
IEEE TRANSACTIONS ON RELIABILITY 1

Machine Learning Applied to Software Testing:
A Systematic Mapping Study

Vinicius H. S. Durelli, Rafael S. Durelli, Simone S. Borges, Andre T. Endo, Marcelo M. Eler, Diego Dias, and
Marcelo P. Guimarães

Abstract—Context: Software testing involves probing into the
behavior of software systems to uncover faults. Most testing
activities are complex and costly, so a practical strategy that has
been adopted to circumvent these issues is to automate software
testing. There has been a growing interest in applying machine
learning (ML) to automate various software engineering activities,
including testing-related ones.
Objective: We set out to review the state-of-the-art of how ML
has been explored to automate and streamline software testing
and provide an overview of the research at the intersection of
these two fields by conducting a systematic mapping study.
Method: We selected 48 primary studies. These selected studies
were then categorized according study type, testing activity, and
ML algorithm employed to automate the testing activity.
Results: The results highlight the most widely used ML algo-
rithms and identify several avenues for future research. We
found that ML algorithms have been used mainly for test case
generation, refinement, and evaluation. Also, ML has been used
to evaluate test oracle construction and to predict the cost of
testing-related activities.
Conclusions: The results of our study outline the ML algorithms
that are most commonly used to automate software testing
activities, helping researchers to understand the current state
of research concerning ML applied to software testing. We also
found that there is a need for better empirical studies examining
how ML algorithms have been used to automate software testing
activities.

Index Terms—Software Testing, Machine Learning, Systematic
Mapping Study

I. INTRODUCTION

MOST early software applications belonged to the scien-
tific computing and data processing domains [1]. Over

the past few decades, however, there has been a substantial
growth in the software industry, which was primarily driven by
advances in technology. Consequently, software has become
increasingly important in modern society. As software becomes
more pervasive in everyday life, software engineers must meet
stringent requirements to obtain reliable software. To keep up
with all these advances, software engineering has come a long
way since its inception. Yet, a number of software projects still
fail to meet expectations due to a combination of factors as, for

Vinicius Durelli and Diego Dias are with the Department of Com-
puter Science, Federal University of São João del Rei, Brazil, (e-mails:
durelli@ufsj.edu.br; diegodias@ufsj.edu.br)

Rafael Durelli is with the Department of Computer Science, Federal
University of Lavras, Brazil, (e-mail: rafael.durelli@dcc.ufla.br)

Marcelo Eler is with the Department of Mathematics and Computer Science,
University of São Paulo, Brazil, (e-mail: marceloeler@usp.br)

Simone Borges and Andre Endo are with the Department of Computer
Science, Federal University of Technology, Paraná, Brazil, (e-mails: si-
moneborges@utfpr.edu.br; andreendo@utfpr.edu.br)

Marcelo Guimarães is with the Department of Computer Science, Federal
University of São Paulo, Brazil, (e-mail: marcelodepaiva@gmail.com)

instance, cost overruns and poor quality. Evidence suggests that
one of the factors that contribute the most to budget overruns is
fault-detection and fault-correction: as pointed out by Westland
[2], uncorrected faults become increasingly more expensive as
software projects evolve. To mitigating such overheads, there
has been a growing interest in software testing, which is the
primary method to evaluate software under development [3].

Software testing plays a pivotal role in both achieving and
evaluating the quality of software. Despite all the advances
in software development methodologies and programming
languages, software testing remains necessary. Basically, testing
is a process whose purpose is to make sure that the software
artifacts under test do what they were designed to do and
also that they do not do anything unintended, thus raising the
quality of these artifacts [4]. Nevertheless, testing is costly,
resource-consuming, and notoriously complex: studies indicate
that testing accounts for more than 50% of the total costs
of software development [5]. Moreover, as any human-driven
activity, testing is error-prone and creating reliable software
systems is still an open problem. In hopes of coping with this
problem, researchers and practitioners have been investigating
more effective ways of testing software.

A practical strategy for facing some of the aforementioned
issues is to automate software testing. Thus, a lot of effort has
been put into automating testing activities. Artificial intelligence
(AI) techniques have been successfully used to reduce the effort
of carrying out many software engineering activities [6–8]. In
particular, machine learning1 (ML) [9], which is a research
field at the intersection of AI, computer science, and statistics,
has been applied to automate various software engineering
activities [10]. It turns out that some software testing issues
lend themselves to being formulated as learning problems and
tackled by learning algorithms, so there has been a growing
interest in capitalizing on ML to automate and streamline
software testing. In addition, software systems have become
increasingly complex, so some conventional testing techniques
may not scale well to the complexity of these modern software
systems. This ever-increasing complexity of modern software
systems has rendered ML-based techniques attractive.

The remainder of this paper is organized as follows. Sec-
tion II provides background on software testing and ML. Sec-
tion III describes the rationale behind our research. Section IV
details the mapping study we carried out. Section V discusses
the results and their implications. Section VI discusses future
research in the area. Section VII outlines the threats to the

1Machine learning is also known as predictive analytics or statistical learning.

IEEE TRANSACTIONS ON RELIABILITY 2

validity of this mapping study. Section VIII presents concluding
remarks.

II. BACKGROUND

This section covers background on software testing and
ML. The discussion is divided into two parts: the first covers
the purpose of software testing, giving special emphasis to
elucidating the most fundamental concepts; the second part
lays out the essential background on ML.

A. Software Testing

Software testing is a quality assurance activity that consists
in evaluating the system under test (SUT) by observing its
execution with the aim of revealing failures [4]. A failure is
detected when the SUT external behavior is different from
what is expected of the SUT according to its requirements or
some other description of the expected behavior [3]. Since this
activity requires the execution of the SUT, it is often referred
to as dynamic analysis. In contrast, there are quality assurance
activities that do not require the execution of the SUT [5].

An important element of the testing activity is the test case.
Essentially, a test case specifies in which conditions the SUT
must be executed in hopes of finding a failure. When a test
case reveals a failure it is considered successful (or effective).
A test case embodies the input values needed to execute the
SUT [3]. Therefore, test case inputs vary in nature, ranging
from user inputs to method calls with the test case values
as parameters. To evaluate the results of test cases, testers
must know what output the SUT would produce for those test
cases. The element that verifies the correctness of the outputs
produced by the SUT is referred to as oracle. Usually, testers
play the role of oracle. However, it is worth emphasizing that
an oracle can be a specification or even another program.

As stated by Ammann and Offutt [3], regardless of how
thoroughly planned and carried out, the main limitation of
testing activities is that they are able to show only the existence
of failures, not the lack thereof. Assuring that an SUT will not
fail in the future requires exhaustive testing, which means the
SUT has to be run against all possible inputs in all possible
scenarios. Performing exhaustive testing, however, is usually
impossible or impractical due to the large size of the input
domain and the large amount of combinations of scenarios a
SUT can be executed [11]. As a result, testers have to come up
with some standard of test adequacy that allows them to decide
when the SUT has been tested thoroughly enough. This has
prompted the development of test adequacy criteria. Testing
criteria are discussed in the next subsection.

1) Testing techniques and criteria: As alternatives for
exhaustive testing, testing techniques have been proposed to
help developers and testers to create a reduced and yet effective
test suite [12]. Each testing technique has specific criteria to
cover a particular aspect of the program and each criterion
defines different test requirements that should be met by a test
suite. Test requirements can be generated from different parts
of the software, e.g., specification and implementation. In this
context, the SUT can be instrumented so that it reports on the

execution of a test suite to measure how well the test suite
satisfies the test requirements [5].

Functional and structural testing are two of the most
commonly used testing techniques. The functional testing
technique is also known as black-box testing because it only
uses the SUT specification to generate test cases. In this
technique, the internal structure of the SUT is not taken
into account. The two most popular functional criteria are
equivalence partitioning and boundary-value analysis. Structural
testing (also known as white-box testing), on the other hand,
creates test cases based on the SUT implementation. Its purpose
is to make sure that all structures (e.g., paths, instructions, and
branches) of the SUT are exercised during execution of the test
suite. Basically, structural testing criteria are usually classified
as control-flow and data-flow. Control-flow criteria specify test
requirements based on the execution flow of the SUT [13].
Two widely used goals related to control-flow criteria are
executing all instructions or exercising all branches at least
once. Data-flow criteria are based on the assumption that testers
should focus on the flows of data values, i.e., variable uses and
definitions [14]. One common goal of this type of criteria is
to execute every definition of a data value (i.e., variable) and
its associated uses at least once. This criteria is known as the
all-uses criterion and takes into account only the def-use pairs
that have some path from the definition to the use in which
the considered variable is not redefined. This special path is
called def-clear path.

Mutation testing is a less widely used technique that has been
mostly used in academic settings. This technique is centered
around the idea of changing the SUT in such a way that the
changes made to the SUT mimic mistakes that a competent
programmer would make. The elements that describe how the
SUT should be changed are referred to as mutation operators,
and the resulting different versions of the SUT are called
mutants. Then, after mutant generation, testers have to come
up with test cases for uncovering the seeded faults. When a test
case causes a mutant to behave differently from the original
SUT, the test case is said to kill the mutant. Mutation testing
assumes that a well designed test suite can kill all mutants.
Therefore, testers have to improve the test suite until it is able
to kill all mutants that are not equivalent to the original SUT.

The goal when applying mutation testing is to obtain a
mutation score of 100%: the mutation score is the percentage
of non-equivalent mutants that have been killed [3]. A score of
100% indicates that the test suite is able to detect all the faults
represented by the mutants. Usually, achieving a mutation score
of 100% is impractical, so a threshold value can be established;
representing the minimum value for the mutation score.

2) Testing phases: Software testing activities can be car-
ried out during the whole software life-cycle to assure that
failures are discovered the earlier as possible in the software
development process. Testing phases, also known as test levels,
are commonly used throughout software development projects:
acceptance testing, system testing, integration testing, module
testing, and unit testing [3]. Acceptance testing activities
evaluate the SUT with respect to requirements and business
processes. System testing asses the architectural design. It
is worth mentioning that, in many companies, there is no

IEEE TRANSACTIONS ON RELIABILITY 3

difference between system and acceptance testing.
Integration testing is carried out in the hopes of finding

failures that arise from module integration. During integration
testing, test cases are designed to assess whether the interfaces
between modules communicate properly. Thus, integration
testing assumes that modules work as expected. Module testing
is carried out to evaluate modules in isolation, test cases are
designed to asses how the units within the module under
test interact with each other as well as their associated data
structures. Unit testing has to do with exercising the smallest
unit of the SUT in isolation. In object oriented programs, for
instance, the smallest unit is usually either a class or a method.

Regression testing is performed throughout the life-cycle of
a system, thus rather than been considered a phase or level, it
can be considered a sub-phase of the aforementioned testing
phases. Regression testing has to do with re-running the existing
test cases whenever an element of the system is changed to
ensure that the elements that were previously developed and
tested still perform correctly. More specifically, regression
testing is performed with the intention of checking whether
recent changes have not introduced unintended consequences
elsewhere in the system [3].

Since executing all test cases whenever the system is changed
is costly and time-consuming, many research efforts have been
investigating ways of selecting only the most effective subset
of the test suite, i.e., the subset that is more likely to reveal
failures. In this context, two techniques are usually applied to
select test cases: test prioritization and test minimization. Test
case prioritization sorts the test suite in a way that the test cases
with higher priority are executed before the test cases that have
a lower priority. Priorities are assigned according to different
criteria, including the probability of revealing failures or the
business value of the features exercised. Basically, test case
minimization removes redundant test cases from the test suite,
so that regression testing activities become less time-consuming
and costly.

3) Test automation: Executing test cases manually is costly,
time-consuming, and error-prone. Therefore, many testing
frameworks and tools have been developed along the years
with the intent of supporting the automated execution of test
cases at different levels. Testing frameworks that support
unit testing have been widely used specially because of
the popularization of agile methodologies and test-focused
strategies. More recently, many record-and-play or even script
based frameworks and tools to perform graphical user interface
(GUI) testing have become more popular among developers.

Even though automating the execution of test cases repre-
sented a significant improvement in the field, software testing
activities tend to become more difficult and costly as systems
become increasingly more complex. The classic answer of
software engineers to reduce cost and complexity is automation.
Hence, in the last years, many efforts have been carried out to
come up with automated approaches for generating test inputs
and stimuli to meet different test goals (e.g., branch coverage).
Three different techniques to generate test cases automatically
stand out in this scenario: symbolic execution, search-based,
and random approaches [15].

B. Machine Learning

Essentially, problem solving using computers revolves
around coming up with algorithms, which are sequences of
instructions that when carried out turn the input (or set of
inputs) into an output (or set of outputs). For instance, a
number of algorithms for sorting have been proposed over the
years. As input, these algorithms take a set of elements (e.g.,
numbers) and the output is an ordered list (e.g., list of numbers
in ascending or descending order).

Many problems, however, do not lend themselves well to
being solved by traditional algorithms. An example of problem
that is hard to solve through traditional algorithms is predicting
whether a test case is effective. Depending on the SUT, we
know what the input is like: for instance, for a program that
implements a sorting algorithm, it is a list of elements (e.g.,
numbers). We also know what the output should be: an ordered
list of elements. Nevertheless, we do not know what list of
elements is most likely to uncover faults: that is, what inputs
will exercise different parts of the program’s code.

There are many problems for which there is no algorithm.
In effect, trying to solve these problems through traditional
algorithms has led to limited success. However, in recent years,
a vast amount of data concerning such problems has become
available. This rise in data availability has prompted researchers
and practitioners to look at solutions that involve learning from
data: machine learning (ML) algorithms.

Apart from the explosion of data being captured and stored,
the recent widespread adoption of ML algorithms has been
largely fueled by two contributing factors: (i) the exponential
growth of compute power, which has made it possible for
computers to tackle ever-more-complex problems using ML,
and (ii) the increasing availability of powerful ML tools [16, 17].
Due to these advances, researchers and practitioners have
applied ML algorithms to an ever-expanding range of domains.
Some of the domains in which ML algorithms have been used
to solve problems are: weather prediction, Web search engines,
natural language processing, speech recognition, computer
vision, and robotics [18–20]. It is worth noting, however, that
ML is not new. As pointed out by Louridas and Ebert [21], ML
has been around since the 1970s, when the first ML algorithms
emerged.

Let us go back to the problem of predicting the effectiveness
of test cases. When facing problems of this nature, data comes
into play when we need to know what an effective test case
looks like. Although we might not know how to come up
with an effective test case, we make an assumption that some
effective test cases will be present in the collected data (e.g.,
set of inputs for a program whose run-time behavior was also
recorded). If a ML algorithm is able to learn from the available
test case data, and assuming that the program under test did
not deviate much from the version used during data collection,
it is possible to make predictions based on the results of the
algorithm. Although the ML algorithm may not be able to
identify the whole test case evaluation process, it can still
detect some hidden structures and patterns in the data. In this
context, the result of the algorithm is an approximation (i.e., a
model). In a broad sense, ML algorithms process the available

IEEE TRANSACTIONS ON RELIABILITY 4

data to build models. The resulting models embody patterns that
allows us to make inferences and better characterize problems
as predicting the effectiveness of test cases.

At its core, ML is simply a set of algorithms for designing
models and understanding data [19, 20]. Therefore, as stated
by Mohri et al. [18], ML algorithms are data-driven methods
that combine computer science concepts with ideas from
statistics, probability, and optimization. As emphasized by
Shalev-Shwartz and Ben-David [22], the main difference in
comparison with traditional statistics and other fields is that in
computer science ML is centered around learning by computers,
so algorithmic considerations are key.

A number of ML algorithms have been devised over the years.
Essentially, these ML algorithms differ in terms of the models
they use or yield. These algorithms can be broadly classified
as supervised or unsupervised (a more in-depth explanation
of these two categories of learning types is presented in
Subsection V-E).

Software has been playing an increasingly important role in
modern society. Therefore, ensuring software quality is vital.
Although many factors impact the development of reliable
software, testing is the primary approach for assessing and
improving software quality [3]. However, despite decades of
research, testing remains challenging. Recently, a strategy that
has been adopted to circumvent some of the open issues is
applying ML algorithms to automate software testing. We set
out to provide an overview of the literature on how researchers
have harnessed ML algorithms to automate software testing.
We detail the rationale behind our research in the next section.

III. PROBLEM STATEMENT AND JUSTIFICATION

Although applying ML to tackle software testing problems
is a relatively new and emerging research trend, a number
of studies have been published in the last two decades [23–
28, 82, 83, 85, 86, 89, 91]. Different ML algorithms have been
adapted and used to automate software testing, however, it is
not clear how research in this area has evolved in terms of
what has already been investigated. Despite the inherent value
of examining the nature and scope of the literature in the area,
few studies have attempted to provide a general overview of
how ML algorithms have contributed to efforts to automate
software testing activities. Noorian et al. [29], for instance,
proposed a framework that can be used to classify research at
the intersection of ML and software testing. Nevertheless, their
classification framework is not based on a systematic review
of the literature, which to some extent undermines the scope
and validity of such framework.

Drawing from his personal experience, Briand [26], gives
an account of the state of the art in ML applied to software
testing by describing a number of applications the author was
involved with over the years as well as a brief overview of
other related research. Furthermore, owing to his assumption
that ML has the potential to help testers cope with some
long-standing software testing problems, Briand argues that
more research should be performed towards synthesizing the
knowledge at the intersection of these research areas. Although
evidence suggests that software testing is the subject for which

a substantial number of systematic literature reviews have been
carried out [30], to the best of our knowledge, there are no
up-to-date, comprehensive systematic reviews or systematic
mappings providing an overview of published research that
combines these two particular research areas.

In order to fill in such a gap, we carried out a systematic
mapping study covering the existing research at the intersection
of software testing with ML. According to Kitchenham et al.
[31], systematic mapping is a research methodology whose
goal is to survey the literature to synthesize a comprehensive
overview of a given topic, identifying research gaps, and
providing insight into future research directions. Using this
methodology, we set out to survey the target literature to gain
an overview of the state of the art in ML applied to software
testing. The overarching motivation is to provide researchers
and practitioners with a better understanding of which ML
algorithms have already been tuned and applied to cope with
software testing problems. Moreover, we investigated what
research techniques are the most used in this field as well as the
most prolific researchers. Given that our focus is on answering
broad questions instead of analyzing particular facets of this
research area, we decided to conduct a systematic mapping
rather than a form of secondary study that requires a more
in-depth analysis (i.e., systematic literature review).

This study provides up-to-date information on the research
at the intersection of ML and software testing: outlining the
most investigated topics, the strength of evidence for, and
benefits and limitations of ML algorithms. We believe that the
results of this systematic mapping will enable researchers to
devise more effective ML-based testing approaches since these
research efforts can capitalize on the best available knowledge.
In addition, given that ML is not a panacea for all software
testing issues, we conjecture that this study is an important
step to make headway in applying ML to software testing.
Essentially, the results of this study have the potential to enable
practitioners and researchers to make informed decisions about
which ML algorithms are best suited to their context: as stated
by Kitchenham et al. [32], secondary studies as ours can be used
as a starting point for further research. Another contribution
of our study is the identification of research gaps, paving the
way for future research in this area.

IV. MAPPING STUDY PROCESS

This section describes the process we followed throughout
the conduction of this systematic mapping study, which was
based on the guidelines for conducting secondary studies
proposed by Kitchenham et al. [31] and Petersen et al. [30]. We
designed this mapping study to be as inclusive as possible, so
we did not use any sort of quality assessment to filter primary
studies. The next subsections describe how we followed the
guidelines to answer the research questions posed by this
mapping study.

A. Research questions

We set out to devise research questions (RQs) that emphasize
the classification of the literature in a way that is interesting
to researchers and practitioners and also gives them insights

IEEE TRANSACTIONS ON RELIABILITY 5

into how ML has been used to automate software testing.
The scope and goal of our study can be formulated using the
Goal-Question-Metric approach [33] as follows.

Analyze the state of the art in ML applied to software
testing
for the purpose of exploration and analysis
with respect to the intensity of the research in the
area, trends, advantages and drawbacks of using ML
to automate software testing, hindrances to using ML to
automate software testing, what extent the application of
ML to automate software testing has been empirically
evaluated, the most-active researchers in the area
from the point of view of researchers and practitioners
in the context of software testing.

As pointed out by Kitchenham et al. [31], RQs must embody
the goal of secondary studies. Accordingly, the goal of our study
can be broken down into eight main RQs and a subquestion:

• RQ1: What is the intensity of the research on ML applied
to software testing?

• RQ2: What types of ML algorithms have been used to
cope with software testing issues?

• RQ3: Which software testing activities are automated by
ML algorithms?

• RQ4: What trends can be observed among research studies
discussing the application of ML to support software
testing activities?

• RQ5: What are the drawbacks and advantages of the
algorithms when applied to software testing?

• RQ6: What problems have been observed by researchers
when applying ML algorithms to support software testing
activities?

• RQ7: To what extent have these ML-based approaches
been evaluated empirically?

– RQ7.1: Which empirical research methods do re-
searchers use to evaluate ML algorithms when applied
to software testing?

• RQ8: Which individuals are most active in this research
area?

B. Search process

Although ML algorithms have been around for more than
forty years, we believe that mainly over the last three decades
there has been a surge of interest in applying these algorithms to
solve practical problems outside the realm of AI. As mentioned,
some factors that have influenced this burgeoning interest for
ML are (i) the plummeting cost of computational power, (ii)
development of robust and efficient algorithms that can deal
with more diverse sources and types of data, and (iii) a wide
variety of tools that can be used to support and speed up
the development of ML-based applications. Based on this, at
first, we chose to consider only primary studies that were
published over the last few decades: from 1980 to August
2017. Afterwards, given that our results account for neither a
substantial portion of 2017 nor 2018, we decided to update

our systematic mapping study on grounds of expanding the
collected evidence and providing up-to-date information on
the research at the intersection of ML and software testing.
Essentially, updating our systematic mapping study involved
re-running the original searches (using the same inclusion
and exclusion criteria). We filtered the updated searches by
publication year: we looked for primary studies that were
published from June 2017 to August 2018. The purpose of the
small overlap with the first search is to allow for time lags in
the indexing of studies.

We used automated searching as the main search strategy.
In hopes of finding as many relevant primary studies as
possible and properly answering our RQs, we examined
the four digital libraries that together cover most of the
literature on software engineering and a general indexing
system. More precisely, we searched IEEE Digital Library2

and ACM Digital Library3 because these digital libraries
include prime international journals and a wealth of important
computing-related conferences and workshops. In addition, we
searched SpringerLink4 and ScienceDirect5 because these two
digital libraries also index a number of recognized international
journals on related topics. To reduce the need to search many
publisher-specific sources, we decided to take Web of Science6

into account as well. Web of Science is a general indexing
service that index papers published by many digital libraries
such as ACM, Elsevier, IEEE, Springer, and Wiley. To broaden
the scope of our study, during the re-run of the searches, we also
searched the Society for Industrial and Applied Mathematics
(SIAM)7 and the Proceedings of the VLDB (Very Large Data
Bases) Endowment (PVLDB).8 Specifically, we searched SIAM
website looking for studies that were published in in the
proceedings of the SIAM International Conference on Data
Mining (SDM).

When conducting automated searches in digital libraries,
search keywords are vital to obtain good results, and so they
have to be chosen carefully. However, given that terminology
is not well established in software engineering (and most of its
subareas) [31], and due to the interdisciplinarity of the subject
area, we conjectured that it would be difficult to identify a
reliable set of keywords to use in our search string. Thus, we
derived the keywords for our search string from the RQs and
based on the keywords used in the set of known papers. This
set of known papers was selected through the construction of
a quasi-gold standard as proposed by Zhang et al. [34]. The
quasi-gold standard is created by manually searching a set of
journals and conference proceedings for a given period: the
quasi-gold standard results in a set of studies that are venue-
and period-specific [34]. This set of papers is then used to
evaluate the completeness of subsequent automated searches.
The quasi-gold standard used in this mapping study is presented
in Subsection IV-B1.

2http://ieeexplore.ieee.org/Xplore/home.jsp
3http://dl.acm.org
4http://link.springer.com
5http://www.sciencedirect.com
6https://apps.webofknowledge.com/
7https://archive.siam.org/meetings/sdm18/
8https://www.vldb.org/pvldb/

IEEE TRANSACTIONS ON RELIABILITY 6

We experimented with different combinations of keywords
by linking them using Boolean operators (i.e., AND and OR).
Basically, the search string used in our study is twofold: the
first part contains all keywords related to software testing and
the second part is comprised of ML-related keywords. The two
parts are linked using the Boolean operator AND. The following
combination of keywords was considered the most appropriate
for our study:

(Test OR Software Testing OR Test Automation OR Test
Oracle OR Metamorphic Test OR Test Data Generation
OR Mutation Analysis OR Mutation Testing OR Test
Generation)

AND

(Machine Learning OR Support Vector Machines OR
Decision Trees OR Learning Based OR Active Learning
OR Learning Automata OR Artificial Neural Networks
OR Q-Learning OR Classification OR Grammar Induc-
tion)

We also complemented the final set of primary studies by
carrying out backward snowballing for the primary studies
included after the initial search (this ancillary method is briefly
described in Subsection IV-B2). Due to time restrictions, we
did not perform backward snowballing for the primary studies
we selected during the re-runs of the searches: that is, we did
not perform backward snowballing for the most recent primary
studies, which were published from September 2017 onwards.

1) Quasi-gold standard: As proposed by Zhang et al. [34],
we started the creation of the quasi-gold standard by identifying
relevant publication venues for manual and automated search.
Given that the subject area is at the intersection of two
research areas, we had to include publication venues from
both research areas. Next, we also selected libraries (databases)
for automated search. Most target venues are indexed by
the five digital libraries we chose (see Subsection IV-B),
so the only publication venues we had to search manually
were Software Testing, Verification and Reliability and the
International Journal of Intelligent Systems, which are indexed
by Wiley Online Library. Three reviewers created lists of
potentially relevant publication venues in an independent
fashion. These lists were then merged to form the list shown in
Table I, which shows all publications venues we emphasized
during the creation of the quasi-gold standard as well as the
digital libraries that index these venues. As can be seen in
Table I, most publication venues are software engineering and
software testing related. Given that manual and automated
search are time-consuming, we decided to narrow down the list
of nominated venues to include only the most relevant venues.

During the creation of the quasi-gold standard, we screened
all papers in the selected venues: more specifically, we read
the titles and abstracts of the returned papers, applying the
inclusion and exclusion criteria defined in Subsection IV-C.
After searching the venues listed in Table I, we selected 21
primary studies. In addition, at this stage, two researchers were
approached to list studies that could also be included in the

quasi-gold standard: seven papers were nominated. Initially,
the first author checked the titles and abstracts of the suggested
studies. After applying the inclusion and exclusion criteria
to the nominated studies, six were included. After checking
the full texts of the 27 papers, 24 remained in the quasi-gold
standard. It is worth mentioning that none of the six suggested
studies were published in venues that are listed in Table I.

TABLE I
PUBLICATION VENUES INVESTIGATED DURING THE CREATION OF THE

QUASI-GOLD STANDARD.

Publication Venue Indexed By
Software Engineering and Software Testing Related Journals

1 Information and Software Technology ScienceDirect

2 Journal of Systems and Software ScienceDirect

3 Software Testing, Verification and Reliability Wiley

Software Engineering and Software Testing
Related Conferences, Workshops, and Symposia

4 Empirical Software Engineering and Measurement
(ESEM)

IEEE/ACM

5 IEEE International Conference on Software Testing,
Verification and Validation (ICST)9

IEEE

6 IEEE/ACM International Automation of Software
Test (AST)

IEEE/ACM

7 IEEE/ACM International Conference on Automated
Software Engineering (ASE)

IEEE/ACM

8 International Conference on Quality Software IEEE
9 International Conference on Software Engineering

(ICSE)
IEEE

10 International Conference on Testing Software and
Systems (ICTSS)

Springer
(LNCS)

11 IEEE International Symposium on Software Reliabil-
ity Engineering (ISSRE)

IEEE

ML Related Journals
12 Engineering Applications of Artificial Intelligence ScienceDirect

13 International Journal of Intelligent Systems Wiley
14 Machine Learning Springer

ML Related Conferences, Workshops, and Symposia
15 IEEE International Conference on Tools with Artifi-

cial Intelligence (ICTAI)
IEEE

16 Realizing Artificial Intelligence Synergies in Software
Engineering (RAISE)

IEEE/ACM

2) Backward snowballing: As mentioned, in hopes of
avoiding missing potentially relevant studies, we applied
backward snowballing to identify more papers that can be
included in our study. One of the advantages of snowballing
is that by checking the references of a set of relevant papers
it is possible to find important papers even when they use
different terminology; as long as the authors in the area refer
to each other [35]. Essentially, snowballing is an iterative
process whose initial input is a set of relevant studies, which
is comprised of a subset or all of the studies selected over the
course of the study selection phase. In each of the subsequent
iterations, the papers referenced in the last analyzed studies are
checked. The process ends when no new studies are selected.
Throughout the backward snowballing process, we followed
the guidelines provided by Wohlin [35].

IEEE TRANSACTIONS ON RELIABILITY 7

C. Primary study selection process

This section defines the inclusion and exclusion criteria that
were used throughout the conduction of this secondary study.
The following criteria were used as inclusion criteria:

• I1: Our initial selection relies on the filtering provided
by the peer-review process, so all selected studies must
have undergone peer review. Only studies published in
scholarly venues such as journals, conference proceedings,
and workshop proceedings were taken into account.

• I2: Studies that report on ML algorithms applied to
software testing.

Studies that fall into at least one of the following categories
were not eligible to be selected:

• E1: Studies on (i) approaches to testing ML algorithms,
(ii) fault prediction techniques, (iii) debugging approaches,
(iv) any sort of hardware testing approach, and (v) ap-
proaches based on evolutionary computation (e.g., genetic
algorithms and evolutionary programming).

• E2: The study describes the application of a ML algorithm,
but the algorithm is not applied to automate a testing-
related activity or problem.

• E3: Gray literature (e.g., technical reports, working papers,
and presentations) or studies published in the form of
abstract or panel discussion.

• E4: Often, research efforts are published at various stages
of their evolution. In the context of this mapping study,
duplicate versions of studies should be excluded. Only
the most comprehensive or recent version of each study
should be included.

• E5: Peer-reviewed studies that are not published in jour-
nals, conference proceedings, or workshop proceedings
(e.g., PhD thesis and patents);

• E6: Studies that are not written in English.
These inclusion and exclusion criteria were applied as de-

scribed in Subsection IV-C1. As discussed in Subsection IV-C1,
during the application of these criteria, we went over several
parts of the returned papers as, for instance, title, abstract, and
keywords. Additionally, we carried out a pilot study to resolve
disagreements and misunderstandings concerning these criteria.

1) Selection process: The inclusion and exclusion criteria
were applied in three stages. First, papers were filtered based on
title, keywords, and venue. This first step is aimed at excluding
papers that are clearly irrelevant. Thus, criteria I1, E3, E5,
and E6 were applied first. We realized that often a more in-
depth analysis is needed to determine whether the ML-based
approach described in a paper is applied to software testing,
hence, the criteria I2 and E2 were not applied during the first
round. Similarly, E1 was not used in the first round because
applying this criterion requires a more thorough examination
of the papers: usually, abstract and keywords are not enough
to pin down the content of a paper. During the second round,
two reviewers read the abstracts of the papers selected in
the first round. Throughout this round, the reviewers applied
criteria I2, E1, and E2. The resulting set of candidate papers
was examined by two reviewers and disagreements concerning
whether any borderline paper is eligible or not were resolved
by discussion and, when needed, settled by a third reviewer.

In the final round, the two reviewers independently filtered the
candidate papers by reading them in their entirety. Criteria I2,
E1, E2, and E4 were applied to select the final set of primary
studies. Disagreements on selection results were discussed and
addressed by two reviewers. When needed, a third reviewer
was consulted.

D. Data extraction

To answer the RQs described in Subsection IV-A, we
extracted from each primary study the information shown
in the data extraction form presented in Appendix B. The
data extraction form includes fields designed to gather general
publication information, such as title and year of publication,
as well as fields that were framed to reflect the RQs.

It is worth noting that, before carrying out our systematic
study, we discussed the definitions of these fields, which we
refer to as data items (DIs), to clarify their meanings to all data
extractors. Furthermore, to make sure that all data extractors
had a clear understanding of the DIs, we pilot-tested the data
extraction form using the quasi-gold standard. During the pilot,
we aimed at resolving disagreements and misconceptions about
the DIs.

During the conduction of the original systematic mapping,
two data extractors performed the data extraction on the
resulting set of selected studies independently. Having extracted
the information from all selected studies, the two data extractors
checked all data to make sure that the extracted information
is valid and clear for further analysis. The extracted data
were kept in a spreadsheet. As mentioned, with the purpose
of incorporating new evidence published since the original
searches were completed, we repeated the extraction method
for the papers returned from the re-runs of the searches. During
the update, three data extractors performed data extraction on
the set of selected studies, updating the original spreadsheet
accordingly.

E. Data synthesis

The purpose of data synthesis is to summarize the extracted
data in meaningful ways in hopes of answering the RQs defined
in Subsection IV-A. More specifically, descriptive statistics and
frequency analysis are used to answer the RQs. We devised
classification schemes by means of keywording relevant topics
addressed by some of the RQs. The resulting classifications
were devised and refined as the mapping process advanced.
Several facets were defined for classification purposes. For
instance, to answer RQ7 we classified the primary studies
according to the nature of the research reported in them.

V. STUDY RESULTS

We carried out this mapping study according to the procedure
described in Section IV. During the first literature search, 38
papers met the inclusion criteria. Upon updating the searches
(i.e., re-running them as per the original systematic mapping
protocol), 10 new papers met the inclusion criteria. So, in total,
we selected 48 primary studies. A brief summary of each study
is provided in Appendix C.

IEEE TRANSACTIONS ON RELIABILITY 8

A. Mapping primary studies according to publication type

The primary studies were published as conference paper
(21 studies), symposium paper (five studies), journal paper (11
studies), workshop paper (10 studies), or book chapter (one
study). The distribution of the selected studies according to
publication type is shown in Figure 1. Conferences are the most
common venue in which research at the intersection of ML and
software testing has been published: 21 studies were published
as conference papers, which accounts for approximately 44%
of the selected studies. The least common publication type is
book chapter: only one study (around 2%).

1

21

11

5

10

0

5

10

15

20

25

 Book Chapter Conference Journal Symposium Workshop

Fr
eq

ue
nc

y

Publication Type
 Book Chapter

 Conference

 Journal

 Symposium

 Workshop

Fig. 1. Distribution of selected studies according to publication type.

Appendix D lists all venues in which the selected studies
were published, presenting their types, number of selected
studies that appear in each of them, and the corresponding
percentage of studies published in the venue considering the
total number of selected studies. The selected studies were
published in 36 different venues. Most primary studies were
published in the journal Software Testing, Verification and
Reliability (four primary studies) and in the International Work-
shop in Automation of Software Testing (AST) (four primary
studies). Other popular venues are the following: International
Symposium on Software Testing and Analysis (ISSTA) (three
primary studies), International Conference on Software Testing,
Verification and Validation (ICST), International Conference
on Quality Software, and International Conference on Software
Maintenance (two primary studies each).

B. Mapping primary studies according to publication year

Figure 2 shows the distribution of the selected studies over
the time period from 1995 to 2018. According to our results,
ML algorithms have been used to automate software testing
since 1995. Since then, there has been at least one study related
to ML and software testing each year. The results seem to
suggest that since 2010 there has been a surge of interest in
applying ML algorithms to automate software testing activities.
In particular, this renewed interest in ML-related approaches
to software testing was more pronounced in 2011, 2013, 2016,
2017, and 2018. Our results would seem to suggest that ML-
based approaches to software testing have been receiving
increased attention recently.

012345

19
95

19
96

19
97

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

Number of Studies

Fig. 2. Distribution of selected studies over time period.

C. Mapping primary studies according to research facet

We categorized the primary studies according to the nature
of the research reported in each study. We used the classi-
fication scheme proposed by Wieringa et al. [36], which is
straightforward to interpret and has been used in a number of
secondary studies similar to ours. According to Wieringa et al.,
studies can be classified into the following classes:

• Solution proposal: these studies propose a novel solution
to a problem. The applicability and potential benefits of
the solution are borne out only by an example, proof-of-
concept implementation, or sound argument. Therefore,
studies that fall into this category do not present a full-
blown validation of the proposed solution.

• Validation research: studies in this category provide
preliminary empirical evidence to substantiate claims
concerning the solutions or implementations thereof.
Examples of research methods used to gather evidence
are quasi-experiments, case studies, and prototyping. In

IEEE TRANSACTIONS ON RELIABILITY 9

the context of our study, this category groups all studies
that used “toy programs” to evaluate the solutions or tools.
In addition, studies whose research setup is relatively less
rigorous are classified as validation research.

• Evaluation research: studies that fall into this category
go further than validation research studies by using sound
research methods to evaluate novel solutions or tools in
practice. Thus, these studies provide sounder evidence. It
is worth noting that both validation and evaluation research
can be categorized as empirical research. However, the
main difference lies in the soundness and rigor of
these empirical studies. Studies that employ thorough,
methodologically sound research and formal methods as
hypothesis testing and experiments on real-world programs
are categorized as evaluation research.

• Philosophical papers: as described by Wieringa et al.,
these studies present a new way of looking at the current
research in the area by describing, for instance, new
taxonomies or conceptual frameworks.

• Opinion papers: primary studies in this category report
the author’s opinion about some aspects of the research
area.

• Personal experience papers: this type of study describes
the author’s personal experience drawn from the partici-
pation in one or more project in academic or industrial
setting. Usually, these papers contain a list of lessons
learned by the author and the experience is reported
without taking research methods into account. Hence,
the evidence in these papers is often anecdotal in nature.

As shown in Table II, most primary studies propose novel
ways to capitalize on ML to improve how software testing
activities are performed. 12 primary studies were classified as
solution proposals. As mentioned, studies that fall into this
category present little or no evidence to back up their claims.
Therefore, approximately 25% of the papers do not provide
empirically grounded evidence to back up their claims. From
these data we can assume that a considerable amount of the
existing research at the intersection of ML and software testing
is relatively weak in terms of scientific evidence.

It is worth noting that primary studies can span more than
one category. For instance, papers that propose a novel approach
and present a validation of the approach are quite common:
as listed in the third row of Table II, 19 studies fall into the
solution proposal and validation research categories. During the
classification of the selected studies, we analyzed the potential
contribution of the selected papers according to the following
dimensions: soundness and rigor of their experimental setup
and the quality of the evidence they report. Studies whose
research setups were considered relatively less rigorous were
classified as validation research.

Evaluation research studies provide higher-quality evidence
concerning the applicability of the solutions they describe. As
shown in Table II, 13 primary studies present evidence from
rigorous experiments to back up their proposed solutions. these
primary studies presenting solutions that are borne out by
evidence were classified as solution proposal and evaluation
research.

Two primary studies were classified as solution proposal and

TABLE II
STUDIES CLASSIFIED ACCORDING TO RESEARCH TYPE.

Research Type Number of Studies
Solution proposal 12
Solution proposal and evaluation research 13
Solution proposal and validation research 19
Solution proposal and philosophical 2
Evaluation research 1
Philosophical 1
Opinion and personal experience 1

philosophical: PS17 [60] and PS19 [62]. In PS17, Noorian et al.
outline a taxonomy in the form of a conceptual framework
whose purpose is to help researchers and practitioners classify
research efforts at the intersection of ML and software testing.
Apart from the authors’ experience, the resulting taxonomy
draws from a small subset of the existing literature in the
area. Given that this primary study presents a novel way of
classifying the literature by describing a taxonomy, it was
classified as solution proposal and philosophical.

Traditionally, software engineering activities are carried out
in value-neutral settings in which artifacts are regarded as
equally important. The primary study PS19 [62] was classified
as philosophical because the author advocates a shift from
a value-neutral mindset to a value-based one. Based on this
assumption, the author proposes a framework in which ML is
used to generate value-based test data. However, no empirical
evidence to support this value-based test data generation
framework is provided. Therefore, since the paper contributes
novel ideas instead of empirical evidence, it was also classified
as solution proposal.

Only one primary study was classified as being exclusively
evaluation research, PS33 [76]. In this study, Agarwal et al.
report a set of experiments designed to probe into the utility
of info-fuzzy networks (IFNs) and artificial neural networks
(ANNs) as automated oracles in software testing, investigating
the advantages and drawbacks of each approach to oracle
generation.

Only one primary study was classified as philosophical:
PS27 [70]. In PS27, Namin and Sridharan make a case for
using Bayesian reasoning algorithms to automate software
testing in a reliable and efficient fashion. Namin and Sridharan
briefly explain why they believe that Bayesian reasoning
algorithms are applicable to software testing, discuss some
challenges that need to be properly addressed before Bayesian
reasoning algorithms can be widely adopted, and outline
potential solutions to these challenges.

In PS16 [59], Briand briefly summarizes his assessment of
the state of the art in ML applied to software testing by mainly
describing research efforts in which he was involved with over
the years. While advocating that more research needs to be
done in the area, Briand also gives an account of his personal
experience by describing lessons learned. Therefore, PS16 was
classified as opinion and personal experience.

Most primary studies describing solution proposals usually
provide some sort of evidence to support their solution. We

IEEE TRANSACTIONS ON RELIABILITY 10

surmise that this is the case because there has been a growth
in the use of experimental methods in software engineering.
According to results of our mapping study, there seems to be
a growing commitment to empiricism in recent years. This
commitment is embodied in improved research designs that are
able to better support the claims and conclusions presented in
more recent studies. Considering the set of primary studies, the
first primary study with methodologically sound experimental
design (i.e., evaluation research) was published in 2011. Up to
that point, all published empirical evaluations were classified
as validation research. The results would seem to suggest that
there is room for improvement in the sense that the proposed
solutions should not just be suggested and published, as is
the case in most of the primary studies. We argue that more
empirical evidence is needed to advance the applications of ML
algorithms in software testing. It is also essential to evaluate
new solutions against existing ones.

As shown in Table III most primary studies claim to have
employed some empirical strategy to evaluate their proposed
solutions. However, when reading the selected studies we
often found that sections that were termed “experiment” or

“case study” could not be strictly considered as such, as the
descriptions presented in these sections lack the necessary
rigor and data collection methods to be considered either an
experiment or case study. Thus, the classification presented in
Table II gives a more accurate overview regarding the extent
to which empirical methods have been used to evaluate the
application of ML algorithms to automate software testing.
Moreover, we argue that this also indicates that a great deal
of the efforts to evaluate and validate research in the area are
somewhat poorly thought through and ill-described.

TABLE III
EMPIRICAL STRATEGIES CARRIED OUT TO EVALUATE THE SOLUTIONS

DESCRIBED IN THE PRIMARY STUDIES.

Evaluation Method Primary Studies Total

Case study PS3, PS7, PS10, PS12, PS18, PS24,
PS28, PS31, PS37, PS44, and PS45

11

Experiment PS1, PS2, PS4, PS5, PS6, PS8, PS9,
PS11, PS14, PS15, PS20, PS21,
PS22, PS23, PS25, PS26, PS29,
PS30, PS33, PS34, PS35, PS36,
PS38, PS39, PS40, PS41, PS42,
PS43, PS46, PS47, and PS48

31

Not applicable PS16, PS17, and PS27 3

None PS13, PS19, and PS32 3

48

D. Mapping primary studies according to testing facet

The classification scheme herein proposed was created
iteratively as we performed data extraction and aggregation.
The classification scheme was revised as we gathered more
information about the current research in the area. During
the first time the systematic mapping was conducted, two
reviewers worked together to create the classification scheme.
During the update, three reviewers double-checked and refined

the classification scheme. Over the course of the following
subsections we detail the categories in Table IV that contain
more than two primary studies.

TABLE IV
SOFTWARE TESTING FACETS SUPPORTED BY ML IN THE PRIMARY STUDIES.

Software Testing Facet Primary Studies Total
Compatibility Testing PS32 1

Conformance Testing PS22 1

Detection of Metamor-
phic Relations

PS11 and PS41 2

Mutation Testing Automa-
tion

PS1, PS7, and PS35 3

Test Case Design PS4, PS15, PS19, PS21, PS26,
PS28, PS43, PS44, PS46, and PS48

10

Test Case Evaluation PS1, PS2, PS8, PS34, PS36, PS38,
PS39, and PS42

8

Test Case Prioritization PS9, PS25, PS37, and PS40 4

Test Case Refinement PS9, PS12, PS13, PS15, and PS23 5

Test Oracle Construction PS5, PS6, PS20, PS22, PS24, PS29,
PS30, PS31, PS33, and PS34

10

Testing Cost Estimation PS10, PS14, and PS18 3

Test Harness PS45 1

Testing Technique Selec-
tion

PS3 1

1) Test case design: A key aspect of software testing is
designing test inputs, i.e., test cases. The goal when devising
such a set of test inputs is to uncover as many failures
as possible. However, as mentioned, exhaustive testing is
oftentimes not feasible in practice. As a result, testers have to
rely on some standard of test adequacy in order to decide when
the SUT has been tested thoroughly enough. This has motivated
the development of test adequacy criteria. After settling on a
test adequacy criterion, testers have to decide on how to go
about devising a test set that satisfies that criterion. To satisfy
a given test adequacy criterion testers have to design test cases
that exercise certain features of the SUT as, for instance, the
source code [3]. Since this is a taxing task to be done manually,
testers usually turn to automatic test data generation.

According to the results of our mapping study, in recent
years, there has been a growing interest in applying ML to
automate test case generation (i.e., test case design). As shown
in Table IV, this is one of the most investigated topics in the
area with 10 primary studies. Four of the 10 studies on this
topic were published from 2017 to August 2018.

Bergadano and Gunetti [71] (PS28) devised a test case
generation approach that is based on the inductive learning of
programs from finite sets of input and output examples. Given
a program P and a set of alternative programs P’, the proposed
approach yields test cases that are adequate in the sense that
they are able to distinguish P from all programs in P’. As
Bergadano and Gunetti emphasize, although the approach is

IEEE TRANSACTIONS ON RELIABILITY 11

similar to fault-based approaches, the programs in P’ are not
restricted to being simple mutations of P.

In PS21 [64], Choi et al. tackled the problem of automatically
generating a test suite for Android applications for which
there is no existing model of the GUI. The proposed approach
uses ML to learn a model of the application during testing.
The learned model is then used to generate inputs that visit
states of the application that have not been explored. When the
application is executed using the generated inputs, the execution
is observed in order to refine the model. An important feature
of the approach is that it avoids restarting the application under
test, which in many cases is computationally costly. Choi et al.
carried out an experiment to compare how their approach
compares to random testing and L*-based testing. The results
of this experiment seem to indicate that their approach can
achieve better coverage.

PS26 [69] reports on a test case design approach for web-
applications. More specifically, in PS26, Sant et al. apply a
ML approach to turn user session data into models of web
applications. The resulting model is then randomly traversed to
generate test data. In PS48 [91] a test case design approach for
mobile applications is present. In this recent study, Rosenfeld
et al. [91] describe an approach that leverages ML algorithms
to analyze GUI elements of Android apps. After analyzing
these elements, the proposed approach generates functional
test cases.

Some primary studies in this category evaluate the proposed
approaches using only one medium-sized program or several
toy programs (e.g., PS19 and PS28). Due to the simplicity of
such programs, it is unlikely that they expose the limitations
of these test-data generation approaches. Hence, evaluating test
generation approaches using toy programs provides limited
utility. Consequently, the evidence presented in these primary
studies is insufficient to draw conclusions on the effectiveness
of these ML-based test-data generation. Several primary studies,
however, provide a stronger case for applying ML algorithms
to automate test-data generation (e.g., PS15 [58] and PS21).

2) The oracle problem: As mentioned, software testing
involves exploring the behavior of the program under test so
as to uncover faults. In this context, when the program is
run with a certain input, it is vital to tell apart the correct
from the potentially incorrect behaviors. This conundrum is
referred to as the test oracle problem [37]. Without a test
oracle, testers have to use domain specific information to
ascertain whether the observed behavior is correct, which is
in many cases impractical due to the complexity and size
of present-day software systems. To make matters worse,
sometimes software systems lack the documentation needed
to determine the correctness of the observed behavior. To
overcome these problems, researchers have sought techniques
for oracle automation. However, it is worth mentioning that
considering the software testing literature as a whole, test oracle
automation has received significantly less attention compared
to many other aspects of test automation (e.g., automated test
input generation) [37]. By contrast, a significant amount of the
research at the intersection of software testing with ML has
been concerned with automating test oracles. In fact, 10 of
the 48 selected studies report on approaches that leverage ML

algorithms to construct test oracles. We believe that this is the
case because ML presents novel tools to predict outcomes and,
in the case of software testing, this constitutes a powerful tool
for implementing test oracles.

Wang et al. [48] (PS5) examined how ML algorithms can
be used to automatically generate test oracles for reactive
programs without relying on explicit specifications. Essentially,
their approach turns test traces into feature vectors, which are
used to train the ML algorithm. The model yielded by the
algorithm then acts as a test oracle.

The oracle problem appears in different contexts. Chan
et al. [49] in PS6 tackled this problem in the context of
mesh simplification programs. Mesh simplification programs
yield three-dimensional polygonal models that are similar to
the original, albeit simpler in the sense that they have fewer
polygons. That is, these programs produce different graphics
despite operating on the same input (i.e., the original polygonal
model). As noted by Chan et al., this results in a test oracle
problem. Chan et al. developed an approach that trains a
classifier using a reference model of the SUT. This supervised
ML approach groups test cases into two categories: passed
and failure-causing. To improve the accuracy of its predictions,
the approach also pipes test cases classified as passed by
the ML algorithm to an analytical metamorphic testing (MT)
module. Their results show that this can significantly improve
the effectiveness of the proposed approach.

Jin et al. [72] (PS29) investigated how artificial neural
networks (ANNs) can be used to ease the test oracle problem.
Similarly, in PS30 [73], Vineeta et al. outline two ML
approaches toward implementing test oracles. Specifically, the
first approach builds on ANNs and the second one builds on
decision trees to predict the expected outputs of the SUT. The
applicability of these approaches was examined through an
example using a toy program. In PS20 [63], Vanmali et al. also
looked into how ANNs can be used to create a test oracle for
a credit approval application.

As mentioned, PS33 [76] is the only primary study concerned
exclusively with evaluating the effectiveness of two different
approaches that have been used to implement test oracles, i.e.,
IFNs and ANNs. According to the results of this study, IFNs
significantly outperform ANNs in terms of computation time
while achieving almost the same fault-defection effectiveness.
This comparative study also provides another insight into
the characteristics of these two approaches: the experiment
results indicate that the performance of the oracles are highly
dependent on the amount of available test data.

3) Test case evaluation: When carrying out testing efforts,
testers need to be able to assess the quality of a given test
suite. However, evaluating the quality of test suites is complex
because it is hard to formalize and measure what characteristics
of the test cases influence quality. In the absence of precise
quality indicators for test suites, the coverage of a test suite is
usually used as proxy for its fault detection effectiveness.

An adequate test suite is one that implies that the SUT is free
of errors if it runs correctly. However, there is no trustworthy
model through which adequacy can be properly measured;
hence adequacy is often quantified using proxy measures of
code behavior as, for instance, branch coverage and mutation

IEEE TRANSACTIONS ON RELIABILITY 12

coverage. However, as noted by Fraser and Walkinshaw [51],
these program-based adequacy metrics can be impractical and
may be misleading even when they are satisfied. One alternative
approach that has the potential to overcome the shortcomings
of program-based adequacy metrics, is the idea of behavioral
coverage, which is essentially concerned with inferring a model
from a system by observing its behavior (i.e., outputs) during
the execution of a test suite. If one can show that the model
is accurate, it follows that the test suite can be considered
adequate. This approach is appealing because it eliminates the
need to use proxy source-code approximations. Despite the
potential of this approach, its adoption has been hindered
by the complexity of inferring models. To deal with this
complexity, Fraser and Walkinshaw [51] (PS8) employed ML
algorithms to infer models from observed inputs and outputs.
More specifically, Fraser and Walkinshaw came up with an
ML-based approach to cope with the adequacy problem, the
resulting approach evaluates the extend to which a test suite
covers the observable program behavior.

This category also comprises a research effort whose purpose
is to predict the feasibility of test cases: PS2 [45]. In the context
of GUIs, test cases take the form of sequences of events that
are executed in hopes of detecting faults in the application.
However, test cases might be rendered infeasible if one or more
events in the sequence are disabled or inaccessible. This type of
test case terminates prematurely and end up wasting resources.
To prune away infeasible test cases from test suites, Gove and
Faytong [45] propose two approaches that capitalize on two
ML algorithms: support vector machines (SVMs) and grammar
induction. These two approaches to identifying infeasible test
cases differ mainly in terms of their results. SVMs are a
highly effective classifier, but the models produced by this
algorithm, albeit accurate, is not easily interpretable by humans.
In contrast to SVMs, grammar induction yields human-readable
results, which allow for interpretation by the tester. Nonetheless,
grammar induction is notably computationally expensive. In
a more recent study, Felbinger et al. [85] (PS42) outline an
approach for test evaluation that is based on inferring a model
from the test suite and using the similarity between the inferred
model and the SUT as a measure of test suite adequacy.

4) Test case prioritization and refinement: Previous research
has proposed two main approaches to streamline regression
testing: test case prioritization10 and test case refinement.11

Since these approaches are closely related in purpose, the
primary studies that have employed ML to cope with the
issue of speeding up regression testing using either test case
prioritization or refinement are discussed in this subsection.

a) Test case prioritization: The time taken by regression
testing is usually dictated by the size of the test suite. As
regression test suites grow, they become computationally
demanding to run. A large test suite might take weeks to
run [38]. In such cases, testers are pressed to come up with ways
to improve the effectiveness of the testing effort. In a limited-
resource setting, test case prioritization can be used to mitigate
some of the cost associated with regression testing. Essentially,

10Test case prioritization is often termed test-suite selection.
11Test case refinement is also known as test-suite reduction.

test case prioritization involves arranging the execution of test
cases in a particular order so as to optimize the rate of fault
detection. The basic idea is centered around the hypothesis that
most faults can be detected as early as possible by prioritizing
the most relevant (i.e., higher priority) test cases.

Lenz et al. [52] (PS9) present a ML-based approach to link
test results (i.e., structural coverage information and mutation
score) from the application of different testing criteria. The
proposed approach then groups the test results into similar
functional clusters. Afterwards, information related to the
existing test cases and the clusters generated in the previous
step are used as a training set for a ML algorithm, which yields
classifiers according to the tester’s goals. As stated by Lenz
et al., different classifiers can be obtained and employed to
different purposes, including prioritization and refinement of
test cases.

In PS25 [68], Tonella et al. reformulated the test case prioriti-
zation problem as a ML problem. Their proposed solution uses
case-based reasoning (CBR) to learn an effective way to order
the test cases. While sorting through the test cases, the proposed
solution takes into account priority information from the user:
the solution prompts the tester with pairs of test cases, and asks
it to select the most important ones. Additionally, the tester
input is integrated with additional information (e.g., structural
coverage information) to generate an ordering of test cases. To
evaluate their solution, Tonella et al. carried out an experiment
using the program space, which contains 9,564 lines of code
and 136 functions. The results of this experiment would seem
to indicate that prioritization using CBR outperforms coverage-
based prioritization approaches. In a more recent study, Spieker
et al. [83] (PS40) introduce Retecs, which is an approach for
automatically learning test case selection and prioritization. The
proposed approach employs reinforcement learning to select
and prioritize test cases according to their duration, previous
last execution and failure history. According to Spieker et al.,
in comparison to similar approaches, their approach offers a
more lightweight learning method that uses only one source
of data, namely test case failure history.

b) Test case refinement: During the life cycle of software
systems, the existing test suites need to be refined so as to better
reflect changing test requirements. Often, to cope with new
or changed requirements, new test cases are included to test
suites. As a result, the size of test suites grows, increasing the
cost of running them on the SUT (i.e., regression testing). To
keep the expense of regression testing in check, sometimes the
amount of test cases needs to be reduced. Given that changes
to test suites must be carried out in a sensible and planned
fashion, testers usually employ test case refinement algorithms
to help them select an effective subset of test cases, thereby
reducing testing cost. These algorithms compute an optimal
subset of test cases by removing ineffective, redundant, and
obsolete test cases from test suites.

Our results indicate that a considerable amount of research
has been carried out to provide methodological and tool support
to help testers understand the shortcomings and potential
redundancies of test suites and thus being able to refine them in
a cost effective fashion. Briand et al. [55] (PS12), for instance,
developed a ML-based approach to help testers analyze the

IEEE TRANSACTIONS ON RELIABILITY 13

strengths, weaknesses, and redundancies of black-box test
specifications and test suites and iteratively improve them.
This partially automated approach is based on abstracting test
suite information by transforming test cases into specifications
at a higher level of abstraction. More specifically, test cases are
interpreted as categories and choice combinations, as defined
by the black-box text specification technique category-partition.
Hence, test suites are transformed into abstract test suites,
which are much more amenable to use in a ML algorithm. A
ML algorithm is then used to learn this abstract representation
of the test suite, taking into account the relationships between
input properties and output equivalence classes. As Briand et al.
state, this allows the tester to better understand the strengths
and the drawbacks of the test suite. In addition, this can be
used when a given test suite needs to be improved but there is
no test specification nor rationale (e.g., reusing open source
software). Also, it is possible to use this approach to carry
out a black-box testing process in which a test specification is
created (e.g., using category-partition) and then test cases are
generated from this specification.

Chen et al. [66] (PS23) devised an approach aimed at
effective automating regression testing by means of clustering
algorithms: distance measures and clustering algorithms are
employed to group test cases into clusters. In this context,
test cases in the same cluster are considered to have similar
behavior and characteristics. The novelty of their approach
is that they introduced a semi-supervised clustering method
(semi-supervised K-means, SSKM) to enhance cluster selection.
The limited supervision used by their clustering method is in
the form of pairwise constraints: (i.e., must-link when two
test cases are must be assigned to the same cluster or cannot-
link when two test cases must belong to different clusters).
These pairwise constraints are extracted from previous test
case executions and test selection results. Chen et al. claim
that they were the first to apply a semi-supervised clustering
algorithm to test case selection. They believe that their study
has the potential to foster developments in this area as well
as help establish the basis for a greater understanding of how
semi-supervised clustering algorithms can be applied to solve
similar software testing related problems.

5) Test cost estimation: As mentioned, software testing
accounts for a significant proportion of the total cost of software
development. Therefore, testers have to come up with ways to
effectively test software systems while avoiding setbacks and
staying within the allotted time and budget. Some ML-based
approaches were proposed to help testers to better estimate
circumstances that can affect the cost of software testing
efforts. Zhu et al. [53] (PS10), for instance, developed an
approach to estimate the effort to execute test suites. Their
approach characterizes test suites as a three-dimension vector
that combines the number of test cases, execution complexity,
and the experience of the tester in charge of executing the test
suite. Examples are presented to show the usefulness of their
proposed approach.

Cheatham et al. [57] (PS14) investigated how ML algorithms
can be used to determine the factors that are important in
predicting testing time. More specifically, a ML algorithm was
used to learn the most important attributes that influence testing

time from a database containing data on 25 software projects.
The resulting classification tree was then used to predict the
testing time for new software systems. Silva et al. [61] (PS18)
also employed a ML-based approach towards estimating the
execution effort of functional test suites. PS18 is the only
primary study in this category that through experimental
evidence provides a stronger case for using ML to predict
the effort involved in testing-related activities. In a more recent
study, Badri et al. [90] (PS47), set out to employ ML algorithms
to predict test code size for object-oriented software in terms of
test lines of code (TLOC), which is a key indicator of testing
effort. Badri et al. used different ML algorithms to build the
prediction models. To predict testing effort in terms of TLOC,
Badri et al. used several metrics as input to the ML algorithms.
According to their results, their metric-based approach yields
accurate predictions of TLOC.

6) Mutation testing automation: From a research viewpoint,
mutation testing is a mature technique [39]. This technique is
centered around the idea of devising test data for uncovering
artificially introduced faults. These faults are slight syntactic
changes made to a given program. Each modified version of
the original program is a mutant. Mutation operators dictate
how mutants are created: a hallmark of the changes introduced
by mutation operators is that they are analogous to mistakes
that programmers make. Mutation testing is often used as
a “gold standard” to compare testing approaches. Due to its
effectiveness, mutation testing is widely used as an experimental
research technique. In effect, some of the primary studies
have experimentally used mutation testing to compare the
effectiveness of their proposed approaches (e.g., PS6, PS12,
PS20).

Despite the effectiveness of this technique, manually carrying
out mutation testing entails a lot of human effort. Even when
taking into account moderate-sized programs, mutation testing
yields hundreds of mutants. Hence, mutation testing hinges on
the existence of tools. In fact, mutation testing is costly and
time-consuming even when automated. Recently, researchers
have been trying to overcome these hurdles to the widespread
adoption of this technique by using ML algorithms to expedite
some steps of the process, e.g., mutant execution [44, 50].

Strug and Strug [44](PS1) put forward an approach to reduce
the computational cost associated with mutation execution. In
their approach a randomly selected number of mutants is run
and the performance of the mutants that were not selected
is assessed on the basis of their similarity to the executed
mutants. To measure the similarity among mutants, they are
turned into a graph representation, which is then analyzed by
a ML algorithm. This approach to classifying mutants thus
reduces the number of mutants that need to be executed by
evaluating the quality of the test suite without running it against
all generated mutants. Also with the purpose of reducing the
cost of executing mutants, Jalbert and Bradbury [50] (PS7)
devised a ML-based approach tailored towards predicting the
effectiveness of given test suite based on a combination of
source code and test suite metrics. Zhang et al. [78] in PS7
propose an approach to predicting mutation testing results
without having to run the mutants. Their approach creates a
model that is based on features related to mutants and tests.

IEEE TRANSACTIONS ON RELIABILITY 14

Such a model is then used to predict whether a mutant can be
killed by the current test suite.

E. Mapping primary studies according to ML algorithm

As mentioned, there are a plethora of ML algorithms.
Most of these algorithms fall into one of two broad learning
categories: supervised or unsupervised learning. Supervised
learning is used when for each input variable (i.e., X) there
is a corresponding output variable (i.e., Y). In such scenario,
with the purpose of predicting the outputs for future inputs
or better understanding the relationship between the input and
the output, an algorithm is used to learn the mapping function
(i.e., model) from the input to the output: Y = F(X) [20].
Put simply, supervised algorithms “learn” by generalizing from
known examples. These algorithms find ways to produce the
desired output based on the pairs of inputs and desired outputs
provided by the user. In contrast, unsupervised learning is when
only input data is available, so the goal is to understand the
underlying relationship between the inputs. In this setting,
unsupervised learning often is concerned with clustering
problems, in which the goal is to determine whether the inputs
fall into distinct groups [20]. According to the results of our
mapping study, the vast majority of software testing issues have
been formulated and tackled as supervised learning problems
(Table V). Only three unsupervised learning algorithms were
used to automate software testing.

It is worth noting that some ML algorithms do not fit in the
classification that groups them into supervised and unsupervised.
When only a subset of the input data has output data associated
to it, the problem lies between supervised and unsupervised
learning. This is often referred to as semi-supervised prob-
lem. In this setting, algorithms have to incorporate into the
analysis the input data for which the associated output data
are available as well as the input data for which there are
no corresponding output data [20]. Interestingly, our results
indicate that semi-supervised algorithms have been used more
often than unsupervised algorithms. One of the primary studies
also investigated an algorithm that can be used in a supervised
or semi-supervised fashion: the Expectation-Maximization
(EM) algorithm was used in PS9. The classification scheme
in Table V also includes the category meta-algorithm: a meta-
learning algorithm combines the predictions of several different
ML algorithms in some way so as to utilize the strengths of
each algorithm [16]. Only one primary study falls into this
category, this primary study evaluated the performance of
a meta-algorithm (i.e., AdaBoost) when applied to support
software testing: PS8.

Table V does not list all primary studies, so the numbers in
the table do not amount to the total number of ML algorithms
investigated by the set of selected studies. Some studies describe
more than one solution, thus some primary studies (e.g., PS9
and PS44) fall into more than one category. However, we
believe that the taxonomy presented in Table V is useful
because it gives an insight into the types of input data that
need to be taken into account at the intersection of these
two research areas as well as how software testing issues are
more naturally formulated as ML problems. Although a useful

classification scheme, there are still algorithms that do not quite
fit into the five categories in Table V. For example, ANNs
can be trained in either a supervised or unsupervised fashion.
Therefore, we further classified the primary studies according
to the similarity of the ML algorithms that they investigate.
Stated more formally, we grouped the selected studies based on
the function of the ML algorithms. This classification scheme
is detailed in the next subsection.

TABLE V
ALGORITHMS USED IN THE PRIMARY STUDIES CLASSIFIED INTO FIVE

BROAD CATEGORIES. THE MAJORITY OF THE PRIMARY STUDIES EMPLOYED
SUPERVISED LEARNING ALGORITHMS.

Learning Category Primary Studies Total
Meta-algorithm PS8 1

Semi-supervised PS4, PS22, PS23, PS31, and PS38 4

Supervised PS1, PS2 (two algorithms), PS3
(three algorithms), PS5, PS6, PS7,
PS8 (four algorithms), PS9, PS10,
PS11, PS12, PS13, PS18, PS22,
PS24, PS30, PS32, PS33, PS34,
PS35, PS36, PS37, PS39 (three al-
gorithms), PS40, PS41, PS42, PS44,
and PS47 (six algorithms)

41

Supervised and semi-
supervised

PS9 2

Unsupervised PS9 (two algorithms), PS14, and PS44 4

1) Classifying the algorithms according to their function:
To classify the existing research spectrum and give a better idea
of the ML algorithms that have been most used to automate
software testing, we decided to further classify the algorithms
in terms of their function. We studied the terminology used in
the ML literature and proposed eight categories that attempt to
capture the essence of the function of different ML algorithms.
These eight categories are the following: ANNs, Bayesian,
clustering, decision tree, ensemble algorithm, instance based,
learning finite automata, and regression.

a) ANNs: This group includes studies that employ models
designed to resemble biological neural networks. These models
can be described as directed graphs whose nodes represent
neurons and edges correspond to links between them. Each
neuron performs computations that contribute to the learning
process of the network. In this setting, neurons receive as
input a weighted sum of the outputs of the neurons connected
to them [22]. Put simply, ANNs are a parallel information-
processing structure that learns and stores knowledge about
their environment. This learning paradigm has been mostly
used to cope with the test oracle problem (as discussed in
Subsection V-D2). This is the largest category, comprising 16
primary studies (Table VI). The learning process, or training,
of ANNs can be guided by a number of different algorithms.
Moreover, there are many types of ANNs. Considering the 16
primary studies, five employed back-propagation, two were
multilayer perceptron, one used cascade feed forward, one used
feed-forward, and one was a radial basis function. Some studies
do not describe the specific algorithm they used to realize their

IEEE TRANSACTIONS ON RELIABILITY 15

ANNs.

TABLE VI
ALGORITHMS USED IN THE PRIMARY STUDIES CLASSIFIED ACCORDING TO

THEIR FUNCTION.

Similarity/Function Primary Studies Total
ANN PS8, PS18, PS20, PS29, PS30

(three algorithms), PS32, PS33 (two
algorithms), PS34, PS39, PS40,
PS44, PS45, and PS47

16

Bayesian PS3 (two algorithms), PS8, and PS47 4

Clustering PS9 (three algorithms), PS14, and PS23 5

Decision Tree PS3, PS6, PS8 (two algorithms),
PS9, PS12, PS13, PS24, PS30,
PS32, PS35, PS36, PS42, and PS47

14

Ensemble Algorithm PS8 1

Instance Based PS1 and PS48 2

Learning Finite Automata PS31 and PS46 2

Regression PS3, PS8, and PS47 3

b) Bayesian: Studies in this group investigate algorithms
that apply Bayes’ Theorem [40]. PS3 investigated Bayesian
Network and Naive Bayes. PS8 examined the performance of
a Naive Bayes learner and predictor. PS47 investigated a Naive
Bayes learner can be used to predict the amount of TLOC for
object-oriented software.

c) Clustering: This category comprises the five primary
studies that report on algorithms concerned with organizing
the data into groups having as much commonality as possible.
COBWEB and K-means are commonly used for clustering,
these algorithms appear in two studies each. Usually, these
algorithms are trained in an unsupervised fashion. An exception
is PS23, which employed K-means in a semi-supervised manner.
As mentioned, EM appears in one study (PS9).

d) Decision tree: Based on actual values in the training
data, decision tree learners yield a model in the form of a tree
structure. The resulting trees are made up of logical decisions,
which can be interpreted as follows. Nodes represent decisions
to be made on a given attribute, branches indicate the possible
decision’s choices and leaf nodes denote the result of following
a sequence of decisions [16]. Given that the generated trees
are essentially flowcharts, these learners lend themselves well
to creating models that need to be interpreted by users. Also,
another advantage of these algorithms is that they are applicable
to numerical or categorical data. Because of these advantages,
these algorithms have been widely used to automate software
testing tasks: 14 primary studies outline approaches based on
decision tree learners. Of these 14 primary studies, five do not
describe the specific decision tree algorithm they implemented,
seven used the C4.5 implementation, one employed the C5.0
implementation, and one approach was built on M5-based
implementation. Thus, we can presume that C4.5 is the most
commonly adopted implementation of this algorithm.

e) Ensemble algorithm: The algorithmic approaches12

in this category are concerned with combining somewhat
independent models (termed base learners) of multiple learners
into an ensemble [17]. The key idea stems from the observation
that an ensemble performs significantly better than a single
model provided that there is a significant number of independent
models [18]. Only one primary study employed an ensemble
algorithm (i.e., AdaBoost): PS8.

f) Instance based: This category was created to group the
algorithms that build up a database of example data. To find
the best match or make predictions, algorithms in this group
compare new data with data in a database using similarity
measures, instead of performing explicit generalizations. This
category has only two studies: PS1, which used the k-nearest
neighbors (k-NN) algorithm, and PS48, which used the KStar
(K*) algorithm to analyze GUI elements and generate functional
test cases.

g) Learning finite automata: This is a topic that has
been explored in various forms by lots of researchers since
the early days of computer science [18]. One study looked
into how this type of learning algorithm can be harnessed
to automate software testing activities: PS31. In PS31 [74],
Hungar et al. make a theoretical contribution towards enhancing
the practicality of learning models so that these models can be
used to steer testing efforts of real-world systems. In PS46 [89],
Groz et al. describe a method called hW-inference, whose
purpose is to infer finite state machine (FSM) models from non-
resettable systems. To this end, the authors combine learning
methods with conformance testing.

h) Regression: this category gathers primary studies that
employ ML algorithms that are based on regression. Regression
is a widely used statistical tool for modeling the relationship
between variables and predicting a quantitative response. When
using regression algorithms, the model is progressively refined
using measures of error in the predictions made by the model.
Three primary studies employed algorithms that are based on
regression: PS3 (i.e., logistic regression), PS8 (i.e., additive
regression), and PS47 (i.e., linear regression).

F. Classifying the studies according to the information learned

According to our results, several primary studies use ML
algorithms as data analysis tools to extract information from a
number of software artifacts. Many primary studies propose
ML-enhanced approaches that use source code or source code
related metrics as input to their learning algorithms: PS7, PS9,
PS18, and PS39. Some studies take into account artifacts at a
higher abstraction level as, for instance, graphs or graph-like
representations. PS1 employs ML to extract information from
graph kernels generated from hierarchical control flow graphs
(HCFG). Similarly, PS11 [54] also takes into account graph
kernels.

In this mapping, we found that the software artifacts most
frequently taken into account by ML-based approaches are
test cases (i.e, sets of inputs and outputs) and test suite
metrics. Many studies extract information from test cases:
PS3, PS7, PS8, PS9, PS10, PS12, PS14, PS15, PS18, PS25,

12This algorithm is ofter referred to as ensemble method.

IEEE TRANSACTIONS ON RELIABILITY 16

PS28, PS29, PS30, PS34, PS40, and PS42. Although infor-
mation on test cases is widely used, this sort of information
is seldom considered in isolation. Often, other information
sources are also used during the learning process.

Aside from source code, graphs, and test cases, ML al-
gorithms have also been used to analyze regular expres-
sions (i.e., PS2), features from polygonal models (i.e., PS6),
formal specifications (i.e., PS13 [56]), abstract GUI models
(i.e., PS21), GUI elements (i.e., PS48), false positives and false
negatives yielded by oracles (i.e., PS24 [67]), Web logs (i.e.,
PS26), and images (i.e., PS32). An overview of the inputs (i.e.,
elements learned) and outputs (i.e., resulting models) of each
ML-based approach is provided in Appendix C.

G. Advantages and drawbacks of using ML algorithms to
automate software testing

As discussed in the previous sections, ML algorithms are
appealing for automating a wide range of software testing activ-
ities. Most selected studies use ML algorithms to “synthesize”
test-related artifacts (e.g., test cases) into a form that is suitable
for decision-making, be it either fully-automated or with human
interaction. There are a plethora of ML algorithms and they
differ in terms of their function, some of which seem to be
more suitable to automate certain testing activities than others.
In this section we discuss the advantages and disadvantages of
applying ML to solve software testing activities.

ANNs have been widely used due to their ability to solve
multiple types of problems related to test oracle automation.
Nevertheless, as pointed out by Anderson et al. [77], issues
tend to surface when it is needed to extract the model or
interpret what an ANN has learned. As Louridas and Ebert
[21] remark, ML algorithms lie on a spectrum based on the
easy of understanding their results. ANNs, for example, do not
yield anything that can be interpreted by users: the network
itself embodies all learned information. On the other end of the
spectrum, some ML algorithms yield human-readable models.
For example, one of the advantages of decision tree algorithms
is that they produce flowchart-like tree structures that are a
somewhat straightforward to interpret by humans. However,
according to the results of our mapping, it turns out that the
decision trees generated by these algorithms are not always
intuitive. In PS24, Sprenkle et al. reported that the decision
trees yielded by their approach led to decisions (i.e., in this
case concerning oracle combinations) that were non-intuitive
and contrary to what they were expecting.

Given that most software testing activities are challenging,
we were interested in investigating to what extent software
testing activities can be automated by ML algorithms as well as
how practical it is to apply ML-based approaches. As pointed
out by Briand [59], one of the few key limitations of ML
algorithms that impact their usefulness for supporting certain
testing activities is that testers have to ensure that relevant data
is available. In effect, the available data must be in a form
that facilitates the learning process using ML algorithms. For
instance, in the approach to refining test cases proposed by
Briand et al. [55], a human expert has to provide inputs in the
form of categories and choices. This sort of pre-processing,

which is often necessary, is one of the main disadvantages
of relying on standard ML algorithms. It is worth noting,
however, that this disadvantage is inherent to the use of some
ML algorithms.

We conjecture that a possible obstacle to the adoption of ML
algorithms is that, if these algorithms are to be used effectively,
software testing efforts will have to include informed testers
at all levels. These testers will have to be able to deploy and
interrogate the outcomes of ML-based approaches. In many
cases, this will entail having people who might not have an
in-depth understanding of the code under test but know how to
work knowledgeably with the strengths and weaknesses of ML
algorithms. More specifically, the adoption of ML algorithms
might blur the roles of testers and data scientists. Testers will
not be able to truly leverage the benefits of ML algorithms
without understanding the assumptions and implications of
these algorithms.

H. Most prolific researchers in the area

Upon analyzing the primary studies, we also counted the
number of primary studies published by each author as a
way to evaluate the author’s impact. We found that only five
researchers have published more than one paper: Lionel Briand
(i.e., PS12 and PS16) and Abraham Kandel and Mark Last
(i.e., PS20 and PS33), and Neil Walkinshaw and Gordon Fraser
(i.e., PS8 and PS43) Although the rate of papers published in
the area seems to have increased since 2008, our results would
seem to suggest that there is no research group specifically
dealing with ML and software testing.

VI. POTENTIAL RESEARCH DIRECTIONS

Researchers have been able to successfully harness ML
algorithms to automate a number of software testing activities.
While a fair amount of research has been carried out in
this direction, we found that most research efforts are not
methodologically sound and some issues remain unexplored.
In this section, we present several potential directions for
exploring the synergy between ML and software testing.

We posit that applying ML algorithms to a wider range of
software testing problems could be a useful trend to follow. In
particular, a number of approaches have been developed for
automating mutation testing [39]. However, according to our
results, not much has been done in terms of drawing on ML
algorithms to expedite mutation testing. For example, ascertain
whether a program and one of its mutants are equivalent is
an undecidable problem. Consequently, this activity is often
carried out by humans. Although this has drawn the attention of
many researchers over the years, resulting in many theoretical
contributions, this is still an open challenge. Along the lines
of what we have previously argued, ML algorithms have the
potential to outperform current approaches to detecting possible
equivalent mutants as well as automating other facets of this
test criterion. However, as discussed in the previous sections,
there has not been much research work in this direction.

ML algorithms have become instrumental in automating
activities in other fields. Although these algorithms have come
a long way, software testing researchers and practitioners have

IEEE TRANSACTIONS ON RELIABILITY 17

only started to tap into the potential of these algorithms. Given
that automation is seen as a practical approach to coping with
the increasing demand for reliable software systems, we believe
that the overarching motivation for research in this area should
be automating most software testing activities. However, despite
future advances in ML, some human collaboration will still be
needed. Thus, ML-based tools should not be designed as black-
box solutions. Researchers should seek to provide solutions that
allow users to easily interrogate the model behind the outputs.
An effective step towards addressing this challenge would be to
carry out research efforts that bridge the gap between academia
and industry; we believe that this will increase the chances of
coming up with solutions that can be translated into tools that
are useful in industrial settings.

Finally, as pointed out by Briand [59], there is very little
empirically grounded evidence supporting the cost-effectiveness
of the existing applications of ML algorithms in software testing.
Thus, more empirical research is needed to examine how ML
models perform in software testing settings.

VII. THREATS TO VALIDITY

In this section we discuss the factors that can threaten the
validity of our systematic mapping study. When carrying out
systematic mappings, threats arise from the design, conduct,
analysis, and interpretation. There are several classification
schemes for different types of threats to the validity of empirical
studies. In this section, we follow the classification scheme
proposed by Campbell and Stanley [41] and followed by
many software engineering researchers [42]. As Campbell and
Stanley state, threats to validity can be categorized into four
major categories: construct validity, internal validity, conclusion
validity, and external validity. More specifically, considering
our mapping study, the main factors might have introduced
threats to the validity of our study are the following: selection
of digital libraries, definition of search string, the time frame
we chose, researcher bias during study selection, inaccurate
data extraction, and researcher-biased data synthesis. These
factors are discussed in the following subsections.

A. Construction validity
Construct validity has to do with whether the concepts being

investigated are interpreted correctly and whether all relevant
studies were selected. In this mapping study, the main concepts
under consideration are ML algorithms and software testing
activities. In hopes of ensuring the correct interpretation of
these concepts, we checked their definitions and discussed them
among the authors to reach a consensus. The soundness of
the categorization schemes we created during data extraction
hinge on how we interpreted the concepts in both areas. Due
to the interdisciplinarity of the subject, we cannot rule out
the possibility that some primary studies might have been
misclassified. To mitigate this issue, the categorization schemes
underwent several reviews by the authors.

B. Internal validity
The two main threats to the internal validity of our study are

the following: (i) missing relevant papers and (ii) researcher-
bias during paper selection. Although mapping studies cover

a broad scope, the search is often restricted to one or more
databases [31]. In this study, we also restricted our search to
the most widely used databases. To mitigate the threat of failing
to include relevant papers, we searched the digital libraries
that are most likely to cover most of the literature on software
engineering and a general indexing system. We believe that
the set of primary studies accounts for most of the relevant
papers on applying ML algorithms to support software testing
activities. However, we cannot rule out the possibility that we
may have missed several relevant studies during the conduction
of the automated search in these databases. To cope with the
interdisciplinarity of the subject area, we derived the keywords
for our search string from the RQs and based on the keywords
used in the quasi-gold standard. We also used the quasi-gold
standard to assess the completeness of automated searches we
performed.

Researcher bias during data extraction can potentially lead
to inaccuracies in data extraction, which may affect the
classification and analysis of the selected studies. In hopes of
mitigating this issue we took some preventive measures. First,
all DIs extracted during this mapping study were discussed
among the researchers so that an agreement on the meaning of
each DI was achieved previous to data extraction. Second, as
mentioned, to ensure that the two researchers in charge of data
extraction had a clear understanding of all DIs, they pilot-tested
the data extraction form. The results of the pilot data extraction
were then discussed so as to reach a consensus. Third, when
needed, a third researcher went over the data extraction results
to settle any disagreement.

C. Conclusion validity

Conclusion validity is mainly concerned with the degree
to which the conclusions we reached are reasonable. We
answered the RQs and drew conclusions based on information
gleaned from the primary studies, e.g., number of papers
investigating test data generation using ML algorithms. The
conclusion validity issue lies in whether there is a relationship
between the number of studies we found and current research
trends in the subject area. We cannot rule out this threat.
Another potential threat is that some primary studies might
have been misclassified. To mitigate this threat, data extraction
and synthesis were undertaken as a team, with two reviewers
working together to reach agreements concerning the extracted
data and classification thereof: as mentioned, two reviewers
worked together to create the classification schemes presented
in the previous sections. However, we cannot fully rule out
this threat because of the qualitative nature of this systematic
mapping, which makes data extraction and synthesis (i.e.,
classification) more susceptible to bias.

D. External validity

External validity is concerned with the extent to which the
outcomes from our systematic mapping can be generalized to
the intended population of interest. Therefore, one potential
issue stems from assessing whether the primary studies are
representative of all the relevant studies in the subject area. To
mitigate this issue we followed a comprehensive search process

IEEE TRANSACTIONS ON RELIABILITY 18

during which we tried to be as inclusive as possible. Although
we did not take into account studies written in languages
other than English, we believe that the primary studies we
selected contain enough information to give researchers and
practitioners an insight into how ML has been employed to
support software testing.

Some primary studies do not provide all the information
needed to fill out the extraction form. Thus, we often had
to infer some information concerning some DIs during data
synthesis. For example, some primary studies mention that their
ML approach results in several advantages without elaborating
on these advantages in the text. Similarly, some primary studies
do not mention the drawbacks of their approaches.

VIII. CONCLUDING REMARKS

ML and software testing are two broad areas of active
research whose intersection has been drawing the attention
of researchers. Our systematic mapping focused on making a
survey of research efforts based on using ML algorithms to
support software testing. We believe that our mapping study
provides a valuable overview of the state of the art in ML
applied to software testing, which is useful for researchers and
practitioners looking to understand this research field either
for the goal of leveraging or contributing to that field.

We posed the following RQs and provided answers for them
through the analysis of the results of our systematic mapping
study:

a) RQ1: What is the intensity of the research on ML
applied to software testing?

According to our results, ML algorithms have been applied
to tackle software testing problems since 1995, but only very
recently ML algorithms caught the interest of researchers and
practitioners. Our results suggest that interest in applying ML
algorithms to solve software testing problems has spiked in the
last few years. In effect, this renewed interest in ML-related
approaches to software testing started in 2010 and has been
more pronounced since 2016 onwards.

b) RQ2: What types of ML algorithms have been used
to cope with software testing issues?

The vast majority of the approaches described in the primary
studies automate software testing using supervised learning
algorithms. According to our results, ANNs and decision trees
are the most widely used algorithms.

c) RQ3: Which software testing activities are automated
by ML algorithms?

ML algorithms have been used mainly for oracle construction
and for test case generation, refinement, and evaluation. Another
application that seems to be gaining traction is using ML
algorithms to predict the cost of testing-related activities.

d) RQ4: What trends can be observed among research
studies discussing the application of ML to support software
testing activities?

A trend we observed is that the oracle problem tends to
be tackled by employing either ANN- or decision tree based
approaches. Interestingly, these approaches lie on opposite ends
of a spectrum based on how easy it is to understand their results.
ANNs do not yield anything that can be interpreted by users:

the network itself embodies all learned information. On the
other end of the spectrum, decision trees yield flowchart-like
tree structures that are easily interpretable by humans.

e) RQ5: What are the drawbacks and advantages of the
algorithms when applied to software testing?

The main advantage of the ML-based approaches described
in the primary studies is that most approaches are likely to
scale very well, thus we believe they can be used to support
increasingly complex testing activities. Another advantage is
that most approaches require minimal human intervention. As
for the drawbacks, upon analyzing our results, we found that a
key limitations of ML algorithms is that testers have to ensure
that relevant data is available. Moreover, the available data
must be in a form that facilitates the learning process using
ML algorithms. Therefore, pre-processing all the available
data is an inherent disadvantage of some ML algorithms.
Another drawback that has the potential to hinder widespread
adoption of ML algorithms is that, if these algorithms are
to be used effectively, software testing efforts will have to
include informed testers at all levels. These testers will have to
be able to deploy and interrogate the outcomes of ML-based
approaches. In many cases, this will entail having people who
might not have an in-depth understanding of the SUT but know
how to work knowledgeably with the strengths and weaknesses
of ML algorithms. We conjecture that the adoption of ML
algorithms might in a way blur the roles of testers and data
scientists. Testers will not be able to truly leverage the benefits
of ML algorithms without understanding the assumptions and
implications of these algorithms.

f) RQ6: What problems have been observed by re-
searchers when applying ML algorithms to support software
testing activities? Basically, the two problems faced by re-
searchers when trying to apply ML algorithms to solve software
testing problems are (i) Most ML algorithms need a substantial
amount of training data and (ii) data quality is key for ML
algorithms to function as intended.

g) RQ7: To what extent have these ML-based approaches
been evaluated empirically?

We found that the body of empirical research available
at the intersection of ML and software testing leaves much
to be desired, specially when compared with the level of
understanding and body of evidence that have been achieved
in other fields. Although most selected studies present sections
that were termed “experiment”, we found that these evaluations
could not be strictly considered as such: these sections lack
the necessary rigor to be considered an experiment description.
More specifically, most experiments were not described well,
methods of data collection and analysis were often poorly
described, and few studies elaborate on validity issues.

h) RQ8: Which individuals are most active in this research
area?

Our results would seem to suggest that there is no research
group specifically dealing with ML and software testing.

A. Implications for future research and practice

We believe that a number of implications can be drawn from
the results of our systematic mapping study. For research, our

IEEE TRANSACTIONS ON RELIABILITY 19

results indicate that, even though most selected studies provide
preliminary empirical evidence to substantiate their claims,
there is a clear need for more sound empirical studies. Thus,
an important research challenge is to increase the quality of
studies on ML algorithms applied to support software testing.

As mentioned, most solutions proposed in the selected studies
scale well, and we believe that some problems currently being
faced by the software testing industry could benefit from ML-
based solutions. Nevertheless, few primary studies evaluated
their ML-based solutions in industrial settings or using industry-
grade software. We think that researchers and practitioners
should collaborate to create a research agenda that will guide
progress in this area. It is beyond the scope of this article to
propose such an agenda, however our overview of the literature
on how researchers have harnessed ML algorithms to automate
software testing may provide a foundation for the creation of
one.

For practitioners, the results of this systematic mapping show
that many promising approaches that employ ML algorithms
to automate software testing activities have been reported. It
would be interesting if practitioners could participate in research
projects in the future in order to provide additional experimental
evidence to help validate these ML-based approaches. In
this context, action research [43] could be used to guide the
collaboration between researchers and practitioners.

REFERENCES

[1] P. E. Ceruzzi, Computing: A Concise History (The MIT
Press Essential Knowledge series). The MIT Press, 2012.

[2] J. C. Westland, “The cost of errors in software develop-
ment: Evidence from industry,” Journal of Systems and
Software, vol. 62, no. 1, pp. 1–9, 2002.

[3] P. Ammann and J. Offutt, Introduction to Software Testing,
2nd ed. Cambridge University Press, 2016.

[4] G. J. Myers, C. Sandler, and T. Badgett, The Art of
Software Testing, 3rd ed. Wiley, 2011.

[5] M. J. Harrold, “Testing: A Roadmap,” in Proceedings of
the Conference on The Future of Software Engineering.
ACM, 2000, pp. 61–72.

[6] C. A. Welty and P. G. Selfridge, “Artificial Intelligence
and Software Engineering: Breaking the Toy Mold,”
Automated Software Engineering, vol. 4, no. 3, pp. 255–
270, 1997.

[7] M. Harman, “The Role of Artificial Intelligence in
Software Engineering,” in First International Workshop
on Realizing Artificial Intelligence Synergies in Software
Engineering (RAISE), 2012, pp. 1–6.

[8] T. Xie, “The Synergy of Human and Artificial Intelli-
gence in Software Engineering,” in Second International
Workshop on Realizing Artificial Intelligence Synergies
in Software Engineering (RAISE), 2013, pp. 4–6.

[9] J. Bell, Machine Learning: Hands-On for Developers and
Technical Professionals. Wiley, 2014.

[10] D. Zhang and J. J. Tsai, “Machine Learning and Software
Engineering,” Software Quality Journal, vol. 11, no. 2,
pp. 87–119, 2003.

[11] S. R. Vergilio, J. A. C. Maldonado, and M. Jino, “Infeasi-
ble paths in the context of data flow based testing criteria:

identification, classification and prediction,” Journal of
the Brazilian Computer Society, vol. 12, pp. 71–86, 06
2006.

[12] B. Beizer, Software Testing Techniques, 2nd ed. Van
Nostrand Reinhold Co., 1990.

[13] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software Unit
Test Coverage and Adequacy,” ACM Computing Surveys
(CSUR), vol. 29, no. 4, pp. 366–427, 1997.

[14] S. Rapps and E. J. Weyuker, “Data flow analysis tech-
niques for test data selection,” in Proceedings of the 6th
International Conference on Software Engineering. IEEE,
1982, pp. 272–278.

[15] A. Orso and G. Rothermel, “Software testing: A research
travelogue (2000–2014),” in Proceedings of the on Future
of Software Engineering, ser. FOSE 2014. ACM, 2014,
pp. 117–132.

[16] B. Lantz, Machine Learning with R, 2nd ed. Packt
Publishing, 2015.

[17] M. Bowles, Machine Learning in Python: Essential
Techniques for Predictive Analysis. Wiley, 2015.

[18] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Founda-
tions of Machine Learning. The MIT Press, 2012.

[19] P. Flach, Machine Learning: The Art and Science of
Algorithms that Make Sense of Data. Cambridge
University Press, 2012.

[20] G. James, D. Witten, T. Hastie, and R. Tibshirani, An
Introduction to Statistical Learning: with Applications in
R. Springer Texts in Statistics, 2013.

[21] P. Louridas and C. Ebert, “Machine learning,” IEEE
Software, vol. 33, no. 5, pp. 110–115, 2016.

[22] S. Shalev-Shwartz and S. Ben-David, Understanding Ma-
chine Learning: From Theory to Algorithms. Cambridge
University Press, 2014.

[23] C. Anderson, A. V. Mayrhauser, and R. Mraz, “On the Use
of Neural Networks to Guide Software Testing Activities,”
in International Test Conference, 1995, pp. 720–729.

[24] H. Singh, M. Conrad, and S. Sadeghipour, “Test case
design based on z and the classification-tree method,” in
Proceedings of the IEEE International Conference on
Formal Engineering Methods, 1997, pp. 81–90.

[25] J. Bowring, J. M. Rehg, and M. J. Harrold, “Active
Learning for Automatic Classification of Software Behav-
ior,” in Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis. ACM,
2004, pp. 195–205.

[26] L. C. Briand, “Novel applications of machine learning in
software testing,” in The Eighth International Conference
on Quality Software (QSIC), 2008, pp. 3–10.

[27] W. Choi, G. Necula, and K. Sen, “Guided GUI Testing
of Android Apps with Minimal Restart and Approximate
Learning,” in Proceedings of the ACM SIGPLAN Inter-
national Conference on Object Oriented Programming
Systems Languages and Applications. ACM, 2013, pp.
623–640.

[28] J. Zhang, Z. Wang, L. Zhang, D. Hao, L. Zang, S. Cheng,
and L. Zhang, “Predictive Mutation Testing,” in Proceed-
ings of the 25th International Symposium on Software
Testing and Analysis. ACM, 2016, pp. 342–353.

IEEE TRANSACTIONS ON RELIABILITY 20

[29] M. Noorian, E. Bagheri, and W. Du, “Machine Learning-
based Software Testing: Towards a Classification Frame-
work,” in International Conference on Software Engineer-
ing and Knowledge Engineering (SEKE). Knowledge
Systems Institute Graduate School, 2011, pp. 225–229.

[30] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines
for Conducting Systematic Mapping Studies in Software
Engineering: An Update,” Information and Software
Technology, vol. 64, pp. 1–18, 2015.

[31] B. A. Kitchenham, D. Budgen, and P. Brereton, Evidence-
Based Software Engineering and Systematic Reviews.
Chapman and Hall/CRC, 2015.

[32] B. A. Kitchenham, D. Budgen, and O. P. Brereton, “Using
Mapping Studies as the Basis for Further Research –
A Participant-observer Case Study,” Information and
Software Technology, vol. 53, no. 6, pp. 638–651, 2011.

[33] V. R. Basili, G. Caldiera, and H. D. Rombach, “The Goal
Question Metric Approach,” in Encyclopedia of Software
Engineering. Wiley, 1994.

[34] H. Zhang, M. A. Babar, and P. Tell, “Identifying Rele-
vant Studies in Software Engineering,” Information and
Software Technology, vol. 53, no. 6, pp. 625–637, 2011.

[35] C. Wohlin, “Guidelines for Snowballing in Systematic
Literature Studies and a Replication in Software Engineer-
ing,” in Proceedings of the 18th International Conference
on Evaluation and Assessment in Software Engineering,
ser. EASE. ACM, 2014, pp. 38:1–38:10.

[36] R. Wieringa, N. Maiden, N. Mead, and C. Rolland, “Re-
quirements Engineering Paper Classification and Evalua-
tion Criteria: A Proposal and a Discussion,” Requirements
Engineering, vol. 11, no. 1, pp. 102–107, 2005.

[37] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and
S. Yoo, “The Oracle Problem in Software Testing: A
Survey,” IEEE Transactions on Software Engineering,
vol. 41, no. 5, pp. 507–525, 2015.

[38] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold,
“Prioritizing Test Cases For Regression Testing,” IEEE
Transactions on Software Engineering, vol. 27, no. 10,
pp. 929–948, 2001.

[39] Y. Jia and M. Harman, “An Analysis and Survey of the
Development of Mutation Testing,” IEEE Transactions
on Software Engineering, vol. 37, no. 5, pp. 649–678,
2011.

[40] J. V. Stone, Bayes’ Rule: A Tutorial Introduction to
Bayesian Analysis. Sebtel Press, 2012.

[41] D. T. Campbell and J. Stanley, Experimental and Quasi-
Experimental Designs for Research. Wadsworth Publish-
ing, 1963.

[42] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson,
B. Regnell, and A. Wesslén, Experimentation in Software
Engineering. Springer, 2012.

[43] E. T. Stringer, Action Research, 4th ed. SAGE, 2013.

APPENDIX A
PRIMARY STUDIES

This appendix lists all primary studies.
[44] PS1: J. Strug and B. Strug, “Machine learning approach

in mutation testing,” in Proceedings of the International

Conference on Testing Software and Systems. Springer,
2012, pp. 200–214.

[45] PS2: R. Gove and J. Faytong, “Identifying Infeasible GUI
Test Cases Using Support Vector Machines and Induced
Grammars,” in Proceedings of the International Con-
ference on Software Testing, Verification and Validation
Workshops (ICSTW), 2011, pp. 202–211.

[46] PS3: D. Cotroneo, R. Pietrantuono, and S. Russo, “A
Learning-based Method for Combining Testing Tech-
niques,” in Proceedings of the International Conference
on Software Engineering (ICSE). IEEE, 2013, pp. 142–
151.

[47] PS4: G. Xiao, F. Southey, R. C. Holte, and D. Wilkinson,
“Software Testing by Active Learning for Commercial
Games,” in Proceedings of the 20th National Conference
on Artificial Intelligence - Volume 2. AAAI Press, 2005,
pp. 898–903.

[48] PS5: F. Wang, L. W. Yao, and J. H. Wu, “Intelligent
Test Oracle Construction for Reactive Systems without
Explicit Specifications,” in International Conference on
Dependable, Autonomic and Secure Computing (DASC),
2011, pp. 89–96.

[49] PS6: W. K. Chan, J. C. F. Ho, and T. H. Tse, “Finding
Failures from Passed Test Cases: Improving the Pattern
Classification Approach to the Testing of Mesh Simpli-
fication Programs,” Software Testing, Verification and
Reliability, vol. 20, no. 2, pp. 89–120, 2010.

[50] PS7: K. Jalbert and J. S. Bradbury, “Predicting Mutation
Score Using Source Code and Test Suite Metrics,” in
Proceedings of the International Workshop on Realizing
AI Synergies in Software Engineering. IEEE, 2012, pp.
42–46.

[51] PS8: G. Fraser and N. Walkinshaw, “Assessing and
Generating Test Sets in Terms of Behavioural Adequacy,”
Software Testing, Verification and Reliability, vol. 25,
no. 8, pp. 749–780, 2015.

[52] PS9: A. R. Lenz, A. Pozo, and S. R. Vergilio, “Link-
ing Software Testing Results with a Machine Learning
Approach,” Engineering Applications of Artificial Intelli-
gence, vol. 26, no. 5-6, pp. 1631–1640, 2013.

[53] PS10: X. Zhu, B. Zhou, L. Hou, J. Chen, and L. Chen,
“An Experience-Based Approach for Test Execution Effort
Estimation,” in The International Conference for Young
Computer Scientists, 2008, pp. 1193–1198.

[54] PS11: U. Kanewala, J. M. Bieman, and A. Ben-Hur,
“Predicting metamorphic relations for testing scientific
software: A machine learning approach using graph
kernels,” Software Testing, Verification and Reliability,
vol. 26, no. 3, pp. 245–269, 2016.

[55] PS12: L. C. Briand, Y. Labiche, Z. Bawar, and N. T.
Spido, “Using machine learning to refine category-
partition test specifications and test suites,” Information
and Software Technology, vol. 51, no. 11, pp. 1551–1564,
2009.

[56] PS13: H. Singh, M. Conrad, and S. Sadeghipour, “Test
case design based on z and the classification-tree method,”
in Proceedings of the IEEE International Conference on
Formal Engineering Methods, 1997, pp. 81–90.

IEEE TRANSACTIONS ON RELIABILITY 21

[57] PS14: T. J. Cheatham, J. P. Yoo, and N. J. Wahl,
“Software Testing: A Machine Learning Experiment,” in
Proceedings of the ACM Annual Conference on Computer
Science. ACM, 1995, pp. 135–141.

[58] PS15: L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro,
“Automatic Testing of GUI-based Applications,” Software
Testing, Verification and Reliability, vol. 24, no. 5, pp.
341–366, 2014.

[59] PS16: L. C. Briand, “Novel applications of machine
learning in software testing,” in The Eighth International
Conference on Quality Software (QSIC), 2008, pp. 3–10.

[60] PS17: M. Noorian, E. Bagheri, and W. Du, “Machine
Learning-based Software Testing: Towards a Classifica-
tion Framework,” in International Conference on Soft-
ware Engineering and Knowledge Engineering (SEKE).
Knowledge Systems Institute Graduate School, 2011, pp.
225–229.

[61] PS18: D. G. Silva, M. Jino, and B. T. d. Abreu, “Ma-
chine Learning Methods and Asymmetric Cost Function
to Estimate Execution Effort of Software Testing,” in
International Conference on Software Testing, Verification
and Validation, 2010, pp. 275–284.

[62] PS19: D. Zhang, “Machine Learning in Value-Based
Software Test Data Generation,” in IEEE International
Conference on Tools with Artificial Intelligence (ICTAI),
2006, pp. 732–736.

[63] PS20: M. Vanmali, M. Last, and A. Kandel, “Using
a Neural Network in the Software Testing Process,”
International Journal of Intelligent Systems, vol. 17, no. 1,
pp. 45–62, 2002.

[64] PS21: W. Choi, G. Necula, and K. Sen, “Guided GUI
Testing of Android Apps with Minimal Restart and
Approximate Learning,” in Proceedings of the ACM SIG-
PLAN International Conference on Object Oriented Pro-
gramming Systems Languages and Applications. ACM,
2013, pp. 623–640.

[65] PS22: F. Aarts, H. Kuppens, J. Tretmans, F. Vaan-
drager, and S. Verwer, “Improving Active Mealy Machine
Learning for Protocol Conformance Testing,” Machine
Learning, vol. 96, no. 1, pp. 189–224, 2014.

[66] PS23: S . Chen, Z. Chen, Z. Zhao, B. Xu, and Y. Feng,
“Using Semi-supervised Clustering to Improve Regression
Test Selection Techniques,” in IEEE International Con-
ference on Software Testing, Verification and Validation,
2011, pp. 1–10.

[67] PS24: S. Sprenkle, E. Hill, and L. Pollock, “Learning
Effective Oracle Comparator Combinations for Web
Applications,” in International Conference on Quality
Software, 2007, pp. 372–379.

[68] PS25: P. Tonella, P. Avesani, and A. Susi, “Using
the Case-Based Ranking Methodology for Test Case
Prioritization,” in IEEE International Conference on
Software Maintenance, 2006, pp. 123–133.

[69] PS26: J. Sant, A. Souter, and L. Greenwald, “An Ex-
ploration of Statistical Models for Automated Test Case
Generation,” in Proceedings of the International Workshop
on Dynamic Analysis. ACM, 2005, pp. 1–7.

[70] PS27: A. S. Namin and M. Sridharan, “Bayesian Reason-

ing for Software Testing,” in Proceedings of the FSE/SDP
Workshop on Future of Software Engineering Research.
ACM, 2010, pp. 349–354.

[71] PS28: F. Bergadano and D. Gunetti, “Testing by Means
of Inductive Program Learning,” ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 5,
no. 2, pp. 119–145, 1996.

[72] PS29: H. Jin, Y. Wang, N. W. Chen, Z. J. Gou, and
S. Wang, “Artificial Neural Network for Automatic Test
Oracles Generation,” in International Conference on
Computer Science and Software Engineering, vol. 2, 2008,
pp. 727–730.

[73] PS30: . Vineeta, A. Singhal, and A. Bansal, “Generation
of Test Oracles Using Neural Network and Decision
Tree Model,” in International Conference - Confluence
The Next Generation Information Technology Summit
(Confluence), 2014, pp. 313–318.

[74] PS31: H. Hungar, O. Niese, and B. Steffen, “Domain-
Specific Optimization in Automata Learning,” in Proceed-
ings of the International Conference on Computer Aided
Verification. Springer, 2003, pp. 315–327.

[75] PS32: N. Semenenko, M. Dumas, and T. Saar, “Browser-
bite: Accurate Cross-Browser Testing via Machine Learn-
ing over Image Features,” in IEEE International Confer-
ence on Software Maintenance, 2013, pp. 528–531.

[76] PS33: D. Agarwal, D. E. Tamir, M. Last, and A. Kandel,
“A Comparative Study of Artificial Neural Networks
and Info-Fuzzy Networks as Automated Oracles in
Software Testing,” IEEE Transactions on Systems, Man,
and Cybernetics, vol. 42, no. 5, pp. 1183–1193, 2012.

[77] PS34: C. Anderson, A. V. Mayrhauser, and R. Mraz, “On
the Use of Neural Networks to Guide Software Testing
Activities,” in International Test Conference, 1995, pp.
720–729.

[78] PS35: J. Zhang, Z. Wang, L. Zhang, D. Hao, L. Zang,
S. Cheng, and L. Zhang, “Predictive Mutation Testing,”
in Proceedings of the 25th International Symposium on
Software Testing and Analysis. ACM, 2016, pp. 342–353.

[79] PS36: H. Felbinger, F. Wotawa, and M. Nica, “Empirical
Study of Correlation Between Mutation Score and Model
Inference Based Test Suite Adequacy Assessment,” in
Proceedings of the International Workshop on Automation
of Software Test. ACM, 2016, pp. 43–49.

[80] PS37: B. Busjaeger and T. Xie, “Learning for Test Priori-
tization: An Industrial Case Study,” in Proceedings of the
ACM SIGSOFT International Symposium on Foundations
of Software Engineering. ACM, 2016, pp. 975–980.

[81] PS38: J. Bowring, J. M. Rehg, and M. J. Harrold, “Active
Learning for Automatic Classification of Software Behav-
ior,” in Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis. ACM,
2004, pp. 195–205.

[82] PS39: G. Grano, T. V. Titov, S. Panichella, and H. C.
Gall, “How high will it be? using machine learning
models to predict branch coverage in automated testing,”
in Proceedings of the Workshop on Machine Learning
Techniques for Software Quality Evaluation, 2018, pp.
19–24.

IEEE TRANSACTIONS ON RELIABILITY 22

[83] PS40: H. Spieker, A. Gotlieb, D. Marijan, and
M. Mossige, “Reinforcement learning for automatic test
case prioritization and selection in continuous integration,”
in Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis. ACM,
2017, pp. 12–22.

[84] PS41: B. Hardin and U. Kanewala, “Using semi-
supervised learning for predicting metamorphic relations,”
in Proceedings of the International Workshop on Meta-
morphic Testing. ACM, 2018, pp. 14–17.

[85] PS42: H. Felbinger, F. Wotawa, and M. Nica, “Empirical
study of correlation between mutation score and model
inference based test suite adequacy assessment,” in
Proceedings of the International Workshop in Automation
of Software Test, 2016, pp. 43–49.

[86] PS43: N. Walkinshaw and G. Fraser, “Uncertainty-driven
black-box test data generation,” in Proceedings of the
International Conference on Software Testing, Verification
and Validation, 2017, pp. 253–263.

[87] PS43: A. Balkan, P. Tabuada, J. V. Deshmukh, X. Jin, and
J. Kapinski, “Underminer: A framework for automatically
identifying nonconverging behaviors in black-box system
models,” ACM Trans. Embed. Comput. Syst., vol. 17,
no. 1, pp. 20:1–20:28, 2017.

[88] PS45: H. Enişer and A. Sen, “Testing service oriented ar-
chitectures using stateful service visualization via machine
learning,” in Proceedings of the International Workshop
on Automation of Software Test. ACM, 2018, pp. 9–15.

[89] PS46: R. Groz, A. Simao, N. Bremond, and C. Oriat,
“Revisiting ai and testing methods to infer fsm models of
black-box systems,” in Proceedings of the International
Workshop on Automation of Software Test. ACM, 2018,
pp. 16–19.

[90] PS47: M. Badri, L. Badri, W. Flageol, and F. Toure,
“Investigating the accuracy of test code size prediction
using use case metrics and machine learning algorithms:
An empirical study,” in Proceedings of the International
Conference on Machine Learning and Soft Computing.
ACM, 2017, pp. 25–33.

[91] PS48: A. Rosenfeld, O. Kardashov, and O. Zang, “Au-
tomation of android applications functional testing using
machine learning activities classification,” in Proceedings
of the International Conference on Mobile Software
Engineering and Systems. ACM, 2018, pp. 122–132.

APPENDIX B
DATA EXTRACTION FORM

This appendix presents the data extraction form we used
throughout the conduction of our systematic mapping study.

APPENDIX C
SUMMARY OF THE SELECTED STUDIES

This section gives an overview of the research at the
intersection of software testing and ML by providing a brief
summary of each study. Since most ML algorithms are centered

13Citation analysis was performed using only Google Scholar.

Data Item
(DI)

Description RQ(s)

DI1 ID RQ1

DI2 Year RQ1
DI3 Venue Name of the venue in which the

primary study was published.
RQ1

DI4 Publication
Type

Journal, conference, workshop,
or book chapter.

RQ1

DI5 Study Type Solution proposal, validation
and evaluation research, philo-
sophical, opinion, and personal
experience papers.

RQs1,7

DI6 Title

DI7 Author(s)
Name(s)

RQ8

DI8 Keywords RQ4

DI9 Citation
Count13

DI10 Proposed Ap-
proach

A summary of the proposed ap-
proach to using ML to support
software testing.

DI11 ML
Algorithm(s)

ML algorithms employed by
the proposed approach.

RQs2,4

DI12 Testing
Activity(ies)

Testing activity
supported/automated by
the proposed approach.

RQs3,4

DI13 Advantages /
Strengths

Brief description of the advan-
tages of the proposed approach.

RQ5

DI14 Disadvantages
/ Weaknesses

Brief description of the draw-
backs of the proposed ap-
proach.

RQ5

DI15 Problem(s) Problems faced when adapting
the ML algorithm to support
software testing activities.

RQ6

DI16 Empirically
Evaluated?

A yes or no question as to
whether the approach was em-
pirically evaluated.

RQ7

DI17 Research
Strategy

The research strategy used to
evaluate the approach (e.g., ex-
periment, case study).

RQ7.1

around learning a mapping from inputs (i.e., data points) to
outputs, we tried to describe each ML-based testing approach
in terms of its inputs (e.g., information that is fed into the
learning model) and outputs (e.g., how the resulting mapping
or model is used to make predictions about some software
testing activity).

PS1: Strug and Strug [44] propose an approach to reducing
the amount of mutants that needs to be executed during
mutation testing. Their KNN-learner receives mutants as input,
which are represented as a hierarchical graph. As output, their
model can be used to make predictions on whether a given
test is able to kill a certain mutant.

PS2: Gove and Faytong [45] employ SVM and grammar
induction learners to eliminate infeasible GUI test cases. The
learner receives as input the test case as a sequence of event

IEEE TRANSACTIONS ON RELIABILITY 23

IDs. The results yielded by their learner can be used to make
predictions on whether a given test case is infeasible or not.

PS3: Cotroneo et al. [46] aim to improve the selection of
testing techniques for a given test session. The predictor is fed
with historical data on features (i.e., metrics) of test sessions
and their outcomes. As output, the predictor yields information
on the performance of each technique for a given test session.

PS4: Xiao et al. [47] propose an approach to generating tests
for commercial games. The learner receives as input samples of
input/output pairs extracted from the game engine. As output,
it yields a model of the game’s expected behavior.

PS5: Wang et al. [48] set out to devise test oracles for
reactive systems. Feature vectors generated from test traces are
used as input to the proposed approach. An oracle-like model
is yielded by the approach.

PS6: Chan et al. [49] present a methodology that integrates
ML and metamorphic testing to build a test oracle for mesh
simplification programs of 3D polygonal models. The learner
receives as input features of polygonal models. Once the learner
has been built, it can be used to predict whether a test case
will fail or not.

PS7: Jalbert and Bradbury [50] propose an approach to
improve the performance and reduce the cost of mutation
testing. The learner receives as input source code’s and test
suite’s metrics for a given unit. As output, the learner estimates
the mutation score for an unknown unit of code as low, medium,
or high.

PS8: Fraser and Walkinshaw [51] aim to evaluate test suites
by using behavioral coverage instead of syntactic adequacy
metrics as branch coverage. The learner receives as input
input/output pairs observed by a test generation tool. As a
result, a model aimed at predicting the behavior of the program
under test is generated.

PS9: Lenz et al. [52] propose an approach to ranking the
results of different testing techniques into functional clusters.
The results of such ranking can be used to support the selection
and priorization of test cases. The learner receives as input
test cases, structural coverage information, number of mutants
killed, and mutation score associated to each mutation operator.
As output, the approach groups the data into clusters that can
be seen as functional equivalence classes.

PS10: Zhu et al. [53] describe an approach to supporting the
estimation of test execution effort. The input to the proposed
approach includes the number of test cases, the complexity of
executing the test cases, and the tester that will execute the test
cases (testers are classified according to their experience and
knowledge of the target application). As output, the approach
generates a model tailored to predicting the test execution
effort.

PS11: Kanewala et al. [54] propose an approach to support
testing activities without the need for test oracle automation by
predicting metamorphic relations for scientific software. The
input to their ML-based approach comprises graph kernels
obtained from control flow graphs. The results can be used to
make predictions on metamorphic relations.

PS12: Briand et al. [55] introduce an approach and a tool
to support the refinement of test cases in Category-Partition
testing. The learner receives as input abstract test cases obtained

from the test suite and a Category-Partition specification. As
output, the learner predicts rules that relate pairs (e.g., category,
choice).

PS13: Singh et al. [56] detail an approach to generating test
cases from Z specifications for partition testing. The learner
receives as input the functional specification in Z. As output,
the approach produces a classification tree describing high level
test cases.

PS14: Cheatham et al. [57] investigate factors that affect the
prediction of testing costs, mainly testing time. The approach
takes as input metrics of code complexity, programmer and
tester experience, adoption of software engineering practices,
and statistics on test execution. A model that lends itself well
to make predictions on testing time is produced as output.

PS15: Mariani et al. [58] present a technique to generate
new test cases for GUI-based applications from GUI-driven
tests performed manually. The learner receives as input an
initial test suite, GUI actions, and observed states obtained by
the tool. As output, this GUI-based testing approach produces
a behavioral model from which new test cases can be created.

PS16: Briand [59] gives an overview of the state of the art
and reports on the diverse ways in which ML has been applied
to automate and support software testing activities. Thus, this
study does not focus on a specific ML-based approach for
software testing.

PS17: Noorian et al. [60] outline a classification framework
that can help to systematically review research in the ML and
software testing domains. No specific ML-based approach for
software testing is detailed.

PS18: Silva et al. [61] propose an approach aimed at
supporting the estimation of test execution effort. Their ML-
based approach takes as input metrics related to the test suite,
testers, use cases, and source code. According to Silva et
al. [61], the resulting model is able to predict the effort (in
person-hours) required to run the test cycle.

PS19: This study does not detail a specific ML-based
approach for automating software testing. Instead, Zhang [62]
describes a general framework for value-based test data
generation.

PS20: Vanmali et al. [63] present an approach whose main
purpose is to create an oracle from a software system’s test
suite. The test cases of the SUT serve as input for the proposed
approach. The resulting oracle-like model can be used to predict
the outcomes produced by new and possibly faulty versions of
the SUT.

PS21: Choi et al. [64] introduce a tool that automatically
generates sequences of test inputs for Android apps. The learner
receives as input sequences of actions extracted from the app’s
GUI. The output can be seen as a model representing the GUI
of the application under test.

PS22: Aarts et al. [65] investigate how active learning can be
employed to support protocol conformance testing. Sequences
of input/output pairs are used as input to the proposed approach.
The outcome of the approach is a Mealy machine model
representing the behavior of the SUT.

PS23: Chen et al. [66] present an approach for test selection
during regression testing. The learner receives as input function
call profiles of test cases and pairwise constraints. As output,

IEEE TRANSACTIONS ON RELIABILITY 24

the approach produces clusters of test cases (considered to
have similar behaviors) from which sampling strategies can be
employed to reduce the test suite for regression testing.

PS24: Sprenkle et al. [67] introduce an approach to identify
the most effective HTML oracle combinations for web applica-
tion testing. The learner receives as input test results for each
oracle, application behavior, and expected results. According
to Sprenkle et al., the output predicts the most effective oracle
combination.

PS25: Tonella et al. [68] propose a test case prioritization
technique that takes advantage of user knowledge. Their ML-
based approach receives as input test cases, the prioritization
indexes, and a sample of user-defined pairwise priority relations
on test cases. As a result, the approach iteratively refines the
test case ordering.

PS26: the approach proposed by Sant et al. [69] creates test
cases for web applications from logged user data. Web logs
from user sessions are used as inputs. The output is a Markov
model from which test cases can be derived.

PS27: Namin and Sridharan [70] give an overview of
Bayesian reasoning methods and discuss their applicability to
software testing. No specific ML-based approach for automating
software testing is discussed.

PS28: Bergadano and Gunetti [71] introduce an approach to
generate test cases that distinguish a given program from a set
of alternative programs. The approach is based on the inductive
learning of programs from a finite set of input/output examples.
More specifically, their approach receives as input the program,
the set of alternative programs, and input/output examples. As
output, the approach induces an alternative program that is
consistent (equivalent) with the original, taking into account
the provided input/output examples.

PS29: Jin et al. [72] tackle the automated creation of test
oracles by employing ANNs. The input to the their ANN-based
approach is test cases. As output, their approach is able to
predict the expected behavior of new test cases.

PS30: Vineeta et al. [73] set out to generate test oracles.
The learner receives as input test cases and, as a result, it can
be used to predict the expected behavior of new test cases.

PS31: Hungar et al. [74] investigate automata learning to
support the testing of complex reactive systems, mainly from
the telecommunication domain. The approach receives as input
stimuli and responses from the SUT. The resulting learning
model can be used to predict I/O automata.

PS32: Semenenko et al. [75] report an experience on building
a tool for cross-browser compatibility testing. The ML-based
approach receives as input image features of regions of interest
in the web pages. The resulting model can be used to point out
potential incompatibilities among multiple browser-platform
combinations.

PS33: Agarwal et al. [76] compare IFNs and ANNs to build
automated test oracles. Test cases are fed into the learning
model. As output, the model is then used to determine whether
a new input is correct or not.

PS34: Anderson et al. [77] present empirical results on the
adoption of ANNs to prune test suites while keeping their
effectiveness. The learner receives as input test case metrics
like length, command frequency, and parameter use frequency.

As output, their ANN predicts the fault detection capabilities
of a given test case.

PS35: Zhang et al. [78] propose an approach to reduce the
execution cost of mutation testing. The inputs to their approach
are source code’s and test suite’s features related to execution,
infection, and propagation of a given mutant. The resulting
model predicts whether a mutant is killed by some test case.

PS36: Felbinger et al. [79] present an approach to evaluating
a test suite adequacy with respect to an inferred model. The
learner receives as input the test cases as input/output pairs.
As output, the approach builds a state machine model that can
be used to calculate the similarity with the SUT.

PS37: Busjaeger and Xie [80] introduce a novel approach
for test prioritization in industrial environments. Inputs to the
approach are code coverage information, text path similarity,
text content similarity, failure history, and test age. As output,
the resulting model yields an effective prioritization of the test
cases.

PS38: Bowring et al. [81] investigate the use of Markov
models to evaluate and augment test suites for future versions
of the SUT. The learner receives as input test cases, event-
transition profiles, and its behavior label. Markov models that
are clustered into effective behavior classifiers are produced as
output.

PS39: Grano et al. [82] conducted a preliminary study to
look at how ML models can be used to predict the branch
coverage achieved by test data generation tools. The learner
receives as input code metrics and, as output, it predicts branch
coverage achieved by test data generator tools.

PS40: Spieker et al. [83] propose a ML-based approach for
test case selection and prioritization. The approach receives
as input information on test cases: the test case duration, the
last execution, and a failure history. As output, their approach
yield a model that tailored to prioritize error-prone test cases
under guidance of a reward function and by taking into account
previous executions.

PS41: Hardin and Kanewala [84] propose a semi-supervised
ML approach to detecting metamorphic relations that are
applicable to a given code base. The learner receives as input
paths through methods control flow graph. The resulting model
can be used to predict metamorphic relations.

PS42: Felbinger et al. [85] propose a method for evaluting
the effectiveness of test suites that is based on inferring models
from the test suites. The input to their approach is the test
suite being evaluating and information concerning the current
state and previous output of the SUT. As a result, the approach
yields an inferred model from the test suite.

PS43: Walkinshaw and Fraser [86] apply a technique known
in ML parlance as “query strategy framework” that entails
inferring a behavioral model of the SUT and selecting test
cases which the inferred model is “least certain” about. It is
assumed that running these tests on the SUT will further help
to inform the learner, That is, the underlying assumption is that
by providing information that the learner has not processed
yet (i.e., test cases that are not present in the training set) this
uncertainty-driven approach is able to form a effective basis
for test case selection. The learner receives as input the JSON

IEEE TRANSACTIONS ON RELIABILITY 25

specification of the SUT’s interface. As output, it produces
new test inputs.

PS44: Balkan et al. [87] introduce a framework named
Underminer that aims to find parameter values and inputs for
black box system models that lead to undesirable behaviors.
The learner receives as input an existing system model or design
behaviors labelled as convergent or nonconvergent. As output, it
predicts inputs and parameter values that cause outputs related
to undesirable or nonconvergent behavior.

PS45: Enişer and Sen [88] employ ML to support the
virtualization of stateful services. The learner receives as input
traces with request-response pairs. As output, it predicts the
behavior of the virtual service.

PS46: Groz et al. [89] propose a method called hW-inference
to infer FSM models from non-resettable systems; to do so,
they combine learning-based methods with conformance testing.
The learner receives as input the known inputs and outputs of
the system. An FSM model is generated as result.

PS47: Badri et al. [90] investigate the early prediction of
test lines of code for object-oriented software using use case
metrics. The learner receives as input use case metrics and use
case points. As output, it predicts the amount of test lines of
code.

PS48: Rosenfeld et al. [91] describe a approach for the
automation of functional testing in mobile software by lever-
aging ML techniques and reusing generic test scenarios. The
proposed approach receives as input elements of the GUI of
Android apps. As output, it generates functional test cases.

APPENDIX D
DISTRIBUTION OF THE SELECTED STUDIES ACCORDING TO

THEIR PUBLICATION SOURCES
Venue Type No. %

1 ACM Annual Conference on Computer
Science Conference 1 2.08

2
ACM SIGPLAN International Conference
on Object Oriented Programming Systems
Languages and Applications (OOPSLA)

Conference 1 2.08

3 ACM Transactions on Software Engineering
and Methodology (TOSEM) Journal 1 2.08

4 Conference on Software Engineering and
Knowledge Engineering (SEKE) Conference 1 2.08

5 Engineering Applications of Artificial
Intelligence Journal 1 2.08

6 IEEE Transactions on Systems, Man, and
Cybernetics: Systems Journal 1 2.08

7 Information and Software Technology (IST) Journal 1 2.08

8
International Conference - Confluence The
Next Generation Information Technology
Summit

Conference 1 2.08

9 International Conference for Young
Computer Scientists Conference 1 2.08

10 International Conference on Computer
Science and Software Engineering Conference 1 2.08

11 International Conference on Computer-Aided
Verification Conference 1 2.08

12 International Conference on Dependable,
Autonomic and Secure Computing (DASC) Conference 1 2.08

Continued on next column

Continued from previous column
Venue Type No. %

13 International Conference on Formal
Engineering Methods Conference 1 2.08

14 International Conference on Quality
Software Conference 2 4.17

15 International Conference on Software
Engineering (ICSE) Conference 1 2.08

16 International Conference on Software
Maintenance Conference 2 4.17

17 International Conference on Software
Testing, Verification and Validation (ICST) Conference 2 4.17

18 International Conference on Testing
Software and Systems (ICTSS) Conference 1 2.08

19 International Conference on Tools with
Artificial Intelligence (ICTAI) Conference 1 2.08

20 International Journal of Intelligent Systems Journal 1 2.08

21 International Symposium on Foundations of
Software Engineering Symposium 1 2.08

22 International Symposium on Software
Testing and Analysis (ISSTA) Symposium 3 6.25

23 International Test Conference Conference 1 2.08

24 International Workshop in Automation of
Software Testing (AST) Workshop 4 8.33

25 International Workshop on Dynamic
Analysis Workshop 1 2.08

26 International Workshop on Realizing AI
Synergies in Software Engineering Workshop 1 2.08

27 Machine Learning Journal 1 2.08

28 National Conference on Artificial
intelligence (AAAI) Conference 1 2.08

29 Software Testing, Verification and Reliability Journal 4 8.33

30 Software Testing, Verification and Validation
Workshops (ICSTW) Workshop 1 2.08

31 Workshop on Future of Software
Engineering Research Workshop 1 2.08

32
Workshop on Machine Learning Techniques
for Software Quality Evaluation
(MaLTeSQuE)

Workshop 1 2.08

33 International Workshop on Metamorphic
Testing Workshop 1 2.08

34 ACM Transactions on Embedded Computing
Systems Journal 1 2.08

35 International Conference on Machine
Learning and Soft Computing Conference 1 2.08

36 International Conference on Mobile
Software Engineering and Systems Conference 1 2.08

Concluded

