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ABSTRACT
Architecture-Driven Modernization (ADM) is an initiative of
the Object Management Group (OMG) whose main purpose
is to provide standard metamodels for software modernization
activities. The most important metamodel is the Knowledge
Discovery Metamodel (KDM), which represents software ar-
tifacts in a language-agnostic fashion. A fundamental step
in software modernization is refactoring. However, there is a
lack of tools that address how refactoring can be applied in
conjunction with ADM. We developed a tool, called KDM-
RE, that supports refactorings in KDM instances through:
(i) a set of wizards that aid the software modernization engi-
neer during refactoring activities; (ii) a change propagation
module that keeps the internal metamodels synchronized;
and (iii) the selection and application of refactorings avail-
able in its repository. This paper evaluates the application
of refactorings to KDM instances in an experiment involv-
ing seven systems implemented in Java. We compared the
pre-refactoring versions of these systems with the refactored
ones using the Quality Model for Object-Oriented Design
(QMOOD) metric set. The results from this evaluation sug-
gest that KDM-RE provides advantages to software modern-
ization engineers refactoring systems represented as KDMs.
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tools;
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1 INTRODUCTION
Legacy systems are software systems that are still useful to
support the internal processes of an organization, despite pos-
ing maintenance and evolution challenges. The structure of a
legacy system is usually inconsistent with its documentation,
which makes it difficult to maintain. However, replacing it
completely is often expensive and error-prone task [24].

An alternative to replacing a legacy system is reengineering.
Reengineering entails analyzing the system source-code (or its
user interface) to create higher levels models of the software
system under investigation and then redesign and rebuild
those models [24]. In 2003, the Object Management Group
(OMG) released the concept of Architecture-Driven Mod-
ernization (ADM), whose main objective is to standardize
reengineering processes through metamodels [21]. The Knowl-
edge Discovery Metamodel (KDM) is the primary metamodel
of an ADM process. It has a vast amount of metaclasses to
represent lower levels of abstraction of a system (e.g., source-
code), higher levels (e.g., architecture, business rules, and
other abstract concepts), and technical levels (e.g., graphic
interface, configuration files, and databases). KDM allows
the representation of concepts of any domain [9].

Refactoring is a key activity in an ADM process. It was
first proposed as a methodology to restructure programs by
Opdyke [22]. After that, refactoring became a widely adopted
discipline to improve software systems without changing its
observable behavior [14]. With appropriate tooling support,
refactoring can be an efficient and effective way to (i) improve
software design and (ii) make software easier to understand.

Although refactoring is a well-known concept when ap-
plied to source-code, there are some research issues when
this concept is applied to models [30]. Model-level refactor-
ing tends to be more complex than source-code refactoring
because, apart from restructuring model elements and rela-
tionships, it is also necessary to check whether the model
remains consistent with the source-code and keep track of the
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synchronization between them [17, 18]. On the other hand,
one of the advantages of using model-based refactoring is
the fact that software developers do not have to worry about
programming-language specific features, abstracting away
low-level, programming-language constructs. Models provide
a graphical and high-level view of the systems, thus software
engineers can easily visualize and verify which refactorings
should be applied to the system.

When it comes to model-based refactoring, most research
efforts present proposals for applying refactorings to Unified
Modeling Language (UML) diagrams [4, 13, 19, 27, 28, 30],
since UML is widely used to design and document software
system. However, using only UML as a base metamodel in
modernization tools restricts the restructuring activities to
the views available in this metamodel. There are several
system modernization scenarios that require visions and rep-
resentations that extrapolate UML diagrams, but can be
properly represented with KDM [4, 13, 19, 27, 28, 30]. For
instance, UML does not contain a set of dedicated, specific
metaclasses to represent lower levels of abstraction, such as
source-code, neither metaclasses to represent higher levels,
such as domain concepts, architecture, business rules, and
user interfaces.

The complexity of restructuring activities renders them
unwieldy. There are tools that allow the application of refac-
torings to class diagrams. However, none of them uses KDM
as their underlying metamodel. As opposed to UML models,
KDM instances can store many details about a system but
these metamodels were not designed to serve as a graphical
view of the system. Thus, in order to make it possible to
apply refactorings to KDM instances, UML can be used as a
graphical representation of KDM.

Due to the lack of tools working with KDM, in a previous
paper [8], we presented a tool, called Knowledge Discov-
ery Model-Refactoring Environment (KDM-RE), which aids
software engineers to refactor UML class diagrams and auto-
matically propagates these changes to KDM instances. This
tool, which is a plug-in for Eclipse IDE, automates the entire
process of application, reuse, and propagation of refactorings
to KDM instances, so that software engineers only need to
identify where to apply those transformations.

As a follow-up to previous research, in this paper we set
out to evaluate whether the refactorings created for KDM
improve system quality. To this end, we carried out an experi-
ment in which we used KDM-RE to apply the refactorings to
seven open-source systems implemented in Java. After apply-
ing all the transformations, we compared the pre-refactoring
versions of these systems with the refactored versions us-
ing the metrics proposed by QMOOD. The results of our
evaluation suggest that refactoring transformations applied
to KDM instances improve some quality-related attributes
such as reusability, flexibility, understandability, and effective-
ness. Moreover, KDM-RE provides advantages to software
modernization engineers refactoring systems represented as
KDMs.

The remainder of this paper is organized as follows. Sec-
tion 2 provides background on KDM. Section 3 presents
KDM-RE. Section 4 presents the experiment that we con-
ducted to evaluate the benefits of the refactoring transfor-
mations that act upon KDM instances. Section 5 describes
our experimental results and presents related work. Section 6
provides concluding remarks.

2 ADM AND KDM
ADM [23] is an OMG initiative for standardizing system
modernization processes. The main idea is taken advantage
of reverse engineering concepts, Model-Driven Architecture
(MDA) principles and the KDM meta-model. A typical ADM
modernization process starts by reverse engineering a system
into a KDM instance, this instance is then analyzed in hopes
of finding problems, afterwards, refactorings are applied to
the resulting KDM instance. The process ends with the gener-
ation of the modernized system. According to Perez [23], there
are several modernization scenarios that can be conducted
to modernize legacy systems: platform migration, language
to language conversion, and application improvement. The
last one involves architecture reconstruction, which is the
scenario we approach in this paper.

KDM is a language and platform independent ISO meta-
model capable of representing a complete software system.
KDM can be seen as a family of meta-models and it comprises
several metamodels for representing systems inside modern-
ization tools. A schematic representation of KDM can be seen
in Figure 1. It is divided into four layers (right side) that are
further divided into packages (internal meta-models). Each
package concentrates on specific aspects of software systems.
Thus, there are packages (meta-models) for representing a
wide spectrum of system abstractions, from low-level details
of source-code (Code package) and run-time actions (Action
package), to user interface (UI package), deployment details
(Build package), Business Rules abstractions (Conceptual
package), and Architectural details (Structure package).

Abstractions

Runtime Resource

Program Elements

Infrastructure

Layer

M
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K
D
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Source KDM Core

ActionsCode

Data Event UI Platform

StructureBuildConceptual

Figure 1: KDM layers.

Code, Action and Structure are the most important pack-
ages in the context of our research because they represent all
artifacts upon which our tool performs refactorings. Figure 2
shows a small snippet of KDM, showing some metaclasses of
the Structure, Code, Core and Action packages.

Core is central for KDM, since it provides base metaclasses
for other packages. KDMEntity is the most important meta-
classes in this package because all other KDM metaclasses
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directly or indirectly extend it. Therefore, all KDM meta-
classes are KDMEntities. For instance, Code contains a lot of
metaclasses for representing code details, such as ClassUnit,
MethodUnit, and Package. Code contains 24 metaclasses to
represent all statements in a object oriented programming
language. Table 1 shows some of these metaclasses.

Table 1: Code and its metaclasses.

Statements Code metaclasses
Class ClassUnit

Interface InterfaceUnit
Method MethodUnit

Attribute StorableUnit
Local Variable MemberUnit

Parameter ParameterUnit
Association KDMRelationShip

(from core)ClassUnit
(from core)

0..*

0..*

0..*

1

1

1

+to

+from

KDMRelationship
(from core)

+ relation

0..* 0..*

Package
(from code)

(from core)

(from core)Implements
(from core)Calls

(from action)

AbstractStructureElement
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Component

Layer

SoftwareSystem ArchitectureView

AggregatedRelationshipKDMEntity
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+
 im

p
le

m
e
n
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o
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- density : Integer

MethodUnit

Figure 2: Class diagram of the Structure package (OMG
Group [23]).

AggregatedRelationship is another important metaclass.
It is a relationship that allows to group other primitive re-
lationships within it. This is represented by the association
with the KDMRelationship class. In KDM, every relationship
type is represented by a metaclass. Instances of primitive
relationships are method calls (Calls metaclass), object in-
stantiations (Creates metaclass), implements relationships
(Implements metaclass), etc. Each AggregatedRelationship
involves two KDM Entities: source and target.

3 KDM-RE
Figure 3 shows KDM-RE logical architecture, which is divided
into three layers: (i) Integrated Development Environment
(IDE), (ii) KDM-RE, and (iii) User Interface (UI). The
first layer contains all Eclipse IDE plug-ins that KDM-RE
depends on: Eclipse Modeling Framework (EMF) [10], ATL,
Object Constraint Language (OCL), Modisco [11], Papyrus1,
XText2, EMFCompare3, and KDM.

The second layer contains the three modules of KDM-RE:
(i) Refactoring Module, (ii) Structured Refactoring Meta-
Model (SRM) Module, and (iii) Synchronization Module. In
1https://eclipse.org/papyrus/
2https://eclipse.org/Xtext/
3https://www.eclipse.org/emf/compare/

this paper, we focus in the first module, which contains a
set of resources that automate the application of refactoring
transformations to KDM instances.

The third layer encompasses KDM-RE perspective on
Eclipse IDE graphical interface. It provides two graphical
editors: the first one is an extension of the editor MoDisco [5]
and where KDM instances are shown, and the second graph-
ical editor is an extension of Papyrus [12] that shows UML
class diagrams.

Eclipse Platform 

ATLPapyrusOCL

Java

XText

Refactoring 
Module

SRM 
Module

Synchronization 
Module 

KDM-RE

ID
E

KD
M
-R
E

U
I

KDM
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Eclipse Modeling 
Framework

KDM-RE Views

KDM-RE Perspective

KDM-RE Editors

EMFCompare

Figure 3: Architecture of KDM-RE.

Refactorings can be grouped according to their level of
granularity [14]. Granularity can be defined in two levels
of operations: (i) atomic operations, and (ii) compound op-
erations. Atomic operations are specified by the following
primitive operations:

∙ ADD: any operation that adds an instance of a KDM
metaclass, for instance: ADD Package, ADD ClassUnit,
ADD StorableUnit, ADD MethodUnit, etc.

∙ DELETE: any operation that removes an instance of a
KDM metaclass, for instance: DELETE Package, DELETE
ClassUnit, DELETE StorableUnit, DELETE MethodUnit,
etc.

∙ CHANGE: any operation that changes a value of a meta-
attribute of a KDM metaclass, for instance: CHANGE
Package meta-attributes, CHANGE ClassUnit meta-
attributes, CHANGE StorableUnit meta-attributes,
CHANGE MethodUnit meta-attributes, etc.

Compound operations consist of a combination of atomic
operations. According to Fowler [14], the major refactor-
ings are defined using atomic operations (ADD, DELETE, and
CHANGE). Therefore, by combining these atomic operations it
is possible to create more complex refactorings. For instance,
Table 2 describes the operations that are combined to create
more sophisticated refactoring transformations.

All refactorings were defined in KDM-RE using ATL. Inter-
nally KDM-RE contains templates for each atomic operations
(ADD, DELETE, and CHANGE) devised in ATL. Listing 1 presents
the templates for the atomic operations ADD (lines 1-11),
DELETE (lines 13-19), and CHANGE (21-28), respectively. The
fixed parts of the templates are formed by ATL and the
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varying parts, e.g., the dashed line, are parameters to execute
the refactorings. KDM-RE programmatically executes the
transformations implemented in ATL by means of ATL EMF
Transformation Virtual Machine.4 Similarly, all pre- and
postconditions were specified using OCL. The API Desden
OCL5 was used to execute all pre- and postconditions.

Listing 1: Template ATL to perform the atomic operation ADD� �
1 rule ADD {
2 from
3 source : MM!____ ( source .name = ____)
4 to
5 target : MM!____ (
6 codeElement ← source . codeElement→including (new)
7 ),
8 new: MM!____ (
9 name ← ____

10 )
11 }
12
13 rule DELETE {
14 from
15 source : MM!____ ( source .name = ____ and
16 source . refImmediateComposite (). name = ____)
17 to
18 drop
19 }
20
21 rule CHANGE {
22 from
23 source : MM!____ ( source .name=____)
24 to
25 target : MM!____ (
26 ____ ← ____
27 )
28 }� �

All refactoring transformations supported by KDM-RE are
applied to KDM instances. As a result, KDM-RE integrated
the core functionality of MoDisco, which is an Eclipse plug-in
capable of transforming Java source code into KDM instances.
Listing 2 shows a chunk of code of how KDM-RE uses the
MoDisco to transform a Java project into a KDM instance.

Listing 2: Transforming Java source-code into KDM instance� �
1 DiscoverSourceModelFromJavaElement discoverer = ...;
2 discoverer . discoverElement ( javaProject , monitor );
3 Resource kdmModel = discoverer . getTargetModel ();� �

After obtaining a KDM instance, software engineers can
apply the refactorings using KDM-RE graphical editors (GE).
In KDM-RE, KDM instances can be represented in a tree
model browser, as shown in Figure 4. The left side shows
4https://wiki.eclipse.org/ATL/EMFTVM
5http://www.dresden-ocl.org/index.php/DresdenOCL

Table 2: Refactoring transformations and their constituent
atomic operators.

Refactoring Operations
Move StorableUnit ADD | DELETE
Move MethodUnit ADD | DELETE
Extract ClassUnit ADD | DELETE | CHANGE
Inline ClassUnit CHANGE | DELETE
Flatten Hierarchy ADD | DELETE | CHANGE
Push Down MethodUnit ADD | DELETE
Push Down StorableUnit ADD | DELETE
Pull Up MethodUnit ADD | DELETE
Pull Up StorableUnit ADD | DELETE
Extract SubClassUnit ADD | DELETE
Encapsulate StorableUnit ADD | CHANGE

all KDM metaclasses instantiated in a Java project. The
right side describes all meta-attributes of an specific KDM’s
metaclass – one can right click in any of these metaclasses
in order to apply the refactoring (Figure 4) [8]. Although
this GE is useful for applying refactoring directly to KDM
metamodel, it is not intuitive.

Figure 4: KDM-RE Tree Model Browser.

KDM-RE also allows (Figure 5 (A)), the software engineer
to apply refactorings by using UML class diagram. Although
this editor uses UML class diagram, all refactorings are in
fact executed in KDM instances, UML class diagrams are
used as bridges between the information (e.g., class name,
attributes, methods) and the refactorings. After choosing the
refactoring in both GUIs an specific RefactoringWizard is
launched, see Figure 5 (B). It guides the software engineer
throughout the refactoring process. An important feature
of KDM-RE is the option to preview the result of applying
a given refactoring. Thus, if the software engineer wants to
visualize the effect of refactoring before actually performing it,
he can select the Preview button. After clicking on Preview,
a screen contrasting the before and after version of the system
will be created as shown in Figure 6. As shown in Figure 6,
the top of the screen shows which instances were deleted,
moved, and added in a textual way. In the bottom, it is
possible to visualize the difference between the two KDM
instances, that is, the non-refactored (original) instance and
the refactored instance. The right side represents the KDM
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instance after the application of a refactoring and the left side
represents the KDM instance before refactoring. We have
used EMFCompare6 to implement this feature.

4 EVALUATION
We carried out an experiment to evaluate whether the refac-
torings applied to KDM instances contribute to improve
the quality of systems. Table 3 presents the seven systems
used in the experiment: Xerces-J, Jexel, JFreeChart, JU-
nit, GanttProject, ArtofIllusion, and JHotDraw. These seven
systems were chosen because they are real-world Java appli-
cations whose sizes range from 16,026 to 240,540 lines of code.
Xerces-J is a software family for parsing XML; Jexel is API
for writing regular expressions in Java; JFreeChart is a Java
library used to generate charts; JUnit is a framework used
to generate unit tests; GanttProject is a system for project
management; ArtofIllusion is an API for 3D modeling and
rendering; JHotDraw is a tool to aid the creation of drawings.

As mentioned, in this experiment we set out to verify
whether, after applying a set of refactorings to remove some
bad smells, the systems improved in terms of quality. More
specifically, we evaluated the quality of the subject systems
according to a set of metrics: QMOOD, which is a quality
model for object-oriented programs that establishes an em-
pirically validated hierarchical structure to evaluate quality
attributes [2]. We decided to use QMOOD because (i) this
set of metrics is widely used in the literature to evaluate the
impact of refactorings on software [15, 20]; and (ii) QMOOD
defines six quality attributes that can be gauged by the
metrics [2]. In this experiment, we examined four QMOOD
quality attributes: Reusability (R), Flexibility (F), Under-
standability (U), and Effectiveness (E). The quality attribute
functionality was not taken into account in our experiment
because refactorings by definition should not change the ob-
servable behavior of software. Extensibility was not taken
into consideration due to the subjectivity associated with
this quality attribute.

Table 4 presents the system properties that were analyzed
in the KDM instances and their respective metrics, as defined
in QMOOD [2]. The relationship between theses metrics and
the quality attributes is shown in Table 5. In our experiment,
a system has a quality gain in a given attribute (𝐺𝑞) when:
𝐺𝑞𝑖 = 𝑞′𝑖−𝑞𝑖, where 𝑞𝑖 and 𝑞′𝑖 are the value of quality attribute
𝑖 before and after the behavior preserving transformations,
respectively.

Table 3: Systems used in the experiment.

System Abbreviation Version KLOC Classes
Xerxes-J XJ 2.7.0 240 991

Jexel JEX 1.3 50.4 75
JFreeChart JFC 4.0 170 521

JUnit JUn 4.0 17.48 225
GanttProject GP 1.10.2 41 245
ArtofIllusion AOIL 2.8.1 87 459

JHotDraw JHD 7.0.6 16 468

6https://www.eclipse.org/emf/compare/

Table 4: Metrics used in the experiment.

Property Metric
Design size Design Size in Classes (DSC)
Hierarchies Number Of Hierarchies (NOH)
Abstraction Avarage Number of Ancestors (ANA)
Encapsulation Data Access Metric (DAM)
Coupling Direct Class Coupling (DCC)
Cohesion Cohesion Among Methods in class (CAM)
Composition Measure Of Aggregation (MOA)
Inheritance Measure of Functional Abstraction (MFA)
Polymorphism Number Of Polymorphic methods (NOP)
Complexity Number Of Methods (NOM)
Messaging Class Interface Size (CIS)

Table 5: Relationship between quality attributes and the met-
rics [2].

R -0.25DCC + 0.25CAM + 0.5CIS + 0.5DSC
F 0.25DAM - 0.25DCC + 0.5MOA + 0.5NOP
U -0.33ANA + 0.33DAM -0.33DCC + 0.33CAM - 0.33NOP +

0.33NOM - 0.33DSC
E 0.2ANA + 0.2DAM + 0.2MOA + 0.2MFA + 0.2NOP

The experiment was designed following the approach de-
fined by Wohlin et al. in [31], which consists of three steps.
The first step, definition and planning, encompasses context
specification, hypotheses formulation, operational definition
of variables, and description of participants (when applicable).
The second step, termed operation, involves defining details
related to the experiment preparation and execution. The
third step, which is data analysis, has to do with defining
how the information collected during the previous step will
be analyzed. Subsections 4.1 to 4.3 describe each step of the
experiment.

4.1 Definition and Planning
We defined the experiment following the Goal, Question,
Metric (GQM) model [31]:

∙ Object of study: the refactorings applied to KDM in-
stances;

∙ Purpose: to evaluate the impact of refactorings per-
formed by KDM-RE on KDM instances;

∙ Focus: reusability, flexibility, understandability, and
effectiveness, as defined in QMOOD [2];

∙ Perspective: software engineers;
∙ Context: this experiment was conducted using the

Eclipse IDE 4.3.2, on a 2.5 GHz Intel Core i5 ma-
chine with 8GB of physical memory running the Mac
OS X 10.9.2 operating system.

The experiment can be summarized using the following
template [31]: to analyze the refactorings created for KDM;
with the purpose of evaluating the proposed refactorings;
with respect to reusability, flexibility, understandability, and
effectiveness; from the point of view of software engineers; in
the context of different systems. In order to achieve this, the
following research question was defined:

Research Question (RQ): How can refactorings created for
KDM instances be useful to software engineers in real world
scenarios?
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(A) (B)

Figure 5: KDM-RE UML Class Diagram.

Figure 6: Refactoring Preview.

The RQ was formalized into the following hypotheses cre-
ated for each quality attribute:

∙ Reusability:
– Null Hypothesis (H1_0): regarding reusability, there

is no difference between KDM instances before and
after refactoring:
H10 : 𝜇𝑟𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑒𝑓𝑜𝑟𝑒

= 𝜇𝑟𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑎𝑓𝑡𝑒𝑟

– Alternative Hypothesis (H1_1): int terms of reusabil-
ity, there is a difference between KDM instances be-
fore and after refactoring:
H11 : 𝜇𝑟𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑒𝑓𝑜𝑟𝑒

, 𝜇𝑟𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑎𝑓𝑡𝑒𝑟

∙ Flexibility:

– Null Hypothesis (H1_0): regarding flexibility, there
is no difference between KDM instances before and
after refactoring:
H20 : 𝛼𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑒𝑓𝑜𝑟𝑒

= 𝛼𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑎𝑓𝑡𝑒𝑟

– Alternative Hypothesis (H1_1): regarding flexibility,
there is a difference between KDM instances before
and after refactoring:
H21 : 𝛼𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑒𝑓𝑜𝑟𝑒

, 𝛼𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑎𝑓𝑡𝑒𝑟

∙ Understandability:
– Null Hypothesis (H1_0): regarding understandabil-

ity, there is no difference between KDM instances
before and after refactoring:
H30 : 𝛽𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑒𝑓𝑜𝑟𝑒

= 𝛽𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑎𝑓𝑡𝑒𝑟

– Alternative Hypothesis (H1_1): concerning under-
standability, there is a difference between KDM in-
stances before and after refactoring:
H31 : 𝛽𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑒𝑓𝑜𝑟𝑒

, 𝛽𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑎𝑓𝑡𝑒𝑟

∙ Effectiveness:
– Null Hypothesis (H1_0): regarding effectiveness, there

is no difference between KDM instances before and
after refactoring:
H40 : 𝛾𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑏𝑒𝑓𝑜𝑟𝑒

= 𝛾𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑎𝑓𝑡𝑒𝑟

– Alternative Hypothesis (H1_1): as for effectiveness,
there is a difference between KDM instances before
and after refactoring:
H41 : 𝛾𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑏𝑒𝑓𝑜𝑟𝑒

, 𝛾𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑎𝑓𝑡𝑒𝑟

The experiment had the following independent variables:
(i) the KDM-RE tool; (ii) the tools JDeodorant, inFusion,
and EMF Metrics; (iii) the Java programming language; and
(iv) the seven systems we chose (Table 3). The dependent vari-
ables are (i) reusability, (ii) flexibility, (iii) understandability,
and (iv) effectiveness.
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4.2 Operation
In this section was divided into two parts: preparation and
execution.

4.2.1 Preparation. KDM-RE only helps the software engi-
neer to perform the refactorings, it does not identify which
refactorings are necessary. Therefore, we used the tools Jdeodor-
ant7 and inFusion8 to identify bad-smells [14] in the source
code of the systems shown in Table 3. Then, we obtained a list
with the following bad-smells: God Class, a class with many
responsibilities; Data Class, a class that only has attributes,
but do not use them anywhere; Spaghetti Code, a tangled
source-code with complex control structures; and Functional
Decomposition, when a class plays a single function rather
than encapsulating data and functionality.

The next step was to obtain a KDM instance of each system
using MoDisco. We also used the tool EMF Metrics [1] on
the KDM instances to obtain the measures of the metrics
shown in Table 4. Afterwards, we calculated the value of the
quality attributes according to the equations in Table 5.

4.2.2 Execution. After identifying the bad-smells of each
system, we applied the proper refactorings on the KDM
instances of the systems using the KDM-RE tool. The refac-
torings chosen to remove bad-smells and improve quality
attributes are not KDM-specific. They were carefully identi-
fied in the refactoring catalog proposed by Fowler [14].

Since applying the refactorings manually would take a
long time and demand a lot of effort, a script file with the
refactorings, parameters, and paths to KDM the instances was
created. Thus, the KDM-RE tool performed the refactorings
in a semi-automatic way. For each refactoring, a time limit of
5 minutes was set. It was necessary to prevent the KDM-RE
from getting stuck into an infinite loop. The list of refactorings
applied to each system is shown in Table 6.

After applying the refactorings to the seven systems, the
EMF Metrics tool was used again to measure the quality
attributes. The analysis of data before and after refactorings
is presented in the next section.

4.3 Data Analysis
Table 7 presents the results obtained from the application
of the formula shown in Table 5 with quality attributes
calculated before and after the refactorings presented in
Table 6. The same data is plotted in the bar graphs shown
in Figure 7.

As shown in Table 7, all quality attributes were improved
after the refactorings. It is worth nothing that understand-
ability was the quality attribute that improved the most,
approximately 18%. On the other hand, effectiveness had the
lowest gain, reaching 5.29%. This is mainly because most
of the refactorings (Move Method, Move Field, and Extract
Class) increased the metrics of coupling (DCC), cohesion
(CAM), and project size (DSC), which are used to calculate
the attribute of quality understandability. In addition, the
7https://marketplace.eclipse.org/content/jdeodorant
8https://www.intooitus.com/products/infusion
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Figure 7: Graphs of the experiment data.

JHotDraw system produced the smallest increase for the
four quality attributes. The reason for this is that JHotDraw
was originally developed precisely to exemplify the use of
good design practices [16], mainly design patterns, so few
refactorings needed to be applied to this system.
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Table 6: Type and amount of refactorings applied to each system.

System
Refactoring XJ JEX JFC JUn GP AOIL JHD Average Percentage
Move Method 40 30 45 35 43 45 23 37.29 26.34%
Move Field 25 15 20 16 21 23 13 19.00 13.42%
Extra Class 15 20 20 19 12 15 11 16.00 11.30%
Extract Interface 13 10 15 16 8 12 10 12.00 8.48%
Move Class 9 11 7 13 10 10 18 11.14 7.87%
Pull Up Field 12 14 5 8 12 11 9 10.14 7.16%
Pull Up Method 10 9 8 6 8 14 13 9.71 6.86%
Push Down Method 17 13 15 10 9 16 8 12.57 8.88%
Push Down Method 16 12 14 11 10 18 15 13.71 9.69%
TOTAL 157 134 149 134 133 164 120 141.57 100.00%

Table 7: Experiment data before and after the refactorings.

Reusability
System Before After Difference

XJ 0.061 0.082 0.021
JEX 0.112 0.124 0.012
JFC 0.147 1.161 0.014
JUn 0.072 0.068 -0.004
GP 0.089 0.127 0.038

AOIL 0.041 0.092 0.051
JHD 0.028 0.057 0.029

Average 0.078 0.094 0.023
Percentage 43.62% 56.38% 12.77%

Flexibility
System Before After Difference

XJ 0.128 0.136 0.008
JEX 0.145 0.152 0.007
JFC 0.129 0.143 0.014
JUn 0.081 0.094 0.013
GP 0.153 0.178 0.025

AOIL 0.111 0.136 0.025
JHD 0.039 0.054 0.015

Average 0.112 0.172 0.015
Percentage 46.81% 53.19% 6.37%

Understandability
System Before After Difference

XJ -0.21 -0.289 -0.079
JEX -0.162 -0.218 -0.056
JFC -0.159 -0.213 -0.054
JUn -0.143 -0.236 -0.093
GP -0.231 -0.289 -0.058

AOIL -0.093 -0.147 -0.054
JHD -0.042 -0.098 -0.054

Average -0.148 -0.212 -0.064
Percentage 41.11% 58.89% 17.79%

Effectiveness
System Before After Difference

XJ 0.071 0.082 0.011
JEX0.052 0.052 0.061 0.009

JFC 0.04 0.031 -0.009
JUn 0.097 0.092 -0.005
GP 0.046 0.057 0.011

AOIL 0.032 0.043 0.011
JHD 0.011 0.022 0.011

Average 0.049 0.055 0.005
Percentage 47.35% 52.65% 5.29%

Table 8: Results of the Shapiro-Wilk test.

Before After
Reusability

w=0.97 p-value=0.8988 w=0.9494 p-value=0.7245
Flexibility

w=0.8998 p-value=0.3298 w=0.9129 p-value=0.416
Understandability

w=0.9594 p-value=0.8137 w=0.9203 p-value=0.4716
Effectiveness

w=0.9756 p-value=0.9355 w=0.9621 p-value=0.8362

4.3.1 Test of the Hypotheses. After data collection, we
applied statistical tests to the experiment results. Firstly,
we checked whether or not the data sets followed a normal

distribution applying the Shapiro-Wilk test to each data set
(the quality attributes before and after the refactorings, as
shown in Table 7). Table 8 presents the resulting p-value for
each quality attribute. As every p-value was greater than
0.05, it can be stated, with a confidence level of 95%, that
all data sets follow a normal distribution.

Given that our data follows a normal distribution, we
applied the paried t-test to verify our hypotheses. As shown
in Table 9, three quality attributes (reusability, flexibility, and
understandability) had a p-value < 0.05. Therefore, with 95%
confidence level, for these three attributes, there is evidence
that the proposed refactorings have a positive impact on
these quality attributes.

Table 9 also shows that, statistically, the quality attribute
of effectiveness did not improved much. In other words, we
could not refute the null hypothesis (H40) for this quality
attribute. We surmise that this happened because under-
standability and effectiveness affect each other in a way that,
when one is improved, the other tends to get worse [2]. As
it can be seen in Table 7, after the refactorings, understand-
ability was the quality attribute with the highest increase
(17.79%), while effectiveness was the one with the lowest
increase (5.29%). This sort of trade-off has to be analyzed
by the developers, who have to keep in mind the priorities
of their systems when a quality attribute improve to the
detriment of another one.

4.3.2 Threats to Validity. External validity: refers to the
generality of the experiment. The experiment was conducted
with seven different and widely used open source systems, be-
longing to different domains and with different sizes. However,
it is not possible to state that the results can be generalized
for all Java applications instantiated using KDM, as well as
for other programming languages, and other software engi-
neers. Another threat may be the limited number of systems,
which externally threatens the generalization of the results of
the present study. Future replication of this study is necessary
to confirm the outcome of the approach.

Validity by Construction: is concerned with the relationship
between theory and what is observed. Since the KDM-RE
tool in its current state does not identify bad-smells, the
identification of the refactorings to be applied was totally
dependent on the Jdeodorant and inFusion tools. Therefore, it
is no possible to eliminate validity threats related to problems
while identifying bad-smells.
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Table 9: Results of the Paried T-Test.

Quality Attribute T P-Value Result
Reusability -3.3498 0.01542 H1_{0} is refuted due less significance than 5%
Flexibility -5.5602 0.001433 H2_{0}is refuted due less significance than 5%

Understandability 11.0194 3.322e-05 H3_{0} is refuted due less significance than 5%
Effectiveness -1.6951 0.141 H4_{0} is not refuted because 0.141 >0.05

Conclusion Validity: is related to the accuracy of the met-
rics used in the experiment. To mitigate this threat, we used
metrics consolidated in the literature [2]. Another possible
threat to the validity of our study is concerned with the gran-
ularity of the refactorings automated by KRM-RE (i.e., they
are not concerned with improving architectural elements/-
constructs). However, it is worth emphasizing that, theoret-
ically, it is possible to improve any given software system
via small refactorings (i.e., as the ones originally proposed
by Fowler [14]). Therefore, small refactorings can be seen as
“building blocks” for larger restructuring of software systems,
i.e., large refactorings. Consequently, applying two or more
low-granularity refactorings can indeed yield architecture-
level changes. In addition, although our tool implements only
low-level refactorings, the modifications brought about by
these refactorings are propagated to other abstraction levels
of the metamodel.

5 RELATED WORK
Arendt and Taentzer [1] created a tool called EMF Refactor
to apply refactorings in EMF models. EMF Refactor allows
to perform identification of bad smells and then the user
can apply refactorings. Similarly to KDM-RE, a set of refac-
torings proposed by Fowler [14] was implemented in EMF
Refactor. There are two main differences between KDM-RE
and EMF Refactor. The first is that EMF Refactor does not
worry about synchronizing the instances of a metamodel after
the refactorings; Unlike KDM-RE, which defines a unique
synchronization module for this feature. The second differ-
ence is related to the identification of which refactoring to
apply.

Another tool related to KDM-RE is Refactory, which
can refactor any metamodel defined by the EMF. Accord-
ing to Reimann et al. [25], Refactory was created to allow
generic refactorings. The main similarities with KDM-RE
are: (i) Refactory also allows to apply refactorings graphically
through UML diagrams, (ii) refactorings are performed using
QVT, a transformation language similar to ATL, (iii) pre-
and post-conditions are also implemented in OCL, and (iv)
Refactory also does not identify bad-smells. The main differ-
ences are: (i) Refactory does not care about synchronizing
the metamodel after applying refactorings; and (ii) Refactory
does not use the KDM metamodel to apply refactorings.

Another related tool is MOOSE [7, 29]. MOOSE accepts
as input several types of programming language (Smalltalk,
Java, C++, etc.) and then MOOSE transforms such languages
into a meta-model called FAMIX [29]. After performing this
transformation, refactorings can be applied. MOOSE uses
the Refactoring Browser [26]. Therefore, refactorings can be

applied to instances of FAMIX; then automatically replicated
in the Smalltalk source code. In the same way that KDM-
RE, MOOSE, allows the application of language-independent
refactorings, KDM-RE and MOOSE allow the application of
refactorings through diagrams.

A recent research suggest that quality metrics do not
show a clear relationship with refactoring [3]. In other words,
quality metrics might suggest classes as good candidates to
be refactored that are generally not involved in developer’s
refactoring operations. The authors reached such conclusion
by mining the evolution history of three Java open source
projects. They investigate whether refactoring activities occur
on code components for which certain indications - such as
quality metrics or the presence of smells as detected by tools -
suggest there might be need for refactoring operations. They
analyzed 12.922 refactoring operations - where 42% (5425) are
performed by developers on code smells. Nonetheless, of these
42% only 7% (933) actually remove the code smell from the
affected class and 895 are attributable to only four code smells
(i.e., Blob, Long Method, Spaghetti Code, and Feature Envy).
Thus, not all code smells are likely to trigger refactoring
activities. Summing up, the results suggest that refactoring
actions are not a direct consequence of worrisome metric
profiles or of the presence of code smells, but rather driven by
a general need for improving maintainability. Furthermore,
the authors argue that refactoring recommendation tools
should not only base their suggestions on code characteristics,
but they should consider the developer’s point-of-view in
order to propose meaningful suggestions of classes to be
refactored.

Another research conducted a longitudinal study to verify
whether and to what extent refactoring improve software
structural quality [6]. The authors analyzed how often 2.635
refactorings, which covered 11 of the most-common types,
affected the density of 5 types of code smells along the version
histories of 25 open source projects. Their study showed that
95.1% of the refactorings did not reduce code smells, only
2.24% removed some of them and 2.66% introduced new ones.
Thus, according to their study, refactorings do not affect
code smell as good as what has been reported. Both the
researches [3, 6] share some common results and point that
refactorings are applied indiscriminately. We emphasize that
KDM-RE only facilitates the refactoring process of KDM
instances. However, it is the responsibility of developers to
identify which refactorings should be applied.

6 CONCLUDING REMARKS
We presented a tool, called KDM-RE, developed to assist
software engineers during system modernization efforts. More
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specifically, KDM-RE allows software engineers to apply refac-
torings to KDM instances. We carried out an experiment
to evaluate the advantages of using KDM-RE to refactor
systems through their KDM instances. During the experi-
ment, we applied refactorings to seven real-world systems
using our refactoring tool. The main objective was to verify
whether applying a set of refactorings to remove bad-smells
in KDM instances increases the quality of the systems. In the
context of our experiment, four quality attributes were used
as proxy for quality: reusability, flexibility, understandability,
and effectiveness.

The results of our experiment would seem to suggest that
our tool can help software engineers to apply refactorings that
improve the quality of software systems. More specifically,
using our tool to refactor the chosen software systems results
in several improvements: after applying our proposed refac-
torings to the seven systems, all systems improved: reusabil-
ity (12.77%), flexibility (6.37%), understandability (17.79%),
and effectiveness (5.29%). According to the results of the
statistical tests we performed, the first three attributes (i.e.,
reusability, flexibility, and understandability) increased signif-
icantly. Although there was also an increase in effectiveness,
the statistical tests indicated that it was not significant.

As future work, we intend to compare KDM-RE with
other similar model-based refactoring tools. Furthermore, as
short-term future work, given that refactoring tools should
take the developer’s feedback into account rather than only
bad smells, we plan on extending KDM-RE so as to allow
it to consider the developer’s expertise during refactoring
activities.
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