UML element being transformed and write on a file its ID-UML, its
typeElement (Class, State, Message, Transition, etc.), and the ID-Formal that is given to
it. Algorithm 1 shows a pseudo code of our interface.

Input: UMLModel umlModel, File mapping
1 begin
2 foreach StateDiagram std in umlModel.getStateDiagrams() do
3 foreach State state in std.getStates() do
4 FormalState fstate = new FormalState(state);
5 Predicate pred = fstate.getPredicate();
6 mapping.write(pred.getName() + “,” + state.getUmlId() + “,” +

state.getType());
7 end
8 foreach Transition trans in std.getTransitions() do
9 FormalTransition ftrans = new FormalTransition(trans);

10 Predicate pred = ftrans.getPredicate();
11 mapping.write(pred.getName() + “,” + trans.getUmlId() + “,” +

trans.getType());
12 end
13 end
14 end

Algorithm 1: Interface - Getting data for Mapping

The core idea at Algorithm 1 is collecting the required data from State Diagrams
for our mapping. During the Transformation stage, our method gather the three required
data for each element inside the State Diagram (Lines 2 to 13). At Line 2, the method
iterate with each State Diagram present in the UML model being formalized. In Lines 3 to
7, our method manipulate all states inside a State Diagram. At Line 3, our method gather
each State in the State Diagram. Then, in Line 4 the method instantiate a FormalState –
a semantic version of State – with the given state. FormalState depends on the type of
formalization being used. Line 5 instantiate a Predicate which holds the formal informa-
tion for the state. Finally, the data are written in the mapping file, as can be seen in Line 6,
in order to be used later in our MDA. A similar process is done with all transitions inside
a State Diagram (Lines 8 to 12). The same logic is applied for Class, Object, Sequence,
and Interaction Overview Diagrams.

3.3. Trace DSL
This DSL imports the Mapping DSL to use its tuples grammar inside the Trace grammar.
Different from the Mapping DSL, which is not used directly by the user, the Trace DSL
is written by the user. The Trace grammar defines what happens to each Formal Element
present at the Formal Result. The Figure 2 shows the Trace grammar without the enum
types.

The FormalResult might have a name and be a collection of TimeNode or For-
malElement (lines 5 to 9). A TimeNode has its own name and a collection of For-
malElement (lines 10 to 13). At FormalElement occurs the first use of the Mapping
DSL. At line 15, after the use of a keyword, the formalElement variable receives a
map :: FormalElement. The map makes reference to the Mapping DSL imported
at line 3 and FormalElement is the reference to the formal element defined at Mapping
DSL. Then at line 16, the grammar shows that a FormalElement has one Element.



Figure 2. Trace DSL Grammar

The Element has the other two element of the Mapping tuple. First, at line 19
the typeElement variable receives the TypeElement from the map – the import alias
for the Mapping DSL. Then, at line 20 the UmlElement from map is also assigned to
a variable. At lines 21-22 the Element is associated to a Diagram or a Model and the
TransformationController is called. For the UML, all elements must have a Diagram
associated to it (lines 24-25). On the other hand, a BPMN (Business Process Model and
Notation) element do not need a Diagram, so it’s associated with a Model. The Trace DSL
has validators to verified if the correct elements are associated with their right Diagram or
Model. Finally, then enum types are: (i) DiagramKind – all the diagrams supported by the
MDA; (ii) ModelKind – all models supported by the MDA; and (iii) TransformationKind
– all transformation model-to-model supported by the MDA.

By using the Trace DSL, the user might defines which formal elements he wants
to see inside the UML. One could also defines the type of transformation of each element
such as color transformation (background, line, and font).

4. Example
The CCAS example is used to illustrate the use of our MDA. In this case, the UML model
has the MADES UML semantic [Baresi et al. 2012] and it was converted to a LISP3

model – the formal model to the MADES approach. We used the MADES UML be-
cause it is the approach that formalize most UML diagrams so far. The CCAS examples
is one example from the MADES Project4. Given a property that holds (or not) at the
formal model, then a formal result is generated by Zot Model Checker [Pradella 2009].
Figure 3 shows a short example of a formal result from Zot.

As can be seen in Figure 3 the formal result is not easy to read and understand.
One need to identify the problem in the formal result, find the UML element equivalent
to the LISP code, and then re-factor the UML model to try to fix the problem. Our MDA

3https://common-lisp.net/
4http://www.mades-project.org/



Figure 3. Formal Result from Zot

approach aims facilitate the user, by “executing” the formal results inside the UML model.
In this context, user might see the step-by-step execution and find more easily and rapidly
where to re-factor the model.

Our MDA approach uses both DSL as the Platform Independent Model (PIM) and
an ATL (ATL Transformation Language)5 to perform a Model-to-Model (M2M) trans-
formation. The Figures 4 and 5 show both DSL – Mapping and Trace, respectively –
instances for the CCAS example.

Figure 4. Mapping DSL
generated by interface Figure 5. Trace DSL written by user

After obtain the PIM instance, a M2M transformation is performed following the
ATL code written to parse the PIM through a Platform Specific Model (PSM). The PSM
reflects the modeling environment (e.g. UML, BPMN, etc.). So the PIM that compose our
MDA is generic enough to represent any type of formal result – given the formalization
process uses our interface. The use of a PSM for each modeling environment allows the
transformation of a generic formal result to a specific graphic model.

Finally, with the PSM our MDA code is generated as a Eclipse plug-in and the
user could use it for execute the formal result and see the data-flow inside the original
model – the UML in this example. The Figure 6 shows an Eclipse plug-in running our
MDA with the Zot formal results and the MADES UML model.

Figure 6 highlights the following boxes: (1) Formal Results View – that presents
to user the formal result and where the user could click at each formal element to see its
correspondent UML element; (2) Model View – where the user could see the hierarchy of
the UML element; and (3) Editor View – the graphical representation of the model where
the user might edit the UML element.

5https://eclipse.org/atl/



Figure 6. Plugin example

5. Conclusion

This paper presented a generic model-driven approach that is able to represent formal
results back – from model checkers – inside the UML model. The MDA manage to do
this by using a PIM which composed by two DSL. The DSLs define the structure of our
mapping and a language to write which formal element the user might want to see at UML
and which transformation it will have. The paper describes how both DSL were defined,
the requirements to use it, as well as an example using MADES UML formalization as
the test environment. Our MDA approach aims to fill the gap in how to trace formal
results back into UML model. We achieve this by guiding the user through the analysis of
formal results generate by model checkers. This enhances the users’ understanding level
about the results and thereby one can find possible defects more easily, fixing them and
improving the UML model.

Although we have presented a example using MADES UML, our approach is
generic enough to work with different formalization types of UML semantics, due to
the way that our Mapping DSL works. In addition, the our approach works with every
type of UML diagram since the transformation tool uses our mapping interface and the
UML Editor provides access to ID-UML. As a future work, we aim to: ((i)) improve our
approach and its plugin; (ii) carry out case studies and experiments; and (iii) analyze the
possibility of using the our approach with other modeling languages, such as SysML and
BPMN.



Acknowledgements
Vinicius Pereira would like to thanks the financial support provided by CAPES (DS-
7902801/D) and CNPq (245715/2012-6)

References
Baresi, L., Morzenti, A., Motta, A., and Rossi, M. (2012). Towards the UML-based

formal verification of timed systems. In FMCO’12, volume 6957 of LNCS, pages
267–286. Springer Berlin/Heidelberg.

Bouabana-Tebiel, T. (2009). Semantics of the interaction overview diagram. In IRI’09,
pages 278–283, Piscataway, NJ, EUA. IEEE Press.

Broy, M., Crane, M. L., Dingel, J., Hartman, A., Rumpe, B., and Selic, B. (2006). 2nd
UML 2 semantics symposium: formal semantics for UML. In MoDELS’06, pages
318–323. Springer-Verlag.

Eshuis, R. (2006). Symbolic model checking of UML activity diagrams. ACM TOSEM,
15:1–38.

Forster, A., Engels, G., Schattkowsky, T., and Straeten, R. V. D. (2007). Verification of
business process quality constraints based on visual process patterns. In First Joint
IEEE/IFIP Symposium on Theoretical Aspects of Software Engineering (TASE), pages
197–208.

Graw, G., Herrmann, P., and Krumm, H. (2000). Verification of UML-based real-time
system designs by means of cTLA. In 3rd IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC), pages 86–95.

Hutchinson, J., Whittle, J., Rouncefield, M., and Kristoffersen, S. (2011). Empirical
assessment of MDE in industry. In ICSE’11, pages 471–480.

Kaliappan, P. and Konig, H. (2012). On the formalization of UML activities for
component-based protocol design specifications. In SOFSEM’12, volume 7147 of
LNCS, pages 479–491. Springer Berlin-Heidelberg.

Konrad, S., Cheng, B. H. C., and Campbell, L. (2004). Object analysis patterns for
embedded systems. IEEE Transactions on Software Engineering, 30(12):970–992.

Lund, M. S. and Stolen, K. (2006). A fully general operational semantics for UML 2.0
sequence diagrams with potencial and mandatory choice. In FM’06, volume 4085 of
LNCS, pages 380–395.

Micskei, Z. and Waeselynck, H. (2011). The many meanings of UML 2 sequence dia-
grams: a survey. Software and Systems Modeling, 10:489–514.

Pereira, V., Baresi, L., and Delamaro, M. E. (2015). Mapping formal results back to uml
semi-formal model. In Proceedings of the 17th International Conference on Enterprise
Information Systems (ICEIS’15), volume 2, pages 320 – 329. SCITEPRESS – Science
and Technology Publications.

Pradella, M. (2009). An user’s guide to zot. Disponı́vel em:
http://home.dei.polimi.it/pradella/Zot/.


