
KDM-RE: A Model-Driven Refactoring Tool for KDM

Rafael S. Durelli1, Bruno M. Santos2, Raphael R. Honda2,

Márcio E. Delamaro1 and Valter V. de Camargo2

1Computer Systems Department University of São Paulo - ICMC

São Carlos, SP, Brazil.

2Computing Departament

Federal University of São Carlos - UFSCAR

São Carlos, SP, Brazil.

{rdurelli, delamaro}@icmc.usp.br1,

{valter, bruno.santos, raphael.honda}@dc.ufscar.br2

Abstract. Architecture-Driven Modernization (ADM) advocates the use of mod-

els as the main artifacts during modernization of legacy systems. Knowledge

Discovery Metamodel (KDM) is the main ADM metamodel and its two most

outstanding characteristics are the capacity of representing both i) all system

details, ranging from lower level to higher level elements, and ii) the dependen-

cies along this spectrum. Although there exist tools, which allow the application

of refactorings in class diagrams, none of them uses KDM as their underlying

metamodel. As UML is not so complete as KDM in terms of abstraction lev-

els and its main focus is on representing diagrams, it is not the best metamodel

for modernizations, since modifications in lower levels cannot be propagated to

higher levels. To fulfill this lack, in this paper we present a tool that allows the

application of seventeen fine-grained refactorings in class diagrams. The main

difference from other tools is that the class diagrams uses KDM as their under-

lying metamodel and all refactorings are applied on this metamodel. Therefore,

the modernizer engineer can detect "model smells" in these diagrams and apply

the refactorings.

1. Introduction

Architecture-Driven Modernization (ADM) is an initiative which advocates for the appli-

cation of Model Driven Architecture (MDA) principles to formalize the software reengi-

neering process. According to the OMG the most important artifact provided by ADM is

the Knowledge Discovery Metamodel (KDM). KDM is an OMG specification adopted as

ISO/IEC 19506 by the International Standards Organization for representing information

related to existing software systems. KDM is structured in a hierarchy of four layers; In-

frastructure Layer, Program Elements Layer, Runtime Resource Layer, and Abstractions

Layer. We are specially interested in the Program Elements Layer because it defines the

Code and Action packages which are widely used by our tool. The Code package defines

a set of meta-classes that represents the common elements in the source-code supported

by different programming languages such as: (i) ClassUnit and InterfaceUnit

which represent classes and interface, respectively, (ii) StorableUnit which illus-

trates attributes and (iii) MethodUnit to represent methods, etc. The Action package

represents behavior descriptions and control-and-data-flow relationships between code

VEM

110



elements. Refactoring has been known and highly used both industrially and academi-

cally. It is a form of transformation that was initially defined by Opdyke [Opdyke 1992]

as “a change made to the internal structure of the software while preserving its external

behavior at the same level of abstraction”. In the area of object-oriented programming,

refactorings are the technique of choice for improving the structure of existing code with-

out changing its external behavior [Fowler et al. 2000]. Refactorings have been proved to

be useful to improve the quality attributes of source code, and thus, to increase its main-

tainability. It is possible to identify several catalogs of refactoring for different languages

and the most complete and influential was published by Fowler in [Fowler et al. 2000].

Nowadays, there are researches been carried out about apply refactoring in model instead

of source code[Ulrich and Newcomb 2010]. Nevertheless, although ADM provides the

process for refactoring legacy systems by means of KDM, there is a lack of an Integrated

Development Environment (IDE) to lead engineers to apply refactorings as such exist

in others object-oriented languages. In the same direction, Model-Driven Modernization

(MDM) is a special kind of model transformation that allows us to improve the structure

of the model while preserving its internal quality characteristics. MDM is a considerably

new area of research which still needs to reach the level of maturity attained by source

code refactoring [Misbhauddin and Alshayeb 2012].

In order to enable MDM in the context of ADM, refactorings for the KDM meta-

model are required. In this context, in a parallel research line of the same group, we

developed a catalogue of refactorings for the KDM [Durelli et al. 2014]. We argue that

devising a refactoring catalogue for KDM makes this catalogue language-independent

and standardized. However, the KDM metamodel was not created with the goal of being

the basis for diagrams, as is the case of UML metamodel. Thereby, in order to make pos-

sible to apply fine-grained refactoring in the KDM metamodel, it is necessary to devise

a way to view the KDM instance graphically. Furthermore, although there exist tools,

which allow the application of refactorings in class diagrams, none of them uses KDM as

their underlying metamodel. As UML is not so complete as KDM in terms of abstraction

levels and its main focus is on representing diagrams, it is not the best metamodel for

modernizations, since modifications in lower levels cannot be propagated to higher levels

Hence, the main contribution of this paper is the provision of a plug-in on the top

of the Eclipse Platform named Knowledge Discovery Model-Refactoring Environment

(KDM-RE). This plug-in can be used to lead engineers to apply refactorings in KDM,

which are based on seventeen well known refactorings[Fowler et al. 2000]. The IDE as

well as the adapted catalogue are based on our experience as model-driven engineering.

Also, by using this plug-in the modernizer engineer can visualize the Code package as

an UML class diagram, allowing engineers to detect model smells in that diagram. One

hypothetical case study was developed in order to exemplify the use of the plug-in. This

paper is organized as followed: Section 2 provides the background to fully understand

our plug-in - Section 3 depicts information upon the plug-in KDM-RE and an case study

- in Section 4 there are related works and in Section 5 we conclude the paper with some

remarks and future directions.

2. ADM and KDM

OMG defined ADM initiative [Perez-Castillo et al. 2009] which advocates carrying out

the reengineering process considering MDA principles. ADM is the concept of modern-

VEM

111







into three groups. The black rectangle represents refactorings that deal with generaliza-

tion, the blue rectangle stand for refactorings to organize data and the red one symbolize

refactoring to assist the moving features between objects.

The region b© on Figure 2 shows an UML class diagram. This diagram can be

used before to apply some refactorings to assist the modernizer to decide where/when to

apply the refactorings. This UML class diagram also can be useful as the modernizer per-

forms the refactorings in KDM model. For instance, changes are reproduced on the fly in

a class diagram. We claim that the latter use of this diagram is important once it provides

an abstract view of the system, hence, the modernizer can visually check the system’s

changes after applying a set of refactorings. Furthermore, in the context of modernization

usually the source-code is the only available artifact of a legacy system. Therefore, creat-

ing an UML class diagram makes, both the legacy system and the generated software to

have a new type of artifact (i.e., UML class models), improving their documentation.

3.1. Case Study

In this section, we motivate KDM-RE by analyzing one hypothetical case study. This

case study is a small part of the university domain. Figure 2 b© (left side) shows a class

diagram used for modeling a small part of the university domain. In an university there

are several Persons, more specifically Professors, their Assistants, and Students. Each

Person has RG, CPF, and address (of type String). Moreover, classes Professor, Assistant,

and Student have an attribute name of type String each. The software modernizer or the

software developer found out by looking at the UML class diagram (see Figure 2 b© left

side) this redundantly, i.e., equal attributes in sibling classes. Therefore, he/she must

apply the refactoring “Pull Up Field’. Similarly, he/she also found out by looking at the

UML class diagram that one class is doing work that should be done by two or more.

For example, he/she found that the attributes RG and CPF should be modularized to a

class. Similarly, it is necessary to provide more information about they address, such as

number, city, country, etc. Therefore, he/she must apply the refactoring “Extract Class”

to the attributes “RG”, “CPF” and “rua”. Due space limitation it is depicted just the

extraction of the attributes “RG” and “CPF”. The first step is to select the meta-class that

he/she identified as a bad smell, i.e., the meta-class to be extracted into a separate one.

This step is illustrated in Figure 3(a).

After selecting the meta-class, a right-click opens the context menu where the

refactoring is accessible. After the click, the system displays the “RefactoringWizard”

to the engineer, Figure 3(b) depicts the Extract Class Wizard. In this wizard, the name

of the new meta-class can be set. Also a preview of all detected StorableUnits and

MethodUnits that can be chosen to put into the new meta-class. Further, the engineer

can select if either the new meta-class will be a top level meta-class or a nested meta-class.

The engineer also can select if the KDM-RE must create instances of MethodUnits to

represent accessors methods (gets and sets). Finally, the engineer can set the name of the

StorableUnit that represent the link between the two meta-classes (the old meta-class

and the new one). After all of the required inputs have been made, the engineer can click

on the button “Finish” and the refactoring “Extract Class” is performed by KDM-RE.

As can be seen in Figure 3(c) a new instance of ClassUnit named “Document”

was created - two StorableUnit from “Pessoa”, i.e., “rg” and “CPF” were moved

VEM

114





5. Concluding Remarks

In this paper is presented the KDM-RE which is a plug-in on the top of the Eclipse

Platform to provide support to model-driven refactoring based on ADM and uses the

KDM standard. More specifically, this plug-in supports 17 refactorings adapted to

KDM. These refactorings are based on some fine-grained refactorings proposed by

Fowler [Fowler et al. 2000]. As stated in the case study the engineer/modernizer by using

KDM-RE can apply a set refactorings in a KDM. Also, on the fly the engineer can check

all changes realized in this KDM replicated into a class diagram - the engineer can visu-

ally verify the system’s changes after applying a set of refactorings. In addition, usually

the source code is the only available artifact of the legacy software. Therefore, creating an

UML class diagram makes, both the legacy software and the generated software to have

a new type of artifact (i.e., UML class models), improving their documentation. Also, we

claim that as we have defined all refactoring based on the KDM, they can be easily reused

by others researchers.

It is important to notice that the application of refactorings in UML class diagrams

is not a new research as stated before. However, all of the works we found on literature

perform the refactoring directly on the UML metamodel. Although UML is also an ISO

standard, its primary intention is just to represent diagrams and not all the characteristics

of a system. As KDM has been created to represent all artifacts and all characteristics

of a system, refactorings performed on its finer-grained elements can be propagated to

higher level elements. This propitiates a more complete and manageable model-driven

modernization process because all information is concentrated in just one metamodel.

In terms of the the users who uses modernization tools like ours, the difference is not

noticeable; that is, whether the refactorings are performed over UML or KDM. However,

there are two main benefits of developing a refactoring catalogue for KDM. The first one

is in terms of reusability. Other modernizer engineers can take advantage of our catalogue

to conduct modernizations in their systems. The second benefit is that, unlikely UML, a

catalogue for KDM can be extended to higher abstractions levels, such as architecture and

conceptual, propitiating a good traceability among these layers.

We believe that KDM-RE makes a contribution to the challenges of Software

Engineering which focuses on mechanisms to support the automation of model-driven

refactoring. Future work involves implementing more refactorings and conducting exper-

iments to evaluate all refactorings provided by KDM-RE. Doing so, we hope to address a

broader audience with respect to using, maintaining, and evaluating our tools. Currently,

KDM-RE generates only class diagrams to assist the modernization engineer to perform

refactorings, however, as future work, we intend to: (i) extend this computational sup-

port to enable the achievement of other diagrams, e.g., the sequence diagram, (ii) perform

structural check of the software after the application of refactorings; and (iii) carry out the

assessment tool, as well as refactorings proposed by controlled experiments. A work that

is already underway is to check how other parts of the highest level of KDM are affected

after the application of certain refactorings. For example, assume that there are two pack-

ages P1 and P2. Suppose there is a class in P1, named C1, and within the P2 there is a

class named C2. Assume that C1 owns an attribute A1 of the type C2., i.e., there is an

association relationship between these classes of different packages. P1 and P2 represent

architectural layers, i.e., P1 = Model and P2 = View. Thus, the relationship that exists is

undesirable. When we make a fine-grained refactoring such as moving the attribute A1

VEM

116



of the class C1, it should be reflected to the architectural level, eliminating the existing

relationship between the two architectural layers.

6. Acknowledgements

Rafael S. Durelli would like to thank the financial support provided by FAPESP, process

number 2012/05168-4. Bruno Santos and Raphael Honda also would like to thank CNPq

for sponsoring our research.

References

Durelli, R. S., Santibáñez, D. S. M., Delamaro, M. E., and Camargo, V. V. (2014). To-

wards a refactoring catalogue for knowledge discovery metamodel. In IEEE 15th In-

ternational Conference on Information Reuse and Integration (IRI).

Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D. (2000). Refactoring: Im-

proving the Design of Existing Code. Addison-Wesley.

Gorp, P. V., Stenten, H., Mens, T., and Demeyer, S. (2003). Towards automating source-

consistent uml refactorings. In International Conference on UML - The Unified Mod-

eling Language, pages 144–158. Springer.

Misbhauddin, M. and Alshayeb, M. (2012). Model-driven refactoring approaches: A

comparison criteria. In Sofware Engineering and Applied Computing (ACSEAC), 2012

African Conference on.

OMG (2012). Object Management Group (OMG) Architecture-Driven Modernisation.

Disponível em: http://www.omgwiki.org/admtf/doku.php?id=start. (Acessado 2 de

Agosto de 2012).

Opdyke, W. F. (1992). Refactoring Object-Oriented Frameworks. Ph.D. Thesis, Univer-

sity of Illinois.

Perez-Castillo, R., de Guzman, I. G.-R., Avila-Garcia, O., and Piattini, M. (2009). On the

use of adm to contextualize data on legacy source code for software modernization.

In Proceedings of the 2009 16th Working Conference on Reverse Engineering, WCRE

’09, pages 128–132, Washington, DC, USA. IEEE Computer Society.

Reimann, J., Seifert, M., and Abmann, U. (2010). Role-based generic model refactor-

ing. In In ACM/IEEE 13th International Conference on Model Driven Engineering

Languages and Systems (MoDELS 2013). Springer.

Thorsten Arendt, Timo Kehrer, G. T. (2013). Understanding complex changes and im-

proving the quality of uml and domain-specific models. In In ACM/IEEE 16th Inter-

national Conference on Model Driven Engineering Languages and Systems (MoDELS

2013).

Ulrich, W. M. and Newcomb, P. (2010). Information Systems Transformation:

Architecture-Driven Modernization Case Studies. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA.

VEM

117


