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ABSTRACT
Mobile application developers have started to realize that quality
plays a vital role in increasing the popularity of mobile applica-
tions (apps), thereby directly influencing economical profit (in-app
purchases revenue) and app-related success factors (i.e., number
of downloads). Therefore, developers have become increasingly
concerned with taking preemptive actions to ensure the quality
of their apps. In general, developers have been relying on testing
as their main quality assurance practice. However, little is known
about how much mobile app testing contributes to increasing user
level satisfaction. In this paper we investigate to what extent testing
mobile apps contributes to achieving higher user satisfaction. To
this end, we probed into whether there is a relation between hav-
ing automated tests and overall user satisfaction. We looked into
users ratings, which express their level of satisfaction with apps,
and users reviews, which often include bug (i.e., fault) reports. By
analyzing a quantitative indicator of user satisfaction (i.e., user rat-
ing), we found that there is no significant difference between apps
with automated tests and apps that have been developed without
test suites. We also applied sentiment analysis on user reviews to
examine the main differences between apps with and without test
suites. The results of our review-based sentiment analysis suggest
that most apps with and without test suites score quite high for user
satisfaction. In addition, we found that update-related problems are
far more common in apps with test suites, while apps without test
suites are likely to have battery-drain problems.

CCS CONCEPTS
• Software and its engineering→ Formal software verification;

∗In this paper we explore whether automated testing helps developers to create high
quality apps that “please” the end user, so the title – as made famous by The Beatles in
1963 – “Please Please Me”.
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1 INTRODUCTION
The mobile application (usually referred to as mobile app) market
has been growing steadily over the last decade. As a result, the
software industry has employed thousands of developers to produce
a myriad of mobile applications and generate millions of dollars in
revenue [2]. Currently, mobile apps are available through many app
stores (or app marketplaces), two notable examples are Apple App
Store1 and Google Play Store2. App stores act as online platforms
where users can browse through a catalog of apps, download apps,
and provide feedback concerning their user-experience using the
downloaded apps (which usually takes the form of mobile app user
reviews).

Mobile app development is rife with challenges. One of the major
challenges is meeting the high expectations of mobile app users. To
evaluate the quality of mobile apps, some app stores enforce devel-
opment policies and publishing guidelines that must be observed
by app developers.In addition, apps often have to go through an
evaluation before being approved and showcased in the app store.

Due to the rapidly growing mobile market, unlike desktop- and
web-based software users, mobile app users can choose from a wide
variety of apps. Given their greater choice, mobile app users have
developed a low tolerance for faulty apps. Naturally, the quality of
mobile apps greatly influences how users perceive their experience
using these apps. Some studies suggest that apps that fail to meet
users’ expectations end up deleted from users’ devices [11]. There-
fore, we surmise that quality issues can negatively impact an app’s
rating and reviews and ultimately hurt its popularity over time.

App developers have recognized that quality plays a critical role
in driving popularity and have started taking preemptive actions to
ensure the quality of their apps [7, 20]. Most developers have been
1https://www.apple.com/ios/app-store/
2https://play.google.com/store/apps
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relying on testing as their main quality assurance practice. Despite
the growing interest in devising better approaches to testing mobile
apps as well as building tools that can automate and improve testing
of mobile apps [29], little research has been done to explore the
relation between having automated tests and user satisfaction [18].
Therefore, this paper examines the contribution of mobile app
testing in increasing the level of satisfaction of userswith apps in the
context of the Android operating system (OS) and the Google Play
Store. We conjecture that apps that include some sort of automated
testing (i.e., test suites) fare better in terms of quality and thus
satisfy user expectations better. More specifically, we set out to
examine the following research questions:

RQ1 Do apps with test suites score higher in terms of user satis-
faction than apps without test suites?

• RQ1.1 Do apps with test suites achieve higher average rat-
ings than apps without test suites?

• RQ1.2 Do apps with test suites achieve more positive re-
views?

We analyzed 60 mobile apps. Although the number of apps we
investigated is relatively small, the analysis we carried out was
sound and we believe that the results are of general interest to the
software engineering community. Our experimental results on a
real-world app sample would seem to indicate the following:
• Both our qualitative and quantitative results would seem to
suggest that apps with and without test suites score similarly
in terms of user satisfaction.
• However, these two groups of apps are prone to different
problems that lead to poor reviews: (i) apps with test suites
have a high incidence of update-related problems and (ii) apps
without tests are fraught with battery-drain issues.

The remainder of this paper is organized as follows. Section 2
and 3 provide background on topic modeling and sentiment anal-
ysis, presenting definitions and a brief description of the review-
based sentiment analysis approach we used in this paper. Section 4
presents related work. Section 5 describes the experimental design
and discusses threats to validity. Section 6 presents results, statis-
tical analysis, and compares apps with and without test suites in
terms of proxies for user satisfaction. Section 7 discusses our find-
ings in the light of previous studies. Section 8 presents concluding
remarks.

2 TOPIC MODELING
Topic modeling (TM) is centered around the problem of discovering
relations among documents and topics, as well as relations among
the terms that compose the documents and topics, thus enabling
the organization of textual documents according to the discovered
topics. Basically, TM can be broken down into three main steps:
(i) data representation, (ii) latent topic decomposition, and (iii) topic
extraction. During data representation, textual documents are usu-
ally represented by adopting a fixed-length vector representation
based on simple term occurrence information, which is encoded by
term frequency - inverse document frequency (TF-IDF). The meth-
ods used in the second step (i.e., latent topic decomposition) can be
divided into two main models: probabilistic and non-probabilistic

models. Essentially, when using probabilistic models, data is mod-
eled based on two concepts: (i) each document follows a topic
distribution θ (d ) ; (ii) and each topic follows a term distribution
ϕ (z ) . θ (d ) and ϕ (z ) reflect to what extent a term is important to a
topic and to what extent a topic is important to a document, re-
spectively [5]. Non-probabilistic topic modeling employs strategies
such as matrix factorization, wherein a dataset with n documents
andm different terms is encoded as a design matrix A ∈ Rn×m and
the goal is to decompose A into sub-matrices that preserve some
desired property or constraint. The two main non-probabilistic
strategies are (i) singular value decomposition (SVD) [6] and (ii)
non-negative matrix factorization (NMF) [15]. Several strategies
have been proposed for extracting relevant topics from a set of pre-
viously identified topics. Bicalho et al. [1] proposed a strategy based
on NMF: semantic topic combination (SToC), whose main goal is
to group semantically similar topics. In this paper, to answer our
research questions we consider TF-IDF, NMF, and SToC as our data
representation, topic decomposition, and topic extraction strategies
of choice, respectively.

3 SENTIMENT ANALYSIS
Sentiment analysis is concerned with the task of automatically de-
tecting the polarity (i.e., positive or negative) of sentiment in textual
representations [9]. Basically, there are two types of methods for
carrying out sentence-level analysis: (i) supervised based and (ii)
lexicon based. Since supervised methods need to process labeled
data, these methods do not perform properly when complex data
(i.e., real world textual data) has to be taken into account. Conse-
quently, recent efforts have come up with sentence-level methods
based on lexicons. Lexicon-based methods create lexicons and com-
bine different natural language processing techniques to determine
a sentence polarity [9]. In this paper, we adopted a lexicon based
strategy [16] that outperforms several supervised strategies.

4 RELATEDWORK
Several studies have been exploring user feedback to understand
the most problematic features in apps [16], to probe into the rela-
tionship between bugs and end user ratings [14], or even to obtain
ideas for app improvements [8]. In [14], Khalid et al. analyzed 10,000
Android mobile apps to examine whether poor ratings are related
to certain categories of static analysis warnings. They observed that
the “Bad Practice”, “Internationalization”, and “Performance” cate-
gories have significantly higher densities in low-rated apps than
high-rated apps. Moreover, the results also show that static analysis
tools (e.g., FindBugs) can help developers to identify certain types
of bugs that have the potential to result in poor ratings.

In [8] [16], the authors were interested in extracting app features
and users’ sentiments associated to them in order to help developers
to capture the most problematic features and understand the needs
of app users. The authors introduced a method to automatically
extract features from mobile app reviews. Their methods aggregate
the sentiments of users for each feature by applying automated
sentiment analysis techniques on app reviews. They observed that
sentiment analysis can be successfully applied to requirements
evolution tasks and can help developers to capture user opinions
on a single feature or filter irrelevant reviews. Their method also
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sheds some lights on features that more positively or negatively
impact the overall evaluation of mobile apps.

In [3], Carreño and Winbladh proposed an approach to explore
user feedback. Their approach automatically extracts topics repre-
senting new requirements that better represent users’ needs. Their
technique extracts topics prevalent in user comments and allows
these topics to be analyzed by software developers. Similarly, in [10],
the authors also propose MARA (Mobile App Review Analyzer)
a prototype for automatic retrieval of mobile app feature requests
from online reviews. In a recent study [21], Nayebi et al. argue that
app store mining is not enough for app improvement. Nayebi et al.
investigated how twitter can provide complementary information
to support mobile app development. The authors applied machine
learning classifiers, topic modeling, and crowd-sourcing to suc-
cessfully mine 22.4% feature requests and 12.89% bug reports from
Twitter. Moreover, they also found that 52.1% of all feature requests
and bug reports were discussed on both tweets and reviews.

5 EXPERIMENT SETUP
As mentioned, in response to the competitive market that favors
good-quality mobile apps, developers have been testing their apps
prior to release. Thus, we set out to investigate whether testing mo-
bile apps contributes to achieving higher average user satisfaction.
We conjecture that mobile apps with sound test suites tend to score
higher in terms of user satisfaction than poorly tested apps.

This section describes the experiment setup we used to investi-
gate the following research questions (RQs):

RQ1 Do apps with test suites score higher in terms of user satis-
faction than apps without test suites?

• RQ1.1 Do apps with test suites achieve higher average rat-
ings than apps without test suites?

• RQ1.2 Do apps with test suites achieve more positive re-
views?

The elements that constitute user satisfaction (RQ1.2) in the con-
text of this experiment are defined in Subsection 5.1.2. In Subsec-
tion 5.1.2 we also set forth the hypotheses we set out to investigate
in this experiment and provide the operational definitions [26] of
user satisfaction.

5.1 Scoping
5.1.1 Experiment Goals. Defining the scope of an experiment

comes down to setting its goals. We used the organization proposed
by the Goal/Question/Metric (GQM) [28] template to do so. Accord-
ing to this goal definition template, the scope of our study can be
summarized as follows.

Analyze if testing mobile apps leads to greater user satisfaction
for the purpose of evaluation
with respect to user ratings and user sentiment analysis
from the point of view of the researcher
in the context of users, i.e., customers, evaluating mobile apps.

5.1.2 Hypotheses Formulation. In the context of our study, user
satisfaction is defined as the extent to which users believe that an
app meets their needs and provides a frustration-free experience. To
answer RQ1 we analyzed two proxy measures of user satisfaction:

(i) users’ ratings and (ii) sentiment analysis of users’ reviews. Thus,
RQ1 was further broken down into two RQs: RQ1.1 and RQ1.2.
We framed our prediction for RQ1.1: mobile apps with test suites
achieve higher average ratings than apps without test cases. RQ1.1
was turned into the following hypotheses:

Null hypothesis, H0−ratinдs : there is no difference be-
tween mobile apps with test suites and mobile apps with
no test suites in terms of average users’ ratings. Alterna-
tive hypothesis, H1−ratinдs :mobile apps with test suites
achieve higher average users’ ratings when compared to
apps without test suites.

RQ1.2 was translated into the following hypotheses:

Null hypothesis, H0−r eviews : there is no difference in
how users perceive mobile apps with test suites and mo-
bile apps without test suites. Alternative hypothesis,
H1−r eviews : there is a significant difference in how users
perceive apps with test suites and apps without test suites.

Given that our main goal is to investigate whether testing apps
leads to higher average ratings and greater user satisfaction, this
experiment has one treatment and one control group: the treatment
is apps with test suites and the control group includes only apps
without test suites. Let µ be the average rating and r the rating. So,
µrT and µnNT denote the average rating of apps with test suites
(i.e, T ) and apps without test suites (i.e., NT ).3 Then, the first set of
hypotheses can be formally stated as:

H0−ratinдs : µrT = µnNT
and

H1−ratinдs : µrT > µnNT
Similarly, to gain a better understanding and answer RQ1.2 we

investigated whether apps with test suites lead to greater user
satisfaction in comparison to apps that were developed without
test suites. Let s be the perceived satisfaction of the app user then
the second set of hypotheses can be formulated as follows:

H0−r eviews : µsT = µeNT
and

H1−r eviews : µsT , µeNT

5.2 Variables Selection
Asmentioned, the purpose of this experiment is to evaluate whether
the presence of automated tests leads to higher end user satisfaction.
Thus, we are particularly interested in two dependent variables:
• User ratings; and
• User reviews on Google Play Store.

We believe that these two dependent variables are the main indi-
cators of app quality available to those interested in downloading
an app. The most straightforward indicator of user satisfaction in
the Google Play store is user rating: apps are ranked based on a
five-star rating scale. In this rating system, users can assign one
3Here,T stands for apps withT est suites and NT stands for apps with N oT est suites,
respectively.
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to five stars to rate apps, with five stars representing the highest
quality. In order to answer RQ1.1 we looked into user ratings.

Apart from ratings, users can also write reviews. We argue that
the textual content in user reviews also represents an important
dimension that can be explored from a software quality perspective.
In effect, previous research [4] has shown that the information
contained in user reviews can be helpful for app developers. How-
ever, due to the unstructured and somewhat informal nature of
reviews [19], the quality of the feedback provided by users varies
greatly, from useful fault reports and feature requests to generic
praises and complaints. We believe that sentiment analysis allows
for an objetive interpretation of information that might be other-
wise hard to evaluate properly, i.e., user reviews. Therefore, to
overcome the complexities involved in analyzing unstructured tex-
tual information (i.e., written language) and answer RQ1.2, we
employed a sentiment analysis method to synthesize all useful in-
formation from user reviews. In this context, we conjecture that the
sentiment expressed in informative reviews can be used to gauge
the quality of mobile apps.

5.3 Sample Selection
To perform this experiment, we divided the population of open-
source app projects into two groups: projects that include test suites
(i.e., treatment group) and projects that were developed without
any sort of automated test suite (i.e., control group). Given that our
sample was randomly selected from an open source repository, we
tried to include a wide range of apps that differ in size, complexity,
and category. We adhered to the following criteria in constructing
our sample:
• Open-source projects:we randomly selected open-source apps
listed in F-Droid4 and hosted in GitHub5 repositories. We
followed the guidelines proposed by Kalliamvakou et al. [13]
during the construction of our sample.
• Availability at the Google Play Store: As rating and reviews
are essential data for this study, all apps and apps-related
information should be available online. We have settled on
using Android apps distributed by the Google Play Store.
• Minimum number of reviews: in order to perform user sen-
timent analysis, we had to select apps with a significant
number of reviews: as described in Subsection 6.3, for part of
our sample we selected apps that have at least 350 reviews.
• Presence of test suites: for the treatment group, we focused on
selecting projects that include automated test cases. In effect,
the treatment group was composed of apps with automated
tests and the adopted test-to-code-ratio was 1 line of test
code to 10 lines of production code (i.e., 1:10): a ratio of 1:10
indicates that, for every line of test code, there are 10 lines
of production code. It is worth noting that settling for the
presence of automated tests is an approximation and other
factors might impact the results. Furthermore, the aspects
tested in the selected apps vary and that should influence
the result. This is further discussed in Subsection 5.4.

We used a tool named Prof.MApp (Profiling Mobile Apps) [25]
to gather data on mobile apps. Given an Android app, Prof.MApp

4https://f-droid.org/
5https://github.com

inspects the source code to classify files in two categories: produc-
tion and test code; from analyzing Java source files in the latter, we
extracted information related to the presence of automated test.

5.4 Validity Evaluation
As with any experimental study, this experiment has several threats
to validity. Internal validity is concerned with the confidence that
can be placed in the cause-effect relationship between the treat-
ments and the dependent variables in the experiment. External
validity has to do with generalization, namely, whether or not the
cause-effect relationship between the treatments and the dependent
variables can be generalized outside the scope of the experiment.
Conclusion validity focuses on the conclusions that can be drawn
from the relationship between treatment and outcome. Finally, con-
struct validity is about the adequacy of the treatments in reflecting
the cause and the suitability of the outcomes in representing the
effect. We categorized all threats to validity according to this classi-
fication.

5.4.1 Internal Validity. We mitigated the selection bias issue by
using randomization. However, since we assumed that all types of
mobile apps have the same characteristics, no blocking factor was
applied to minimize the threat of possible variations in, for instance,
the complexity of the apps, usability, and performance. Thus, we
cannot rule out the possibility that some variability in how end
users perceive the quality of the chosen apps stems from other
quality factors as opposed to the amount of fault-related problems
in the chosen apps. Also, we had to settle for apps that have any sort
of automated test cases, which can be seen as an approximation that
does not account for other factors that might impact the results.
This is an oversimplification of an ideal scenario where mobile
apps have many types of test cases (e.g., user interface test cases,
functionality test cases, security test cases). In effect, our analysis
shows that the majority of app developers push testing aside when
trying to get their apps to the market, so we could not find apps
that have been thoroughly tested. We had to compromise for apps
that have a certain test-to-code ratio, thus these apps lack tests
for several aspects. Our analysis is concerned with finding if the
inclusion of any sort of automated test helps developers to deliver
predictive business metrics as user satisfaction.

5.4.2 External Validity. The sample might not be representa-
tive of the target population. As mentioned, we randomly selected
apps for the treatment and the control groups. However, we can-
not rule out the threat that the results could have been different if
another sample had been selected. Another potential threat to the
external validity of our results is that our analysis includes only
apps from Google Play Store. We did not take apps from differ-
ent mobile marketplaces into account because the tool we used
to extract app information is tailored towards analyzing Android
programs (as mentioned in Subsection 5.3). Another reason we did
not consider different mobile technologies and marketplaces also
has to do with the fact that most studies involving mobile apps are
centered around open source apps available on the Google Play
Store. In a way, Android is seen by app developers as a more open-
source-friendly platform than iOS. Although, Google Play Store is
a very popular app store, further investigation including more app
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stores is required before we can determine whether our findings
can be generalized for different app stores and different developer
populations. Consequently, we cannot be confident that the results
hold for a more representative sample of the general population.

5.4.3 Conclusion Validity. The main threat to conclusion va-
lidity has to do with the quality of the data collected during the
course of the experiment. More specifically, the quality of ratings
and reviews is of key importance to the interpretation of our results.
Given that end users are free to rate apps and write reviews that
might not always reflect the attributes of a given app. Thus, it is pos-
sible that some data is not correct due to misguided or ill-informed
reviews or even fabricated information. It is worth noting, however,
that data inconsistencies were filtered out during the sentiment
analysis process.

5.4.4 Construct Validity. The measures used in the experiment
may not be appropriate to quantify the effects we intend to inves-
tigate. For instance, user-generated app reviews may neither be
the only nor the most important predictor of user satisfaction. If
the measures we used do not properly match the target theoretical
construct, the results of the experiment might be less reliable.

6 EXPERIMENTAL RESULTS
In this sectionwe describe the experimental results for the 60mobile
apps we analyzed.6 First we discuss some descriptive statistics, then
present the hypothesis testing.

6.1 Descriptive Statistics
As shown in Table 1, the size of the apps ranges from 159,841
(141,023 lines of production code and 18,818 lines of test code) to 114
lines of code. Among the apps that include test suites, GreenBits is
the one with most production code and test code (18,818), the app
with the least lines of test code is RPN (180). On average, the apps in
the treatment group contain around 4,436 lines of test code. As for
the apps that do not include test suites (i.e., control group), Vuze
Remote is the largest app, containing 41,209 lines of production
code. The smallest app in the control group (Simple Reboot) has
114 lines of production code.

From observing Tables 1, 2, and 3 it can be seen that most apps
in both groups have received a significant amount of feedback from
users. Considering the apps with test suites, ZXing is the app that
has received most user feedback: 624,366 user reviews (Table 1).
The least reviewed app in this group is Loyalty Card Keychain,
with only 91 users reviews (Table 1). As for the apps in the control
group, the most reviewed app has received feedback from 39,731
users (No-frills CPU Control), the app with the least amount of
feedback has been reviewed by 531 users (Reddinator).

Due to the outliers in our data concerning the amount of feed-
back received by the apps, we consider the trimmed mean and
the median values in Tables 2 and 3 to be more accurate mea-
sures of central tendency than the mean. Therefore, on average
(trimmed mean), the apps in the treatment group have received
approximately 7,389.04 reviews, while the apps in the control group
received 4,153.46 reviews. Additionally, also due to aforementioned
outliers, the median absolute deviation (MAD) is a more robust
6The raw data of the experiment is available at: http://ow.ly/rP9G1013urH.

measure of statistical dispersion than the standard deviation (see
Tables 2 and 3).

Since the age of an app project might be an indicator of app ma-
turity, we also looked into the lifespan of the app projects in both
groups. In the context of our study, a given project’s lifespan repre-
sents the time (in days) since the project’s repository was created
on GitHub. All apps in both groups have been under development
for at least one year. In the treatment group, the longest-running
project is SMS Backup+, which has been under development for
over eight years (2,976 days). The most recent app is Loyalty Card
Keychain, whose repository has been available for a little over
than two years (759 days). On average (mean), apps on the treat-
ment group have been developed and maintained for 1,874 days.
In the control group, the longest-running project (Sokoban) has
been around for 2,690 days, and the most recent app (Camera Roll
- Gallery) has been available for a little over than one year (419
days). The apps in the control group have been under development
for an average of 1,537 days.

Another possible indicator of project maturity is the number of
commits to a project repository: this metric refers to the total num-
ber of commits that have occurred within an app project throughout
its lifespan. To some extent, this quantitative metric is also reflects
how actively developers have been participating in the project. In
the treatment group, the app that has had most commits is c:geo:
11,049 (making it by far the app that has changed the most consid-
ering both groups). The app whose project has changed the least
is Speech Trainer, with only 31 commits. In the control group,
the app that has had the largest amount of commits is Lightning
(1,698) and the one with least amount of commits is Sokoban (14).

Prior to an in-depth analysis of the textual content in apps re-
views, we focused on a more quantitative analysis of user satis-
faction. As mentioned, a proxy that provides a more quantitative
indicator of user satisfaction is user rating, which is represented as
a five-star rating scale. In order to answer RQ1.1 we probed into
user ratings. The user ratings of the two groups is summarized in
the boxplots shown in Figure 1. Overall, ratings in our sample are
very positive for both groups. In Figure 1 the thick horizontal lines
represent the medians, so apps with test suites achieve a slightly
higher median rating (4.4 stars) than apps without test suites (4.3
stars). In Figure 1 the boxes around the medians encompass the
25th (Q1) through the 75th (Q3) percentiles. The “whiskers”, i.e., the
lines above and below the boxes, highlight the range of the data,
excluding possible outliers. This is determined by the interquartile
range (IQR), which is defined as IQR = Q3 - Q1. Values that are
more than 1.5 × IQR below or above the box are considered outliers.
It is worth noting that we also added markers for the mean to the
boxplots: in Figure 1 the mean is shown with a diamond. A more
in-depth analysis of the results presented in Figure 1 is presented
in the following subsection.

6.2 Hypothesis Testing
As mentioned, one of our goals is to examine whether apps that
include test suites have higher average ratings, thereby indicating
that apps with some sort of automated test lead to greater user
satisfaction. To this end, we devised two hypotheses: the null hy-
pothesis H0−ratinдs and the alternative hypothesis H1−ratinдs
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Table 1: Mobile apps we analyzed in our experiment. The entries in the table are in descending order by the number of lines
of code (i.e., production code).

Google Play Store and GitHub Information
App Name Production Code Test Code Google Play Reviews Rating Project Lifespan #Commits

Treatment Group (Apps with Test Suites)
GreenBits 141,023 18,818 289 3.5 1,133 1,775
K-9 Mail 68,249 13,272 87,972 4.3 2,581 7,606
c:geo 64,469 8,432 57,427 4.4 2,424 11,049
OpenKeychain 50,669 6,723 2,235 4.5 2,182 6,672
Mirakel 42,109 5,444 280 4.1 1,842 3,722
AntennaPod 38,183 6,549 17,058 4.6 2,038 4,165
ownCloud 37,104 4,003 6,710 3.0 2,013 6,374
My Expenses 32,633 4,426 7,117 4.3 2,191 6,448
Etar 31,991 3,958 196 4.6 908 5,589
And Bible 31,401 4,816 5,648 4.6 2,346 2,634
ZXing 31,323 7,706 624,366 4.1 2,331 3,421
Kore 27,515 4,659 13,956 4.4 1,141 670
AnySoftKeyboard 22,607 3,689 22,139 4.4 2,142 4,041
Mozilla Stumbler 21,350 2,578 889 4.5 1,700 2,698
GnuCash 17,891 2,531 4,203 4.3 2,110 1,679
Materialistic 14,131 11,220 2,224 4.7 1,133 1,686
Wikimedia Commons 11,034 1,593 242 4.2 905 3,231
GPS Logger for Android 9,743 1,014 4,199 4.0 2,445 1,364
Dir 8,786 1,775 239 4.4 2,119 814
Agit: Git client 8,651 1,290 142 3.2 2,741 894
SMS Backup+ 7,165 2,558 59,648 4.4 2,976 1,554
Termux 6,954 2,018 10,920 4.7 859 409
WiFiAnalyzer 6,946 9,262 7,508 4.4 811 1,049
Equate 5,547 1,045 211 4.8 1,405 390
Ministocks 3,972 410 2,847 4.1 1,782 249
Calendar Widget 2,438 850 8,473 4.5 2,117 414
Loyalty Card Keychain 2,124 965 91 4.5 759 378
Blokish 2,082 246 2,082 4.3 2,506 97
Speech Trainer 1,261 1,057 241 3.9 2,306 31
RPN 832 180 200 4.5 2,268 33

Control Group (Apps without Test Suites)
Vuze Remote 41,209 0 3,376 4.3 1,146 41
Transdrone 23,969 0 3,556 4.3 1,705 560
Linux CLI Launcher 21,721 0 8,183 4.7 657 165
LibreTorrent 16,919 0 778 4.3 497 317
Camera Roll - Gallery 16,373 0 1,083 4.5 419 313
Lightning 14,748 0 1,343 3.5 1,853 1,698
Pathfinder Open Reference 12,758 0 7,781 4.7 2,262 249
Reddinator 11,812 0 531 4.3 1,811 357
WhereYouGo 11,290 0 1,864 3.7 1,282 224
Sokoban 9,816 0 893 4.4 2,690 14
OpenVPN for Android 9,457 0 29,637 4.4 1,552 1,004
Taskbar 8,981 0 2,284 4.4 572 659
OpenSudoku 6,079 0 15,704 4.6 2,197 241
SealNote 5,531 0 2,562 4.5 1,121 337
Night Screen 5,399 0 6,026 4.5 758 136
Binaural Beats Therapy 4,630 0 13,663 4.2 2,628 104
OONI Probe 4,529 0 1,028 4.6 1,078 415
HN - Hacker News Reader 4,035 0 1,362 4.4 2,011 306
Torchie Torch 3,408 0 2,265 4.2 758 135
Ted 2,300 0 2,100 4.6 2,192 41
Pedometer 2,249 0 2,663 4.1 1,557 438
No-frills CPU Control 1,997 0 39,731 4.3 1,848 38
Tinfoil for FB 1,560 0 10,109 4.1 2,319 308
Activity Launcher 1,168 0 3,664 4.3 1,471 49
Counter 946 0 1,791 4.5 2,220 206
OI Flashlight 750 0 1,840 4.1 2,113 73
Locale 668 0 7,729 3.7 461 93
Ridmik Bangla Dictionary 563 0 8,421 4.6 1,891 36
Wikivoyage 215 0 570 2.7 1,872 23
Simple Reboot 114 0 4,097 4.3 1,164 16

(described in Subsection 5.1.2). To test these hypothesis we applied
a well-known approach to comparing two independent groups:
Wilcoxon’s rank-sum test [27]. According to the results of this non-
parametric test, apps with automated tests (median = 4.4, Table 2)

do not differ significantly from apps without tests (median = 4.3,
Table 3),W = 470, p = 0.771, r = −0.04.7

7We used the following equation to calculate the effect size: r = z√
N

in which z is the
z-score and N is the size of the study (i.e., number of apps) in which z is based.
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Table 2: Descriptive statistics summarizing the characteris-
tics of the treatment group (i.e., group of apps that include
test suites).

Overview of the Treatment Group
Google Play Reviews Rating Lifespan Commits

Max 624,366 4.8 2,976 11,049
Min 91 3 759 31

Mean 31,658.4 4.27 1,873.80 2,704.53
Trimmed 7,389.04 4.35 1,895.29 2,318.67
Median 3,523.0 4.4 2,113.5 1,682.5
Std Dev 113,831.38 0.42 641.29 2,748.98
MAD‡ 4,918.53 0.22 491.48 2,029.68

‡MAD stands for median absolute deviation.

Table 3: Descriptive statistics summarizing the characteris-
tics of the control group (i.e., group of apps that do not in-
clude test suites).

Overview of the Control Group
Google Play Reviews Rating Lifespan Commits

Max 39,731 4.7 2,690 1,698
Min 531 2.7 419 14

Mean 6,221.13 4.26 1,536.83 286.53
Trimmed 4,153.46 4.33 1,545.46 215.92
Median 2,612.5 4.3 1,631.0 215.0
Std Dev 8,762.01 0.41 675.59 346.36
MAD‡ 2,308.41 0.30 788.0 210.53

‡MAD stands for median absolute deviation.

6.3 Review-based Sentiment Analysis
As mentioned, we surmise that some of the sentiment expressed
in written reviews can be used to shed some light on the quality
of mobile apps. Several studies show that reviews include valuable
information about user experience and that such information can be
used as a proxy to evaluate quality [8, 22]. Furthermore, according
to Rodrigues et al. [24], it is common that the star rating assigned
to an app does not reflect the contents of the associated written
review: that is, the information in reviews often does not match
with the star rating given to the app. We believe that a sentiment-
based method is an effective way to probe into a corpora of written
accounts of user experience. Thus, to further investigate the benefits
of automated tests, we employed a sentiment analysis method to
synthesize useful information from user reviews. More specifically,
we adopted a lexicon based method [16] that allowed us to filter,
summarize, and analyze app reviews. The method we employed is
able to automatically extract relevant information from reviews and
analyze the sentiment (strength) associated with such information.

In hopes of obtainingmoremeaningful results, we sorted through
all the apps in both groups and selected two subsets comprised of
the 15 apps with the most amount of reviews in each group. It is
worth mentioning that all 30 apps we selected have at least 350
written reviews. Table 4 gives an overview of the subsets of apps
we selected to perform sentiment analysis.

Figure 2 gives an example of the output yielded by our sentiment
analysis method for each app. As shown in Figure 2, the overall
sentiment strength (in a star rating scale from one to five) appears
in the top part of the example output. Additionally, both the topics
extracted by the topic modeling method and their respective senti-
ment score are shown in the example output in Figure 2. Similarly to

3.0

3.5

4.0

4.5

With tests Without tests
Group

R
at

in
gs

Figure 1: Overview of the ratings of the two app groups.

Luiz et al. [16], we normalized the sentiment strength to values that
range from 1 to 5. For instance, an app whose sentiment inferred
from our analysis was 80% positive and 20% negative has a normal-
ized sentiment score of 4 stars. The arrows indicate whether the set
of topics in a given row are below average (in which case the arrow
appears in red) or above average (green arrow pointing upwards)
when compared to the overall sentiment strength (inferred from all
reviews of an app). We used these arrows to pick out topics that
negatively influence the overall rating of an app.

Figure 2: An example of output from the sentiment analysis
method we used in our study.

As shown in Table 4, the results of the review-based sentiment
analysis indicate that most apps in the treatment group scored quite
high for user satisfaction. The smallest score was 3.2 (ownCloud)
and the highest score was 4.7 (Materialistic). On average (mean),
the score of the apps in this group was 3.93.

As mentioned, the approach we used for topic modeling and
sentiment analysis also yields a high-level summary of the topics
that tend to co-occur in the same reviews as well as the general
sentiment associated with these topics. By analyzing these topics
we found that apps with test suites are adversely affected by updates.
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Table 4: Subsets of apps with most reviews.

App Name #Reviews SA‡ Rating
Treatment Group (Apps with Test Suites)

c:geo 4,480 3.8 4.4
K-9 Mail 4,480 3.3 4.3
SMS Backup+ 4,480 3.8 4.4
AntennaPod 3,198 4.2 4.6
AnySoftKeyboard 2,966 4.0 4.4
Termux 2,295 4.3 4.7
Kore 1,890 3.9 4.4
Calendar Widget 1,623 4.2 4.5
And Bible 1,327 4.5 4.6
ownCloud 1,035 3.2 3.0
Ministocks 760 3.9 4.1
ZXing 560 3.4 4.1
Blokish 491 4.0 4.3
OpenKeychain 402 3.8 4.5
Materialistic 396 4.7 4.7

Control Group (Apps without Test Suites)
OpenVPN for Android 2,629 4.0 4.4
Binaural Beats Therapy 2,597 4.1 4.2
Linux CLI Launcher 2,584 4.2 4.7
No-frills CPU Control 2,577 4.2 4.3
Locale 2,367 3.8 3.7
Tinfoil for Facebook 2,312 3.8 4.1
Pathfinder Open Reference 1,636 4.4 4.7
Ridmik Bangla Dictionary 1,406 4.4 4.6
Night Screen 1,053 3.7 4.5
SealNote 821 4.1 4.5
Torchie 618 3.8 4.2
OpenSudoku 600 4.5 4.6
Transdrone 587 4.0 4.3
Taskbar 520 4.3 4.4
Vuze Remote 516 4.0 4.3
‡SA stands for sentiment analysis.

As shown in Figure 3, one topic that often negatively influenced
user level satisfaction was related to updates. Additionally, since the
topic fix often appears along with update, we surmise that frequent
updates might actually lead to more problems than they fix.

Considering the results of our sentiment analysis, the apps in
the control group also scored quite high for user satisfaction. The
app with the smallest score was Night Screen (3.7) and the one
with the highest score was OpenSudoku (4.5). On average (mean),
the apps in this group scored slightly higher than the apps in the
treatment group: 4.09. The results of the sentiment analysis would
seem to suggest that energy inefficiencies are the main reason
behind the negative reviews of the apps in this group. As high-
lighted in Figure 4, battery-drain issues are common in the control
group: the topics battery, life, drain, drains, and consuming appear
in many negative reviews. It is worth mentioning that the results
of our review-based sentiment analysis suggest that apps with tests
are not completely devoid of battery-drain issues. More precisely,
our results indicate that apps with tests are less prone to deplete
batteries faster than usual.

6.4 Bug Reports and Updates
Most apps are updated very frequently in order to create a better
experience for users and fix faults. Therefore, we conjectured that
users often leave bug-related (i.e., fault-related) and update-related
feedback in their written reviews. To take this into account, we
decided to count the number of one-star and two-star reviews with
keywords related to bug reports. Previous work has shown that one-
star and two-star reviews often highlight negative issues [19]. The

(a) c:geo (b) Ministocks

(c) SMS Backup+ (d) AnySoftKeyboard

Figure 3: Topics extract from user reviews. The results of our sen-
timent analysis method would seem to indicate that apps with tests
have update-related issues.

(a) Tinfoil for FB (b) Locale

(c) Torchie Torch (d) No-frills CPU

Figure 4: Topics extracted from user reviews. According to the re-
sults of our sentiment analysis method, some apps without test
suites are fraught with battery-drain issues.

bug-related keywords we used in our experiment were extracted
from Maalej and Nabil [17].
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Figure 5a compares the control and treatment groups with re-
spect to the number of one-two star reviews with bug related key-
words; given that we examined apps with varying number of re-
views, each data point is a proportion (in %) to the total number
of reviews. As shown in Figure 5a, there is no major difference
between the two groups: the interquartile ranges are quite simi-
lar and the treatment group (i.e., apps with tests) has the greatest
percentage of reviews with bug-related information.

Since regression testing can be used to expose faults caused by
updates and/or changes in apps, we checked whether the treatment
group has fewer reviews whose main issue brought up by end users
is update related. To look for reviews related to update issues, we
adopted the following terms: updat, upgrad, and chang. Figure 5b
compares the control and treatment groups with respect to the
number of reviews with update related keywords; each data point
is a proportion (in %) to the total number of reviews. Considering
the median, the treatment group is slightly better. That is, interest-
ingly, apps with test suites have less reviews with update-related
terms – though there exists a reasonable intersection between the
interquartile ranges. However, as mentioned, update-related prob-
lems are the main source of negative reviews considering apps with
test suites: although update-related keywords do not appear often
in the reviews for apps with test suites, when they appear they are
usually accompanied by keywords that carry negative sentiments.

7 DISCUSSION AND COMPARISONWITH
RELATEDWORK

Since our analysis was not able to evince any meaningful impact of
having automated test suites, in this section we lay out some of the
issues that we believe need to be addressed in future research.

Concerning the amount of tests. In our study the treatment group
was composed of apps with automated tests and the adopted test-
to-code-ratio was 1:10. Since the presence of automated tests in
mobile apps is lacking8, we initially assumed that it was a reason-
able threshold. However, this might not be the case, as observed
in Figures 6a and 6b. We relate the ratio test/production with bug
related reviews (Figure 6a) and with update related reviews (Fig-
ure 6b). It is worth noting that most of our apps have a ratio below
0.3. Thus, one can argue that this amount of automated tests is not
able to bring about the benefits of a sound and systematic practice
of software testing.

User reviews. The amount of reviews most apps in our sample
provides an indication that users are willing to spend time on writ-
ing review and share their experiences. Nevertheless, we found that
a considerable number of reviews is not very informative: gener-
ally, the written reviews are brief, similar to tweets and thus do not
provide much insight into the pros and cons of apps. As remarked
by Pinto and Castor [23], the feedback left by customers/users in
other domains (e.g., movies or hotels) tends to be 3-4 times longer
and these customers seem to be willing to elaborate more on their
written reviews. Consequently, we found that the user experience
reported in reviews often lacks much in the way of providing infor-
mative feedback concerning bugs (i.e., faults) and similar issues.

8This is based on open source apps, though there exists evidence of such observation
in industry [12].
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Figure 5: Boxplots outlining the (a) percentage of one-star and two-
star reviews with bug related keywords and the (b) percentage of re-
views with update related (i.e., updat, upgrad, and chang) keywords.

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●0

5

10

15

0.2 0.4 0.6 0.8 1.0 1.2
test LoC / src LoC

%
 1

−2
 s

ta
r 

re
vi

ew
s 

w
ith

 b
ug

−r
el

at
ed

 k
ey

w
or

ds

(a)

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●5

10

15

20

25

0.2 0.4 0.6 0.8 1.0 1.2
test LoC / src LoC

%
 r

ev
ie

w
s 

w
ith

 u
pd

at
e−

re
la

te
d 

ke
yw

or
ds

(b)

Figure 6: Dot plots showing the (a) test-to-code-ratio and percent-
age of bug related reviews. the (b) test-to-code-ratio and percentage
of update related reviews.

Sample size. We considered 30 apps for each group. Although 30
is a common choice for experiments, we might need a slightly larger
sample size to confirm our results and answer the RQs we posed.
However, as mentioned, we believe that some insights gained from
this study can still be generalized to similar settings.

User perception. Given that the apps we analyzed are adopted in
very different contexts by a diverse group of people, the answers to
the RQswe posedmight not be evinced by observing direct feedback
from users (i.e., star rating and reviews). Yet, similar studies (viz.,
[14]) have shown that there is a correlation between some of the
proxies we used to evaluate quality and user ratings.
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Energy efficiency is a main concern. The results of our study back
up the conclusionsmade by Pinto andCastor [23]. Our review-based
sentiment analysis showed that apps without tests are fraught with
battery-drain issues, which leads to poor apps reviews. As pointed
out by Pinto and Castor, the creation of techniques and tools (e.g.,
software energy profilers) to allow developers to create, maintain,
and evolve energy-efficient software has received little attention.
Instead, most research on computing and energy efficiency has been
centered around low level hardware and software issues. Therefore,
we also believe that energy consumption has become an ubiquitous
problem largely due to the lack of specialized tools and knowledge.

8 CONCLUDING REMARKS
Software testing has proven to be central to quality improvement
efforts. Moreover, since user feedback has become crucial for mod-
ern software development, in this paper, we study the extent to
which software testing contributes to the quality of apps in terms of
user satisfaction. To this end, we analyzed a total of 60 mobile apps
taking into account two proxy measures of user satisfaction: users’
ratings and users’ reviews. While there is an increasing number of
studies based on analyzing/mining app reviews and quantitatively
analyzing the reasons behind app users’ dissatisfaction, there is
little empirical evidence on the benefits of software testing in terms
of end user satisfaction and the success of mobile apps.

We found that there is no significant difference between apps
with test suites and apps that have been developed without test
suites in terms of their user rating. The key value to this research is
that we looked further into user feedback in the form of written user
reviews in hopes of characterizing the main problems of apps with
and without test suites. The results of our review-based sentiment
analysis indicate that the vast majority of the apps with and without
test suites score quite high for user satisfaction. We also found that
apps with test have a high incidence of update-related problems,
while apps without test suites are prone to deplete a device’s battery
faster than usual. We believe that our study can be seen as a step
towards characterizing the different problems that occur in apps
that have automated tests and apps developed without test suites.

There are several interesting avenues for future exploration. First,
as we pointed out in our threats to validity section, all apps we
analyzed are from the Google Play Store. Thus, as future work,
it would be interesting to analyze apps from different app mar-
ketplaces and increase the size of our sample. Second, although
several studies have taken into account app store reviews to ana-
lyze different aspects of app development, app users’ feedback is
also widely available on social media. We believe that in a future
study it would be important to look at how users’ feedback in social
media compares to users’ feedback present in app stores. Third, an-
other important point is that we should look at more sophisticated
ways to identify bug- (i.e., fault-related) and update-related issues
in reviews. Finally, we plan to look into how developers have been
testing different aspects of mobile apps (e.g., usability and function-
ality). More specifically, we plan to go over information available in
bug trackers, use more sophisticated methods to examine the types
of automated tests included in our sample, and carry out surveys
with app committers/developers.
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