
Automating Search Strings for Secondary
Studies 104
Francisco Carlos Souza, Alinne Santos, Stevão Andrade, Rafael Durelli,
Vinicius Durelli, and Rafael Oliveira

Abstract

Background: secondary studies (SSs), in the form of systematic literature reviews and

systematic mappings, have become a widely used evidence-based methodology to to create

a classification scheme and structure research fields, thus giving an overview of what has

been done in a given research field.

Problem: often, the conduction of high-quality SSs is hampered by the difficulties that

stem from creating a proper “search string”. Creating sound search strings entails an array

of skills and domain knowledge. Search strings are ill-defined because of a number of

reasons. Two common reasons are (i) insuffient domain knowledge and (ii) time and

resource constraints. When ill-defined search strings are used to carry out SSs, a potentially

high number of pertinent studies is likely to be left out of the analysis.

Method: to overcome this limitation we propose an approach that applies a search-based

algorithm called Hill Climbing to automate this key step in the conduction of SSs: search

string generation and calibration.

Results: we conducted an experiment to evaluate our approach in terms of sensibility and

precision. The results would seem to suggest that the precision and the sensibility our

approach are 25.2% and 96.2%, respectively.

Conclusion: The results were promising given that our approach was able to generate and

calibrate suitable search strings to support researchers during the conduction of SSs.

Keywords

Secondary studies � Search string � Hill climbing.

104.1 Introduction

Systematic literature reviews (SLRs) and systematic litera-

ture mappings (SLMs), also known as secondary studies

(SSs), have been widely used in medical research and in

the natural sciences since the 1970s and early 1980s. SLR

and SLM are considered rigorous methods to map the evi-

dence base in an unbiased way, evaluate the quality of the

existing evidence, and synthesize and give an overview of a

given research field. Based on the guidelines of these

methods, Kitchenham et. al. [11] proposed evidence-based

Software Engineering (EBSE) in hopes of fostering the

adoption of SSs in Software Engineering (SE). In the context

F.C. Souza (*) � A. Santos � S. Andrade � V. Durelli
University of São Paulo – USP, São Carlos, São Paulo, SP, Brazil

e-mail: fcarlos@icmc.usp.br; alinne@icmc.usp.br;

stevao@icmc.usp.br; durelli@icmc.usp.br

R. Durelli

Federal University of Lavras, Lavras, MG, Brazil

e-mail: rafael.durelli@dcc.ufla.br

R. Oliveira

Federal Technological University of Parana, Dois Vizinhos, PR, Brazil

e-mail: raoliveira@utfpr.edu.br

Springer International Publishing AG 2018

S. Latifi (ed.), Information Technology – New Generations, Advances in Intelligent

Systems and Computing 558, DOI 10.1007/978-3-319-54978-1_104

839

mailto:fcarlos@icmc.usp.br
mailto:alinne@icmc.usp.br
mailto:stevao@icmc.usp.br
mailto:durelli@icmc.usp.br
mailto:rafael.durelli@dcc.ufla.br
mailto:raoliveira@utfpr.edu.br

of Software Engineering, SSs rely on the use of an objective,

transparent, and rigorous approach for the entire research

process in order to minimize bias and ensure future replica-

bility. Rigour, transparency, and replicability are achieved

by following a fixed process for all reviews. The fixed

process is one of the characteristics that distinguish SSs

from traditional literature reviews (TLR).

The conduction of SSs usually include the following

steps: first, the research question is deconstructed by consid-

ering Population, Intervention, Comparison, and Outcome

(PICO) criterion. Terms from this criterion form of the basis

of search strings that are used in the literature search. Then a

protocol is produced to describe definitions, search strings,

search strategy, inclusion and exclusion criteria, and the

approach that will be used to synthesize data. This protocol

is often peer-reviewed and piloted. This may lead to several

revisions in the search strategy. Next, a systematic search is

conducted; studies are retrieved from digital scientific

databases sources (e.g., IEEE Xplore, ACM, Scopus, Scirus,

etc.) [8].

A remarkable problem regarding SSs is the generation of

suitable search strings. Ill-defined search string can hinder

the search process by returning a significant amount of

irrelevant studies. In addition, another problem stems from

the different rules employed by digital databases, which may

render the search step into a process of trial and error. For

instance, to generate a suitable search string researchers

need to grasp a set of keywords and synonymous, which is

a time and resource consuming task. Also, usually

researches need to adjust the same generic search string to

several digital databases. According to Kitchenham

et. al., [11], four common aspects are associated with having

to analyze a high number of irrelevant papers: (i) unsatisfac-
tory search string creation; (ii) digital databases of studies

have different interfaces; (iii) digital databases deal with

Boolean formulas [5, 8] in a slightly different way from

each other; and (iv) digital databases have different methods

to search the body of the manuscript or even some indexing

elements (e.g., title, keywords, and abstract).

In order to overcome these four issues we propose an

approach called Search-based String Generation (SBSG)

that applies an Artificial Intelligence (AI) technique called

Hill Climbing (HC) [12]. The main goals of SBSG is to

produce and recommend a suitable search string to be used

during the conduction of an SS. In this study we prototype

the SBSG approach in a proof-of-concept tool. Specifically,

SBSG runs as following: (i) researchers need to define a set

of parameters: terms, keywords, synonyms, number of

iterations (how many times SBSG will run), and a list of

control studies1; (ii) these parameters are used as input to an

HC algorithm to create an initial search string, i.e., initial

solution; (iii) from the initial search string HC generates a set

of neighbor search strings, i.e., similar search strings; and

(iv) if a neighbor improves the value of the initial solution,

i.e., a better suitable search string is generated, then this new

search string is selected and becomes the current search

string. This process runs interactively until SBSG finds the

best suitable search string or reaches the specified number of

iterations.

In order to provide some evidence of the applicability of

our approach we performed an experiment. More specifi-

cally, we used terms, keywords, synonyms, and lists of

control studies of five published SSs. Afterwards, we

assessed if the search strings generated by our approach

were as suitable as the ones used by the published SSs.

Two metrics were used to gauge the quality of the generated

search strings: precision and sensibility. Experimental

results that our approach improved the search strings.

The main contributions of this paper are fourfold: (i) a

well-defined approach to improve a key step of SSs – search

string generation and calibration; (ii) an approach to tap into
the strengths of a search-based algorithm and improve the

applicability of EBSE; (iii) a proof-of-concept tool that

automatically supports the generation of search strings for

SSs; and (iv) an experiment to evaluate our approach and

implementation thereof in terms of precision and sensibility.

This remainder of this paper is structured as follows: in

Sect. 104.2 SSs, HC, and fitness function are described.

Section 104.3 details some technical issues concerning the

use of the SBSG approach as an effective solution to

improve automated searches in SSs. The experiment we

carried out is presented in Sect. 104.4. Discussions, general

impressions, and threats to validity are presented in

Sect. 104.5. Section ?? discusses related work. Finally,

Sect. 104.6 presents concluding remarks.

104.2 Background

104.2.1 Secondary Studies

According to Kitchenham et al. [10] “primary studies” are

experiments and empirical validations with qualitative or

quantitative results to an specific research field. In other

hand, “Secondary Studies” (SSs) in SE represent a compila-

tion of several primary studies gathered to find relevant

research evidence and answer specific research question.

There are two types of SS, they are: SLR and SLM. Both

SSs rely upon the use of an objective, transparent and rigor-

ous approach for the entire research process in order to

minimize bias and ensure future replicability.

1 Control studies are papers that must be retrieved when search in a

given database.

840 F.C. Souza et al.

In spite of the growing importance that SSs have been

achieving nowadays, they are still new topics to the SE

community. Many challenges appear as to how to create a

suitable search string. Usually, the search string is generated

and calibrated based on a set of terms, keywords, synonyms,

etc. Moreover, this whole process is done manually by the

researchers, which is time-consuming and error-prone. In

addition, if researchers are new in a particular field, then

they need to spend more time and dedicate efforts to gener-

ate and calibrate search strings. Another challenge is the

different rules employed by the digital scientific databases

that make the search string calibration almost a process of

trial-and-error. Usually, researchers need to rework on

setting the same search string in several databases source

to identify good studies, avoiding missing papers. We argue

that this whole process of creating a suitable search string

could be semi-automated by means of HC algorithm.

104.2.2 Hill Climbing and Fitness Function

Search Based Software Engineering (SBSE) is the field of

software engineering research and practice that applies

search based techniques to solve different optimization

problems from diverse SE areas. SBSE approaches allow

software engineers to automatically obtain solutions for

complex and labor-intensive tasks, contributing to reduce

efforts and costs associated to the software develop-

ment [4, 6]. SBSE consists of search-based algorithms used

in SE, such as generic algorithms, generic programming,

simulated annealing, and HC [12].

HC is a local search algorithm that combines a general

search method with either objective functions or fitness

functions for evaluating the states generated by the method

[12]. HC aims to identify the best path to be followed in the

search. As outcome the technique returns a satisfactory

result for a given problem. HC algorithm consists in

selecting an initial solution randomly, evaluating and

improving it step by step, from the investigation of the

neighborhood of the current solution. If a neighbor improves

the value of the initial solution, this new solution is then

selected and becomes the current solution. This process is

performed until it finds an optimal solution or when no

neighbor has a better value [12].

The main benefits of HC algorithm are: (i) it requires low
memory due to fact that only the current state is stored; (ii) it

is easy to be implemented; and (iii) whether the best or

optimal solution exists in the search space, HC is able to

find that solution in a feasible computational cost. Regarding

SE issues, HC algorithm is a simple and powerful SBSE

strategy to search optimal solutions in combinatorial search

spaces. Then, it is feasible to employ HC algorithm in

different SE applications.

HC algorithms must be combined with a proper Fitness

Function (FF) that is able to measure the quality of the

solutions found [4]. FFs are important components for

search and metaheuristics techniques since they predict

how close is a solution to be optimal. Metaheuristics are

high level strategies to efficiently explore the search space in

order to find optimal or near solutions by using different

methods, techniques which constitute metaheuristic

algorithms range from complex learning processes to simple

local search procedures such as a HC algorithm [2]. Thus, in

general terms, a FF is an expression that measures the

goodness of a candidate solution for solving a given

problem.

There are many guidance on setting a FF, however it is

not a general task due to the fact that each function depends

on the specific problem and its features. The idea is

employing heuristics information regarding to the features

of an specific problem into a function so that it can be able to

assess the adequacy of candidate solutions. Then, there are

cases in which the FF is fairly trivial and there are cases in

which the designer needs to dedicate efforts to figure which

FF is more suitable for a given problem.

104.3 The SBSG Approach

Researchers must generate and calibrate a search string

totally manually, which is an error prone activity, time

consuming, and labor-intensive. Aiming at applying the

concepts of HC algorithm to alleviate the problem of

generating suitable search strings for different digital scien-

tific databases, we propose the SBSG approach. Our

approach is semi-automatic and combines an HC algorithm

with an assess strategy for searching and generating suitable

search strings.

Our approach provides a semi-automatic method to pro-

duce a good string reducing the aforementioned problems

about the manual process. The idea behind the SBSG

approach does not replace researchers in the string genera-

tion process, on the contrary it assists them. A generic

workflow of SBSG is shown in Fig. 104.1. According to

the figure, researchers must provide the following

parameters: (i) a list of keywords, (ii) a list of control

studies, (iii) the set of terms of the string and their respective

synonymous, and (iv) the number of iterations, i.e, how

many times SBSG will run.

Through those parameters, SBSG starts its process with

an initial string (S0) based on PICO criterion. It means that it

is necessary at least one keyword to fill out the population,

intervention, comparison and outcome. Figure 104.2 shows

an illustrative example of PICO criterion.

SBSG employs an HC algorithm that works performing

small changes in each part of the string to create a

104 Automating Search Strings for Secondary Studies 841

neighborhood of string candidates. First, HC generates the

string S0 though of a set of terms previously defined by the

user. Then, a neighborhood (S1, S2, S3, S4) from S0 is

expanded, which it is based on strategies presented in the

Table 104.1.

Each string is assessed through a special FF to search the

best one (Sb). This FF is based on an optimal search strategy

introduced by Straus & Richardson [13] and Haynes et al. [7]

in the context of SSs. The FF proposed is composed of two

measures called sensibility and precision. Figure 104.3

represents the measures aforementioned.

The sensibility on search strategy context is a measure to

identify all of the relevant studies (A – Fig. 104.3) for a

specific domain from retrieved studies (R – Fig. 104.3)

supported by a set of relevant studies previously defined

(C – Fig. 104.3). The higher C is, the higher will be the

sensibility score or the opposite. On the other hand, the

precision is an ability to identify the amount of irrelevant

studies (B – Fig. 104.3), where B ¼ R�A. When B is zero,

i.e., no irrelevant study is detected, the precision score is

greater. A search string with low precision will lead a lot of

irrelevant studies retrieved. Sensibility and precision are

computed using the Equations 104.1 and 104.2, respectively.

S ¼ A

Aþ C
∗100: ð104:1Þ

P ¼ A

Aþ B
∗100: ð104:2Þ

The overall process by which a candidate string is

evolved also provides an option to reduce researchers’
efforts during the study selection stage. This alleviation

of human efforts is provided enabling the assess to the

quality of each study based on abstract, keywords, and

control list. Then, researchers are able to eliminate those

studies with zero or a very low fitness value. Therefore,

the total fitness (F) is computed through Equation 104.3.

When F is zero, the string returns only irrelevant studies

and the higher F is, the higher the adequacy of search string

will be.

Researcher
P= {keywords, terms,
synonyms, iterations

number, control studies}

Build initial String (S0)

Generate neighborhood
(S1, S2, S3, S4)

Evaluate and Select the
Best String (Sb)

Stop condition
reached?

Best Solution is the new
Initial String (S0)

No
Final String (Sf)

Yes

Fig. 104.1 SBSG’s workflow

(software OR Web projet OR AND (cross-company OR multi organization OR single-
company OR single organization OR AND (estimation OR prediction OR assessment)

Population

Comparison

Intervention

Outcomes

Fig. 104.2 PICO criterion

(Kitchenham et al. [9])

842 F.C. Souza et al.

F ¼ ðSÞ þ ðPÞ
2

ð104:3Þ

Once no further improvements can be achieved for a

search string, the search continues exploring the next neigh-

borhood, starting over with the new current string, until no

neighbor leads to improvements. At this point the search

restarts at another randomly chosen location in the search

space. This is known as a strategy to overcome local optima,

enabling the search to explore a wider region of the possible

strings for a specific topic.

The quality of the SBSG approach is quantified through

search strategies scale using in Dieste & Padua [3], which

was inferred from the sensitivity and precision ranges of

SLRs in medicine. We have adopted this search strategy

because it can qualify how relevant a study is to a particular

domain. Table 104.2 provides a scale to measure the quality

of search based on the amount of relevant and irrelevant

studies. Assuming the scales for adequate strings, we con-

sidered a threshold between 80% and 99%, 20%, and 60% as

references for sensitivity and precision, respectively.

104.3.1 Proof-of-Concept Implementation

A tool to fully support SBSG was devised. It owns two

modules: (i) a Java module; and (ii) a Python module. The

former is used to generate search Strings following the rules

of the IEEE search engine. Based on a parameter defined by

hand, this module reads a text file that must follow a

pre-defined syntax and then it identifies the PICO’s terms

in the file. From this starting point, the first module creates a

data structure that is able to apply rules from IEEE Xplore2

to generate real search strings.

The latter module contains a set of scripts devised in

Python. These scripts are used to call the first module. As

outcome a object in Python is obtained. After, a script is used

to request and send the generated search string to the IEEE

Xplore digital database. The outcome is an XML (eXtensi-

ble Markup Language) file containing all fetched primaries

studies’s data such as: title, keywords, abstract. Then these

data are parsed and analyzed in terms of sensibility and

precision. This second module runs interactively until it

finds the best suitable search string or it reaches the specified

number of iterations.

104.4 Empirical Evaluation

This section presents the search strings that were used as

subject in our evaluation, all of the decision we took when

designing our experiment to address three research

questions, and the results obtained.

104.4.1 Research Questions

We designed our experiments in a proof-of-concept format

aiming to answer the following Research Questions (RQ):

(i) RQ1: How good is the sensibility of search strings

generated when using our approach?; (ii) RQ2: How good

is the precision of search strings generated when using our

Table 104.1 Strategies for strings neighborhood

Functions Changes Where

Adds or deletes Synonymous Population

Adds or deletes Synonymous Intervention

Adds or deletes “-” In compound words

Adds or deletes Plural Of a synonymous

Replaces The suffix of a Synonymous Population

Fig. 104.3 Sensibility and precision search strategies

Table 104.2 Search strategy scales

Strategy type Sensitivity Precision Goal

High sensitivity 85–90% 7–15% Max sensitivity despite low precision

High precision 40–58% 25–60% Max precision rate despite low sensitivity

Optimum 80–99% 20–25% Maximize both sensitivity and precision

Acceptable 72–80% 15–25% Fair sensitivity and precision

2 see: http://ieeexplore.ieee.org/

104 Automating Search Strings for Secondary Studies 843

http://ieeexplore.ieee.org/

approach?; and (iii) RQ3: In practice, how efficient is our

approach to generate the best search strings?

104.4.2 Goals

The goal of our experimentation can be therefore defined by

using the GQM (Goal Question Metric) [1], which can be

summarized as: Analyze the SBSG approach, for the pur-

pose of evaluating it sensibility and effectiveness, with

respect to improvement of SS’s search string, from the

point of view of researchers, in the context of heteroge-

neous subject secondary studies’ search string.

104.4.3 Experimental Design and Execution

To provide empirical evidences to answer our RQs, we have

used five SS’s search strings that have already been

published. During the selection of these SSs we have

focused on covering a broad class of SS’s search string

from different field of research in SE. Summing up, have

chosen SS’s search string that aimed to identify primary

studies of different contexts, such as software testing, soft-

ware reusability, and model-driven development, etc.

Zhang et. al. [14] identified 11 digital scientific databases

used more than once in SS for searching relevant studies in

SE. Among them, IEEE Xplore is seen as the main digital

source for SSs in SE. The content in IEEE Xplore comprises

over 180 journals, over 1,400 conference proceedings, etc.

Approximately 20,000 new documents are added to IEEE

Xplore each month. Therefore, we have decided to use the

IEEE Xplore digital source in our experiments. Furthermore,

four reasons contribute to our choice on using IEEE

Xplore to automate the SBSG strategy in this study: (i)

satisfactory search algorithm; (ii) bibliographic resources

are not limited; (iii) recognition of plurals; and (iv) IEEE

retrieves the largest number of studies with abstract and

complete texts.

This experiment was carried out in four steps. Firstly,

selected five set of terms, keywords and control list.

Secondly, we performed the search with 5, 15, and

30 iterations. Then we performed search for the best string

according to three settings: (i) measure the sensibility, pre-

cision, and time to the generation; (ii) measure how many

iterations needs to find the best one; and (iii) repeat this

process 10 times. Finally, the average of the sensibility and

precision were computed by the sum obtained in the previ-

ous sub-steps.

In order to analyze the gathered data, descriptive statistics

have been used. We explored the features of descriptive

statistics provided by IBM SPSS Statistics tool.3 They

summarize data using four numbers: the mean; minimum

and maximum values; and standard deviation. Section 104.5

provides the results collected from our proof-of-concept

validation.

104.5 Results and Discussion

104.5.1 Sensibility and Precision

First, we performed the descriptive statistics for Sensibility

(RQ1) of the generated search strings using our approach.

Furthermore, we computed the mean for each Sensibility’s
iterations (i ¼ 5, i ¼ 15 and i ¼ 30). All search strings had

optimum results. The mean sensibility of all evaluated

strings with five iterations was high, ranging from 93% to

98%. We noticed from the fifth iteration there were no

increases in the sensitivity’s mean. These results indicate

that search strings with optimum sensibility can be generated

through of the first iterations (Table 104.3).

Figure 104.4 shows that, for a small number of iterations

the approach obtained a high sensibility for all cases, it

means that a string can identify the most of relevant studies.

In terms of SLR and SLM, a high sensibility is usually more

desired. Therefore, the higher it is, more studies related to

the domain must be returned in the search.

We also performed the descriptive statistics for precision

(RQ2) according to each iteration (i ¼ 5, i ¼ 15 and

i ¼ 30). Most of search strings had good results for five

iterations (see Table 104.4). String 1 and String 2 achieved

an optimum precision (20%, 21%, respectively), while the

String 3 and String 5 had very high precision (41% and 35%,

respectively). On the other hand, String 2 reached a low

precision (12%). We noticed from the fifth iteration there

were no increases in the mean of precision. Therefore, our

approach is able to generate through of the first search

strings with optimum and high precision.

The precision value for optimal strings must be low

compared with the sensibility. Figure 104.5 shows a low

value for all cases, this measures gives a proportion of

relevant studies retrieved regarding to the number of

Table 104.3 Statistics for sensibility with 5 iterations

Subj. Minimum Maximum Mean Std. Deviation

String 1 ,92 ,93 ,9316 ,00562

String 2 ,95 ,97 ,9677 ,00873

String 3 ,95 ,97 ,9656 ,00770

String 4 ,95 ,98 ,9800 ,01146

String 5 ,98 ,98 ,9815 ,00000

3 see: http://www-01.ibm.com/software/analytics/spss/

844 F.C. Souza et al.

http://www-01.ibm.com/software/analytics/spss/

s1 s2 s3 s4 s5

x5

x15

x30

Strings

S
en

si
tiv

ity
 fi

tn
es

s

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0Fig. 104.4 The best sensitivity

by iteration

Table 104.4 Statistics for precision with 5 iterations

Subj. Minimum Maximum Mean Std. Deviation

String 1 ,20 ,20 ,1979 ,00232

String 2 ,21 ,21 ,2133 ,00000

String 3 ,41 ,41 ,4145 ,00000

String 4 ,12 ,12 ,1195 ,00000

String 5 ,35 ,35 ,3464 ,00000

s1 s2 s3 s4 s5

x5

x15

x30

Strings

P
re

ci
si

on
 fi

tn
es

s

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0Fig. 104.5 The best precision by

iteration

104 Automating Search Strings for Secondary Studies 845

irrelevant studies from the search. Therefore, to our

approach these results can be considered satisfactory, since

that all strings achieve good precision in a few iterations.

Additionally, we can notice that in the Figs. 104.4

and 104.5 have been obtained similar results. We believe

that it occurs due to the initial string be structured to cover

the domain as a whole, thus, is almost impossible to start

with an initial string with a low fitness. Assuming a good

initial strings, the HC needs too less efforts and

improvements to find the best one. Therefore, based on this

assumption the results tend to be similar from a number of

iterations.

104.5.2 Efficiency

The efficiency (RQ3) of our approach was measured using

the time for the search string generation and the number of

iterations. The time includes the time of each execution to

generate and calibrate the search string and their improve-

ment. Figure 104.6 depicts how sensibility and precision

improves in 10 iterations. One can mention that the approach

has a fast convergence, since in five or six iterations the

optimal solution has been found, i.e it was evaluated only

five or six neighborhoods.

In our approach, to avoid results being skewed by the

randomness inherent in search techniques, we conducted the

experiment using three settings to measure the time and how

many iterations were necessary for the search to converge

for an optimal solution. We can notice in Fig. 104.7 that the

time depends of some important factors, such as, size of

string and complexity of it, but even for the worst cases the

approach is faster than a string generated by hand. However,

as already mentioned, the HC had a fast convergence, it

means that a few iterations were necessary to find a good

solution, in general, performing the experiment with the first

setting (5 iterations) has been enough to obtain an acceptable

string.

Our approach generates an initial string based on the set

of parameters provided by the researcher. Based on the first

string, our approach generates four additional strings, one in

each iteration. These strings are similar to the initial string.

This process of deriving more strings from the initial string

is analogous to the many steps that researchers usually take

to manually fine-tune their search strings. As for our results,

we evaluated 25 different strings (in five iterations): they

took on average 116 second. Often, when manually fine-

tuning search strings, many changes are needed. Therefore,

given that this process of improving a given search string by

hand might take hours, we conjecture that using our

HC-based algorithm is able to significantly speed up the

fine-tuning of search strings.

104.5.3 Threats to Validity

Conclusion validity: a possible threat associated to the con-

clusion of our study is intimately associated with the fact that

we have used only IEEE Xplore as the subject database.

Generally, researchers use at least three digital libraries as

source of information to select primary studies.

Construct validity: regarding the theory behind our experi-

ment and the observations, we believe the main threat on

using SBSG is the fact that the approach must be

implemented and adapted to the search engine of each digital

2 4 6 8 10

0.
80

0.
85

0.
90

0.
95

1.
00

Iterations

se
ns

ib
ili

ty

2 4 6 8 10

0.
17

0.
18

0.
19

0.
20

0.
21

Iterations

pr
ec

is
io

n

Fig. 104.6 Evolution of the sensibility and precision

846 F.C. Souza et al.

scientific database. This means that if some update or new

technology is implemented on the database, our implemen-

tation must be adapted to work properly on it.

External validity: considering the generalization of our

findings, we believe that the main threat is the fact that the

unknown drawbacks on using SBSG would be better

observed with subjects conducting their systematic reviews.

Moreover, we believe that the fact the we already known the

SBSG method could contribute to better results.

104.6 Conclusion and Future Work

In this paper we propose the SBSG approach that applies a

search-based algorithm called Hill Climbing to automate thr

key step in the conduction of SSs: search string generation

and calibration. Using a list of terms, synonyms, keywords,

and a set of control studies previously known, SBSG auto-

matically provides a string in the appropriate format

according to a pre-determined digital database.

We also carried out an experiment using five real SSs that

have already been published. Our study consisted of using

SBSG to find search strings with good accuracy in accor-

dance to measures of sensibility, precision, and efficiency.

We considered the results satisfactory, once the strings were

automatically generated/calibrated and the primary studies

identified contained few losses compared to the actual

results of the five real SSs. The results shown that the

precision and the sensibility our approach are 25,2% and

96,2%, respectively. We believe SBSG is a contribution

once it represents a first step to automatically support the

generation of search strings for systematic reviews.

References

1. Basili, V., Caldiera, G., & Rombach, H. (1994). The goal question
metric paradigm (1st ed.). Wiley.

2. Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial opti-

mization: Overview and conceptual comparison. ACM Computing
Surveys, 35(3), 268–308.

3. Dieste, O., & Padua, A. (2007). Developing search strategies for

detecting relevant experiments for systematic reviews. In ESEM
2007, Madrid (pp. 215–224).

4. Gay, G. (2010). A baseline method for search-based software

engineering. In PROMISE 2010, PROMISE ’10, Timisoara (pp.

2:1–2:11). New York, NY: ACM.

5. Hannay, J. E., Dybå, T., Arisholm, E., & Sjøberg, D. I. K. (2009).

The effectiveness of pair programming: A meta-analysis. Informa-
tion and Software Technology, 51(7), 1110–1122.

6. Harman, M., McMinn, P., de Souza, J. T., & Yoo, S. (2012). Search

based software engineering: Techniques, taxonomy, tutorial.

Empirical software engineering and verification (pp. 1–59).

Berlin/Heidelberg: Springer.

7. Haynes, R. B., Wilczynski, K. A., McKibbon, C. J., & Sinclair, J. C.

(1994). Developing optimal search strategies for detecting clini-

cally sound studies in medline. Journal of the American Medical
Informatics Association, 1, 447–458.

8. Kitchenham, B. (2011). Chapter three – What we can learn from

systematic reviews. InMaking software what really works, and why
we believe it (Vol. 1, 1st ed.). Gravenstein Highway North,

Sebastopol, CA: O’Reilly Media

9. Kitchenham, B., Mendes, E., & Travassos, G. H. (2007). A system-

atic review of cross vs. within-company cost estimation studies.

IEEE Transactions on Software Engineering, 33(5), 361–329.
10. Kitchenham, B. A., Budgen, D., & Pearl Brereton, O. (2011). Using

mapping studies as the basis for further research – A participant-

s1 s2 s3 s4 s5
Strings

Ti
m

e
(s

ec
on

ds
)

0
50

0
10

00
15

00
20

00

x5

x15

x30

Fig. 104.7 Time to generate the

search strings

104 Automating Search Strings for Secondary Studies 847

observer case study. Information and Software Technology, 53(6),
638–651.

11. Kitchenham, B. A., Dyba, T., & Jorgensen, M. (2004). Evidence-

based software engineering. In ICSE 2004, ICSE ’04, Edinburgh
(pp. 273–281). Washington, DC: IEEE Computer Society.

12. Russell, S. J., & Norvig, P. (2003). Artificial intelligence: A modern
approach (2nd ed.). Upper Saddle River, N.J: Pearson Education.

13. Straus, S., & Richardson, W. (2010). Evidence-based medicine:
How to practice and teach it (4th ed.). Edinburgh: Churchill

Livingstone.

14. Zhang, H., Babar, M. A., & Tell, P. (2011). Identifying relevant

studies in software engineering. Information and Software Technol-
ogy, 53(6), 625–637.

848 F.C. Souza et al.

	Chapter 104: Automating Search Strings for Secondary Studies
	104.1 Introduction
	104.2 Background
	104.2.1 Secondary Studies
	104.2.2 Hill Climbing and Fitness Function

	104.3 The SBSG Approach
	104.3.1 Proof-of-Concept Implementation

	104.4 Empirical Evaluation
	104.4.1 Research Questions
	104.4.2 Goals
	104.4.3 Experimental Design and Execution

	104.5 Results and Discussion
	104.5.1 Sensibility and Precision
	104.5.2 Efficiency
	104.5.3 Threats to Validity

	104.6 Conclusion and Future Work
	References

