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ABSTRACT

There are two important artifacts in any Architecture-Confor-
mance Checking (ACC) approach: i) the representation of the
PA and ii) the representation of the CA. Many times, inside
the same ACC approach, distinct meta-models are adopted
for representing the PA and the CA. Besides, it is common
the adoption of meta-models unsuitable for representing
architectural details. This heterogeneity makes the checking
algorithms complex since they must cope with instances that
comply with two different meta-models or do not have proper
architectural abstractions. KDM is an ISO meta-model
proposed by OMG whose goal is to become the standard
representation of systems in modernization tools. It is able to
represent many aspects of a software system, including source
code details, architectural abstractions and the dependencies
between them. However, up to this moment, there is no
research showing how KDM can be used in ACC approaches.
Therefore we present an investigation of adopting KDM as
the unique meta-model for representing PA and CA in ACC
approaches. We have developed a three-steps ACC approach
called ArchKDM. In the first step a DSL assists in the PA
specification; in the second step an Eclipse plug-in provides
the necessary support and in the last step the checking is
conducted. We have also evaluate our approach using two real
world systems and the results were very promising, revealing
no false positives or negatives.
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1. INTRODUCTION

Legacy information systems are usually characterized by
demanding high maintenance costs, but at the same time, for
being essential to support internal business processes. These
systems cannot simply be discarded since they store a lot of
valuable business knowledge over time [24]. For many years,
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reengineering has been a solution to this problem, although
a study has shown that more than 50% of the reengineering
projects fail. One of the main reasons is the lack of stan-
dardization [27], which hinders the reuse of algorithms and
interoperability among reengineering/modernization tools.

As a solution, OMG has proposed the Architecture-Driven
Modernization (ADM) [3], which is a model-driven alterna-
tive for reengineering processes. The most important ADM
meta-model is the Knowledge Discovery Metamodel (KDM),
whose 1.3 version was recognized as an ISO standard in 2012
(ISO/IEC 19560) [22]. Besides, more than 30 companies have
participated in the specification of this meta-model.

The most important KDM characteristic is its complete-
ness for representing source code details, architectural ab-
stractions, deployment characteristics, UI, database, and
also the dependencies among them. OMG intends to make
KDM the most adopted meta-model in modernization tools
(ADM-based modernization tools). Many OMG members are
interested in finding out the advantages and disadvantages
of KDM [22]. This will support them in deciding for the
adoption of KDM in their modernization tools.

Architectural erosion is a well known problem of legacy
systems, which is a progressive degradation of their architec-
ture. This problem occurs when there is a gap between the
Current Architecture (CA) and the Planned Architecture
(PA). PA is the architecture that the system should have
and preserve along its life in order to meet the intended
quality attributes. It is an artifact that involves architectural
elements (Layers, Components, etc.) and constraints/rules
among these elements (e.g. Layer A cannot access Layer B).
On the other hand, CA is a representation of the current sys-
tem implementation; many times exposing differences when
compared to the PA.

An alternative for solving the architectural erosion problem
is conducting a modernization process focusing on architec-
tural reconciliation, readjusting the CA towards the PA.
The first and most important step of this process is called
Architecture-Conformance Checking (ACC), whose goal is to
reveal the architectural violations of the CA, when compared
to the PA [6, 7]. In general, these violations are dynamic ac-
tions (methods calls, class instantiations, parameters passing,
object instantiations, etc.) or structural dependencies (ex-
tends, implements, associations) that are not in accordance
with the constraints/rules imposed by the PA.

In order to conduct ACC in an automatic way, PAs and
CAs must be represented in a computable format. A diverse
set of formats have been used in ACC approaches for specify-
ing PAs and CAs [7, 8, 9, 10, 11, 12, 13], such as: proprietary
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meta-models, UML, etc. Besides, many times the same ap-
proach employ different meta-models for representing these
architecture representations, increasing the complexity of
the checking algorithms and impacting in the accuracy of
the detection process. For example, Dependency Constraint
Language (DCL) [28], SAVE [14], and LDM [25] employs
proprietary models for representing the PA, and AST for the
CA.

In this paper we present an investigation on how to use
KDM as the underlying meta-model for representing both
PA and CA in ACC approaches. The main motivations
of this work are: the current demand for evidences of the
suitability of KDM in supporting modernizations that involve
ACC. Since ACC is a recurrent activity when conducting
architectural modernizations, it is very important to provide
evidences of the KDM suitability to support this process.
The second motivation is to check if the use of a unique
meta-model in ACC approaches for representing PA and CA,
impact the accuracy of the checking process. Therefore, the
following two general research questions drive this study:
GRQL1 - Is it possible to reach good levels in terms of recall
and precision when employing KDM as a base metamodel in
ACC? GRQ2 - Does KDM provide all the suitable metaclasses
for conducting ACC?

In order to raise conclusions, we have developed an ACC
approach called ArchKDM. For the PA specification, our
approach delivers a Domain-Specific Language (DSL) called
DCL-KDM that generates a KDM instance that represents
the PA. For the CA extraction, our approach delivers an
Eclipse plug-in called ExtrArch that supports the mapping
between PA abstractions and the system source code. After
having these two artifacts, our approach is able to conduct
the checking.

We have conducted an evaluation of our approach focused
on verifying i) the effectiveness of extracting the CA and
ii) the effectiveness in detecting the architectural violations.
Two real-world systems were used in the evaluation (SIGA
and LabSys) and the results were very promising, i.e., the
approach was able to correctly generate the CA and to
identify all architectural violations without false positives or
negatives.

This paper is structured as follows: Section II explains
ADM and KDM; Section III describes the ArchKDM and its
support tools; Section IV reports a case study that evaluates
our approach; Section V outlines related work, and Section
VI makes concluding remarks and suggests future work.

2. ADM AND KDM

ADM [23] is an OMG initiative for standardizing system
modernization processes. The main idea is take advantage
of reverse engineering concepts, Model-Driven Architecture
(MDA) principles and the KDM meta-model. A typical ADM
modernization process starts by reverse engineering a system
into a KDM instance, keeps on processing this instance to
identify problems, proceeds by applying refactorings/trans-
formations on this instance and finishes with the generation
of the modernized system. According to Perez [23] there are
several modernization scenarios that can be conducted to
modernize legacy systems: Platform Migration, Language to
Language Conversion and Application Improvement. The
last one involves architecture reconstruction, which is the
scenario we are dealing with in this paper.

KDM is a language and platform independent ISO meta-

model capable of representing a complete software system.
KDM can be seen as a family of meta-models and is composed
of several meta-models that share the same vocabulary and
terminology, facilitating the relationships among meta-classes
in different abstraction levels. OMG intends to make KDM
the most adopted meta-model for representing systems inside
modernization tools. This will propitiates the interoperability
among these tools and, consequently, can lead to higher
success in modernization projects.

A schematic representation of KDM can be seen in Figure 1.
It is divided into four layers (right side) that group pack-
ages (internal meta-models), where, each one concentrates
on specific aspects of a software system. Thus, there are
packages (meta-models) for representing a wide spectrum of
system abstractions, from low level details of the source code
(Code package) to run-time actions (Action package), to user
interface (UI package), to deployment details (Build pack-
age), to Business Rules abstractions (Conceptual package),
to Architectural details (Structure package), etc.

Layer

’ Conceptual H Build H Structure }/—\bstractions

[ Data ’ Event UI Platform }Runt\me Resource
E = [ COde ][ ACtiOnS } Program Elements
ya
=X Source | KDM | Core | } Infrastructure

Figure 1: KDM layers

The Code, Action and Structure are the most important
packages in the context of this work because they allow
the specification of systems architectures. Figure 2 shows
a small snippet of the KDM, showing some meta-classes
of the Structure, Code, Core and Action packages, that is
represented by the word “from [package]” under the name of
each meta-class.
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Figure 2: Structure Package Class Diagram (OMG
Group [23])

The Core package is a central KDM package that provides
base meta-classes for the other packages. KDMEntity is one
of the most important meta-classes, since all the other KDM
meta-classes are direct or indirect subclass of it. So, all
KDM-metaclass are KDMEntities.

The AggregatedRelationship is also another important
meta-class in this context. It is a relationship that allows
to group other primitive relationships within it. This is
represented by the association with the KDMRelationship
class. In KDM, every relationship type is represented by a

104



meta-class, examples of primitive relationships are method
calls (Calls meta-class), object instantiations (Creates meta-
class), implements relationships (Implements meta-class),
etc. Observe that each AggregatedRelationship involves
two KDM Entities, the source and target.

The Structure package delivers five classes for represent-
ing architectural elements: Subsystem, Component, Software-
System, ArchitectureView and Layer. By means of the self-
relationship of the AbstractStructureElement, it is possible
to create a hierarchy among these elements. For example, it
is possible to create an architecture having two subsystems,
which include two layers each, where each layer can includes
two components.

Since all the architectural elements are KDM Entities
(due to the inheritance), it is possible to represent relation-
ships between these architectural elements by means of the
KDMAggregatedRelationship (AR), which is schematically
shown in Figure 3. Suppose the existence of a relationship be-
tween the layers Controller and Model. The arrow between
these layers represents an instance of the KDMAggregate-
dRelationship @ class, where the source of the relationship
is the Controller @ and the target is the Model. As its
name suggests, an aggregated relationship incorporates prim-
itive relationships inside itself. Primitive relationships are
“actions” or structural dependencies that are also represented
as KDM meta-classes.

In the figure, the AR contains one the eight instance of
each primitive relationship type existent in the KDM. For
example: : calls @ represents the presence of an instance of
the Calls meta-class, showing the existence of a method call
from a class that belongs to the Controller layer to a class
belonging to the Model layer. The same occurs with others
primitive relationships. Another important information here
is that every AR has a density, which represents the number
of primitive relationships inside it. In this example, the
density @ is 8.

| e density: 8

| @ controller: Layer

:KDMAggregatedRelationship e

O:clls
: implements
: extends
: imports
: creates
: usesType
: hasType
hasValue

| @ model: Layer

Figure 3: Schematic example of a KDM Structure
Package Instance

3. ARCHKDM

3.1 Overview

As any other ACC approach, the main goal of ArchKDM
is to identify violations between the PA and CA of a system.
It involves three main steps depicted in Figure 4. The first is
the specification of the PA; the second step is the specification
of the CA and the third step is the checking; in which PA
and CA are compared to detect the violations. Step II
is divided into three activities. Steps I.A. and II.C. are
human-dependent. The others are performed by algorithms
and transformations.

It is important to highlight that the ArchKDM approach
is generic, i.e., it involves the conventional steps of any

ACC Approach. Besides, as the developed algorithms rely
exclusively on KDM terminology, we can also say it works
for checking the conformance of systems implemented in
any object-oriented language. The limitation resides on the
existence of parsers for different languages. Nowadays, the
most mature parser is MoDisco, which is exclusive for Java.
The following sub-sections detail each of the steps shown in
Figure 4.

ArchKDM - Architectural Conformance Checking in ADM Context

11) Specification of the Planned Architecture | 1) Extraction of the Current Architecture !
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Figure 4: ArchKDM Approach

3.2 Specification of the Planned Architecture

In this Step, the goal is to create the PA by specifying
all of its architectural elements (AE) and constraints among
them. To support the specification we have extended an
existing architecture-description language called DCL [28].
The extension comprises three points: i) the possibility of
using the words: Layer, Component, Interface, Subsystem
and System in the specification; ii) the automatic generation
of some constraints and iii) the generation of the KDM
instance (XML) that represents the PA. The main reasons
for choosing DCL as our base DSL were 4) its proximity to
natural language and %) the actions (method calls, instance
creations, etc.) originally evaluated by DCL are perfectly
supported by the KDM meta-classes.

In the original version of DCL the unique keyword (Type)
used to specify AEs is module, which represents a set of
classes. Therefore, what distinguish a type of module from
the others are simply the name of them. For example, if you
want to create a Layer, you must create a Module whose name
indicates that. If you want to create a Component, you must
also create a Module whose name indicates that. Therefore,
regardless of the architectural style [26] you are using, you
will always create modules. This way, it is very difficult to
associate details that are particular to some architectural
styles and is almost impossible to process them. Examples
of specific characteristics to architectural styles are: levels in
layers, required and provided interfaces in components and
the sequence in Pipes and Filters.

As the KDM Structure Package has some dedicated meta-
classes for some types of architectural elements, we decided
to bring up these specific types as keywords in our language.
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Doing that, it is possible to process each AE in a more specific
way and generate some constraints (restrictions) for them.
Besides, we claim that using Architectural Styles-based key-
words makes the specification a more straightforward task
for those familiar with architectural styles and KDM termi-
nology. This is one of the advantages of using a meta-model
that provides specific AEs when specifying PAs.

Regarding the automatic generation of constraints/restric-
tions, up to this moment, we have just being able to au-
tomatically generate constraints for strict layered systems
and hierarchies. For example, when the software engineer
specifies layers he/she needs to inform the "level” of the layer.
Doing that, DCL-KDM is able to automatically generate the
constraints among the layers. This is possible because in the
Strict Layering Architectural Style is known that lower level
layers cannot access higher level ones. In the case of hierar-
chies, we assume higher-level AEs can access all the services
of the inner AEs. However, the inner elements cannot access
the higher level ones. For example, if there is a Component
C inside a Layer L, all the functionalities of the Component
can be accessed by the Layer. It is important to stress that
for any other case, the restrictions can also be written by
the software engineer.

When specifying PAs, two issues are important: the ar-
chitectural elements and the constraints between them. As
KDM only provides direct support for the first one, we had to
decide how to represent the constraints on it. Our decision
was representing the constraints considering the presence
and absence of primitive relationships inside an Aggregate-
dRelationship. The existence indicates they are allowed and
the absence indicates the opposite. In other words, if there
are none relationships between layer A and B, it means that
elements inside A cannot access the elements in B regardless
of the way. The whole set of primitive relationships provided
by KDM is shown in Figure 3. As can be seen, there are
eight relationship types. Therefore, in a PA, if there is only
the type Calls between two AEs, that means all the other
seven types are not allowed between them.

Suppose the Structure instance shown in Figure 3 is a
PA. This means the Layer Controller can access the Layer
Model because there is an Aggregated Relationship between
them. The allowed primitive relationships between these
layers are those shown inside the Aggregated Relationship,
i.e., all the possible types. However, if the Aggregated had
only two types of relationships inside it (letAt’s say Calls and
Implements), that would mean all the other types are not
allowed between these layers. In the same line of thought,
if there was no Aggregated between two AEs, that would
mean these elements should not communicate at all.

In the next sub-sections we provide more details about
each of the reserved words of our DCL-KDM and examples
of their use for PA specification.

the keyword layer, as can be seen in Listing 1.

The expression for specifying a layer is divided into two
mandatory parts and one optional. Firstly, one should spec-
ify the layer via the keyword layer, followed by its name.
Secondly, the architect must specify its level through the
keyword level. DCL-KDM uses level keyword to automat-
ically generate the architectural constraints.

The optional part is used when a layer is contained in
a subsystem, component or another layer, i.e., the archi-
tect should specify in which subsystem or component the
layer belongs to. Listing 2 depicts the constraints that are
automatically created by our approach accordingly to the
Listing 1.

1 11 cannot-depend 12
2 12 cannot-depend 13
3 11 cannot-depend 13
4 13 cannot-depend 11

Listing 2: Example of constrains automatically gen-
erated

3.2.1 Component and Interface

Component is a software element that conforms to a compo-
nent model and can be independently deployed and composed
without modification according to a composition standard [9].
Components have interfaces that defines a specific point of
potential interaction by a component with its environment.
In order to use DCL-KDM, the architect must first write the
keyword component followed by its name, as can be seen in
Listing 3. In addition, if necessary the architect can set the
layer, subsystem or another component that the component
belongs to. However, as previously mentioned, components
require auxiliary structures to represent constraints, these
elements are called interfaces.

An interface is declared by the interface keyword, fol-
lowed by its name. Its specification also requires that the
architect defines the component which it belongs to. Unlike
layers, the architectural style defined by components requires
that its constraints be explicitly specified. Listing 3 show
as the component and interfaces are specified and how they
interact.

1 component c1;

2 component cZ2;

3 interface i_cl ofComponent ci;
4 c2 can-depend-only i_cl;

1 layer 11, level 1 inSubSystem main
2 layer 12, level 2 inSubSystem main
3 layer 13, level 3 inSubSystem main

Listing 1: Example of Layered Style Architecture in
DCL-KDM

1) Layer: layer is a group of modules that offer a cohesive
set of services to other layers [8]. Layers are related to each
other by the strictly ordered relation allowed by their use. In
addition, the relations must be unidirectional. In the context
of our approach, layers are represented in DCL-KDM though

Listing 3: DCL-KDM code to define interfaces and
its constraints

Lines 1-2 specify the components. Line 3 describes an
interface named i_c1 that is provided to the component c1.
An architectural constraint is defined in line 4. It states that
component c2 can depend only of i_c1 interface.

3.2.2 Subsystem

A subsystem may be independently implemented by any
other AE [8]. The requirements are: (z) Under subsystem
must have the subSystem keyword, followed by its name, and
(é¢) it may be in another subsystem. An important difference
between a subsystem (DCL-KDM) and a module (DCL)
is the hierarchy position of subsystems in an architecture,
because DCL-KDM predicts that a subsystem can comprise
of: layer, components, and subsystems.
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3.2.3  Software System and Module

All rules outlined in our approach consider that, by de-
fault, there is a root element in the architectural description
hierarchy, which is called SoftwareSystem. Thus, it is auto-
matically added to KDM Structure model. We have decided
to not eliminate the Module element, it deals with cases of
explicit rules, in the same way that it is used in DCL.

As long as the software engineer has specified the PA
with DCL-KDM, the PA is generated as an instance of the
KDM Structure package. The output of this step is a KDM
instance just with the Structure package instantiated, which
represents the PA, i.e., the Code and Action packages are
totally empty.

An example of a PA specification using DCL-KDM is
shown in Listing 4. This example is related to the PA of
the LabSys system, which we have used in our examples and
evaluation.

1 architeturalElements {

2 subSystem core;

3 layer view, level 3, inSubSystem: core;

4 layer controller, level 2, inSubSystem: core;

5 interface consumerlnterface ofComponent consumer;
6 layer model, level 1, inSubSystem: core;

7 module repository , inLayer: model;

8 component generic;

9 interface genericInterface ofComponent generic;
10 component converter;

11 interface converterInterface ofComponent converter;
12 module validator ;

13 } restrictions

14 repository can—depend —only controller;

15 only controller can—depend repository;

16 only controller can—depend validator;

17 genericInterface can—depend—only controller;

18 converterInterface can—depend —only controller;
19 }

Listing 4: Planned Architecture of LabSys

The specification is divided in two parts. The first one
(lines 2-12) describes the AEs and the hierarchy among them.
The second one (lines 13-18) describes the restrictions among
the AEs. Notice that some restrictions are automatically
generated and are not shown in the Listing. Lines 2-12
show the AEs and hierarchy between them. The hierarchy
automatically generates its constraints, avoiding the need
for creating restrictions in theses cases. Lines 13-18 show
the constraints. Note that no restriction was defined be-
tween layers model, view, and controller, because they are
automatically generated by DCL-KDM.

1 <7xml version="1.0" encoding="UTF-8"?7>
2 <kdm:Segment xmi:version="2.0" [...
3 xmlns:kdm="http://kdm.omg.org/kdm"
4 xmlns:structure="http://kdm.omg.org/structure">
5 <model xsi:type="structure:StructureModel" name="LabSys">
6  <structureElement xsi:type="structure:SoftwareSystem" name="LabSys">
7 <structureElement xsi:type="structure:Subsystem" name="core">
8 <structureElement xsi:type="structure:Layer" name="controller">
9 <aggregated from="//@model.O0/[...]/@structureElement.0"
10 to="//@model.0/[...]/@structureElement .1"
11 relation="//@model.1/[...]/QactionRelation.0
12 //@model.1/[...]1/@codeElement .0/QactionRelation.1 //
13 [...]1//@model.1/@codeElement .0/@codeRelation.2" density="8"/>
14 </structureElement >
15 <structureElement xsi:type="structure:Layer" name="model"/>
16 <structureElement xsi:type="structure:Layer" name="view">
17 <aggregated from="//@model.0/[...]/@structureElement.2"
18 to="//@model.0/@structureElement .0/[...]/@structureElement.0"
19 relation="//@model.1/[...]/QactionRelation.0
20 //@model.1/[...]/@codeElement .0/@actionRelation.1 //
21 [...]//@model.1/@codeElement .0/@codeRelation.2" density="8"/>
22 </structureElement >
23 </structureElement >

24 </structureElement >
25 </model>

26 [...]

27 </kdm:Segment >

Listing 5: A KDM Instance representing the PA of
the LabySys

In Listing 5 it is shown a XML KDM instance generated by
DCL-KDM and that represents a snippet of the PA specifica-
tion shown in Listing 4. Line 5 shows the StructureModel,
which defines a new architectural specification. Lines 8, 15

and 16 show instances of the Layer meta-class representing
the layers model, view and controller. The allowed relation-
ships between these layers are represented by instances of the
AggregatedRelationship class, as presented in lines 9-13
and 17-21.

It is important to stress that each of these instances is
composed by a source element (line 9), the target one (line
10) and the primitive relationships, which are not shown
because of space limitations. The density is defined (line 13),
that indicates the quantity of relationships accepted between
the source and target elements.

3.3 Extraction of the Current Architecture

This subsection provides an overview of the process for
extracting the CA, which is another KDM instance that rep-
resents this architecture. This step involves three activities
shown in Figure 4 and it is supported by an Eclipse Plug-in
we have developed called ExtrArch. The three activities are
briefly commented below.

In activity I11.B, Getting KDM Instance of Legacy
System, the MoDisco tool [6] is employed to obtain an ini-
tial KDM instance that represents all source code elements
(classes, actions, attributes, relationships, etc.). This KDM
instance is incomplete, since only the code and action pack-
ages are instantiated by MoDisco.

In activity II.C, Mapping Architectural Elements to
Code Ones, a mapping between the architectural elements
(declared in the PA specification - activity I.A.) and the code
elements (collected from MoDisco - activity II.B.) must be
created by the software engineer. The intention is to inform
that specific code elements are the implementation of some
AEs. For example, a package P1 is the implementation of a
layer LL1. The mapping is supported by the ExtrArch plug-in,
in which the engineer chooses an architectural element on
the left side and assigns it to code elements on the right side.

When the mapping is not clear, the process must be sup-
ported by system specialists to reach an optimal mapping,
which is generally possible considering the granularity of our
architectural elements. In terms of our tool support, the
engineer can iterate on the process by creating several map-
ping versions that can be analyzed later. It is significant to
highlight that our approach allows a low level of granularity,
i.e., in addition to packageAt’s, our approach also support
classes and interfaces. At the end of this activity, the out-
put is a KDM instance that represents a partial CA. It is
called “partial” because it is still missing the relationships
(aggregated relationships) among the architectural elements,
which are the most important information for detecting the
violations. These relationships are automatically generated
by the next activity.

In activity II.D., Generating the Aggregated Rela-
tionships, an algorithm scans all code elements in the cur-
rent KDM instance collecting all the actions and structural
dependencies between these elements. Based on that, the
algorithm is able to generate the aggregated relationships
between the architectural elements. For example, suppose
the previous step has defined the package P1 is the implemen-
tation of the Layer L1 and package P2 is the implementation
of the Layer L2. If there is a method call from a class of P1
to a class of P2, then the algorithm creates an aggregated
relationship between the layers L1 and L2 and insert this
primitive relationship inside it. Besides, it also calculates
the density value.
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Algorithm 1: ExtrArch - Extracting Algorithm

Input: KDM Instance with code and action packages fully
instantiated and structure package partially.
Output: KDM Instance with code, action, and structure
packages fully instantiated (current system

architecture).
1 begin
pRelationship =
kdmUtil.get AllPrimitiveRelationships(currentArq)
3 foreach primRelationships pRelationship do
4 sourceElement = pRelationship.getSource()
5 targetElement = pRelationship.getTarget()
6 aElementSource =
getArchitecturalElement(sourceElement)
7 aElementTarget =
getArchitecturalElement(targetElement)
8 foreach aElementSource.aggregatedRelatioships
aggregatedRelSource do
9 if aggregatedRelSource target equals to then
10 auxAgRelationship =
aElementSource.get AggregatedRelatioship
11 foreach outgoing auzrAgRelationship do
12 if auzAgRelationship.getTo =
aElementTarget then
13 auxAgRelationship.add(pRelationship)
14 auxAgRelationship.density (aElement-
15 Source.getAggregatedRelatioship
16 .getDensity+1)
17 end
18 if auzAgRelationship is the last then
19 auxAgRelationship = new
AggregatedRelatioship
20 auxAgRelationship.add(pRelationship)
21 auxAgRelationship.density (1)
22 end
23 end
24 else
25 auxAgRelationship = new
AggregatedRelatioship
26 auxAgRelationship.add(primitiveRelationship)
27 auxAgRelationship.density (1)
28 end
29 end
30 end
31 end

Algorithm 1 shows the code responsible for extracting CA,
which is called “extracting algorithm”. The first step of the
algorithm is to recover all primitive relationships (method
calls, implementation of interfaces, etc) (line 2). This part
was implemented by an auxiliary algorithm that performs a
depth-first search in KDM-tree. Then, for each meta-class
representing a primitive relationship, its respective source
code elements (method, class, package, etc.) and targets
are searched (lines 3-4). Next, the architectural elements
of source (layer , component, subsystem) and target are
searched (lines 5-6).

Additionally, it is verified if any architectural level re-
lationship exists (AggregatedRelationship) in the source
architectural element (line 7). If so, it should be checked if
the destination is the same as a searched relationship (line
11), then the primitive relationship should be inserted (lines
12-14), otherwise, a new one should be created (line 17-19).
Finally, if the source architectural element still does not have
an AggregatedRelationship, a new one should be created
(lines 22-24). Thus, each one of the primitive relationships are
added to their respective AggregatedRelationship, without
creating any unnecessary relationship. The output of this
step is a KDM instance representing the CA of the system,
which will be compared to the PA generated in the previous
step. Both are XMI documents, as shown in Listing 5.

3.4 Checking

In this subsection we present the Conformance Checking,
as shown in Figure 4, Step III. This step is supported by our
Checking Algorithm shown in Algorithm 2. The input are
two KDM instances (PA and CA) generated for the DCL-
KDM and ExtrArch, respectively. The algorithm compares
these two KDM instances, checking which relationships of
the CA do not exist in the PA, characterizing the possibility
of an architectural violation. The output is a KDM instance
containing all violations possibilities.

Algorithm 2: ArchKDM - Checking Algorithm

Input: KDM instances that represents the planned plannedArq
and current currentArq architectures.
Output: KDM instance containing the architectural violations

violationsArg.
1 begin
2 aggregatedRelCA =
kdmUtil.get AllAggregatedRelationships(currentArq)
aggregatedRelPA =

kdmUtil.get AllAggregatedRelationships(plannedArq)
foreach aggregatedRel aggregatedRelCA do
4 plannedRelationship =
seekCorrespondentRelationship(aggregatedRel,
plannedArq)
if plannedRelationship is empty then
| violationsArq.addViolation(aggregatedRel)
end
else

w

© N0 o,

primitiveRelationshipsCA = kdmU-
til.get AllPrimitiveRelationships(aggregatedRel)
primitiveRelationshipsPA = kdmU-
til.get AllPrimitiveRelationships(aggregatedRel)
foreach primitiveRel primitiveRelationshipsCA
do

10 if primitiveRel not exist in

primitiveRelationshipsPA then

11 | violationsArq.addViolation(primitiveRel)

12 end

13 end

14 end

15 end
16 end

The first part of this algorithm is recover all architectural
level relationships of the PA and CA representations (line
2). Then, the list of CA relationships is iterated (lines 3-15).
Next, the algorithm checks which PA relationships has the
same source and target of the CA relation (line 4). Then is
verified if the PA relationship does not have any relationship,
in positive case, a new one is added (lines 5-6). In negative
case, the relationships that are not present in the PA are
included in a list of relationships that are not allowed (lines
9-12). Therefore, at the end of the algorithm execution, it
must exist a KDM instance that has the list of violations.

The working of ArchKDM can also be explained using Set
Theory. Figure 5 shows an example. Let R be the Set of
whole spectrum of possible relationships provided by KDM,
i.e., the eight primitive relationships shown in Figure 4. On
one hand, let PA be the Set of the relationships specified
by the software engineer as the allowed relationships among
AEs. PA is a subset of R, i.e., PA C R. Consider a PA
composed by two relationships, a Calls and an Implements,
as shown in Figure 5. On the other hand, let CA be the Set
of the relationships of the current architecture of the system
under analysis. CA is also a subset of R, i.e., CAC R. A
software system in full conformance with its architectural
design indicates CA C PA. The set V of the existing archi-
tectural violations is the difference between CA and PA, i.e.,
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CA - PA. So, in the example shown below, CA— PA =V =
{Extends}.

Calls

Implements

_~Imports UsesType Hastype Creates HasValue

Cons

Figure 5: Checking
4. EVALUATION

The best possible result of our approach is to detect all the
existing architectural violations in a given system, without
false positives or negatives. However, the effectiveness of the
whole approach depends on three main steps: i) the correct
specification and generation of the PA (Step I); ii) the correct
extraction of the CA (Step II); and iii) the quality of the
checking algorithm. In this paper we decided to evaluate only
non-human-dependent activities. Therefore, the evaluation
concentrated on the extracting (Activity IL.D - Figure 4)
and the checking algorithms (Step III - Figure 4).

4.1 Definition of the Empirical Study

Goal: The general goal is to evaluate the effectiveness of the
approach in detecting architectural violations. Therefore, we
divided the evaluation into two parts: i) evaluation of the ex-
tracting algorithm (Activity IL.D - Figure 4), which recovers
the CA, and ii) evaluation of the checking algorithm (Step
III - Figure 4), which identifies the architectural violations
between PA and CA.

Quantitative Approach: The potential of the approach is
measured by means of the percentage of correct relationships
(CA) and violations (architecture conformance checking) that
the algorithms are able to detect.

Perspective: Software architects.

Study Object: The relationships in the extracted CA and
the violations detected by the conformance checking.

4.2 Study Planning

In order to answer the General Research Question 1 shown
in Section 1 (Is it possible to reach good levels in terms
of recall and precision when employing KDM as a base
metamodel in ACC?) we decided to break it into two more
specific ones: 1) Assuming that the software engineer has
provided a correct mapping in Step II, is the extracting
algorithm able to recover the correct CA? 2) Assuming that
the PA and CA specifications are correct, is the checking
algorithm able to detect all the architectural violations?
Therefore, to answer these research questions, we collected
the following data:

e The relationships among code elements (classes/inter-
faces) that are automatically extracted by our tool;

e The violations detected by our checking algorithm.

The focus of Item 1 is to verify if the extraction algorithm
is able to generate all the relationships presented in the
source code, for a given system. The focus of Item 2 is to

check if the checking algorithm is able to identify violations
between all types of elements (layers and components, layers
and systems, layers and modules, etc.) and constraints (calls,
extends, etc.).

4.2.1 Context Selection

We have used two real-world systems in our evaluation:
LabSys (Laboratory System) and SIGA (Integrated System
of Academic Management). LabSys is a laboratory man-
agement system currently used by the Federal University
of Tocantins (UFT) and SIGA is an academic management
system currently used by the Federal University of Sdo Carlos
(UFSCar). We chose LabSys because it involves a consider-
able variety of combinations among architectural elements.
We chose SIGA since it is a large system, and its software
engineers are very interested in detecting the system archi-
tectural violations.

4.3 Operation

4.3.1 Preparation

We have built two oracles for LabSys; one containing all
architectural violations (called violations oracle) and another
for its CA, containing all relationships among its architectural
elements. That was possible because an author of this paper
was one of the main developers of this system. So, he knows
the system in a deep way. Even considering his experience,
the building of the oracles was an intensive work for several
days.

For building the oracles, each element of each class was
manually scanned and compared to the PA and a list of them
was elaborated. This process took five weeks and it was
conducted by three people; a master degree student that was
the main developer, the software engineer who is currently
the responsible for the LabSys and a phD student of our lab.
In the case of SIGA, the PA was provided by the project
manager from the Development Sector of UFSCar. However,
the building of an oracle was impractical because of its size.
Thus, we just verified if the architectural violations found
by our tool were true positives, i.e., they actually refer to
design decisions that are not prescribed by the PA.

4.3.2 Execution

We performed the approach following all ArchKDM’s steps.
Initially, we used DCL-KDM to specify the PA. Next, we
used the ExtrArch to map the architectural elements of the
PA to the source code elements. Finally, we triggered the
violation detection.

4.3.3 Data

We extracted all relationships and violations to compare
them with LabSys oracles.

We analyzed architectural violations from three perspec-
tives: amount of violations, constraints between different
elements and different types of restrictions. The amount of
violations are used to verify if the checking was successful.
Then, we checked if all possible architectural violations be-
tween two elements of different types were found, such as
those found between a layer and a subsystem, or between a
layer and a component. Finally, we checked if all kinds of
restrictions were found, e.g., method calls, variables accesses,
and inheritance.
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4.4 Analysis of the Current Architecture Ex-
traction Process

The goal here is to determine if the extracting algorithm
is able to generate the CA correctly. The critical part of
this step is the extraction of existing relationships, since
an error in the underlying algorithm may lead to incorrect
results. Table 1 list the LabSys relationships in combination
with the oracle results. It is important to remember that
every existing relationship in the source code is an instance
of a specific meta-class. For example, looking at the third
line of the table, it is possible to see that the algorithm
generated 240 instances of the Calls meta-class, between

the Controller and Model layers.
Regarding the result, all relationships found by the tool

were also present in the oracle. Thus, the extracting algo-
rithm is able to correctly detect all relationships. Another
relevant point is that the algorithm properly retrieved the
eight kinds of relationships (calls, extends, etc.) determined
in the proposed approach.

4.5 Analysis of the Checking Algorithm

The goal here is to evaluate the amount of architectural vi-
olations detected by the checking algorithm. Table 2 presents
the results, showing the application name, the amount of ar-
chitectural violations found (Architectural Violations - AV),
the amount of architectural violations presented in the oracle
(Architectural Violations Oracle - AVO), the percentage of
false positives (FP), and the amount of false negatives (FN).
Regarding the SIGA system, we have not built an oracle,
therefore AVO and FN are empty.

The results indicate that we found 43 architectural viola-
tion indications in LabSys. Thus, ArchKDM could find all
violations identified by the oracle, thus, no false negatives
were found. For the SIGA application, we checked with the
software engineers if the architectural violation evidences
found by ArchKDM were correct. The tool did not return
any false positives.

Despite the good levels achieved after analysis of the results
regarding the amount of false positives and negatives, some
variables still need to be exercised so that the quality check-
ing can be evaluated more accurately. Thus, another point
we have evaluated is the ability of the algorithm in detect-
ing violations between all architectural element types. For
example, between Layers and Components, Layers and Sub-
systems, Layers and Layers, etc. Table 3 reports the results.
In LabSys, only the combination of subsystem-subsystem
was not evaluated because there are not two subsystems in
the architecture. However, in SIGA application, we found
architectural violations between all combinations. There-
fore, ArchKDM was able to detect deviations between all
combinations.

4.6 Threats to Validity

We must state at least two threats of the reported evalua-
tion. First, even though we rely on two real-world systems
that have different architecture and constraints, we cannot
claim that our approach will provide equivalent accuracy
rates in other systems, as it usually happens in empirical
studies of software engineering (external validity). Second,
we relied on two software engineers to evaluate the amount
of false positives. As typical in human-based classifications,
our results might be affected by some degree of subjectivity
(construct validity). However, it is important to highlight

that we interviewed the software engineers who designed the
architecture, and whom are responsible for their maintenance
and evolution.

5. RELATED WORK

Researchers have been proposing Architectural Confor-
mance Checking approaches based on several underlying
models, in which we divided in the following four groups: i)
AST-based approaches; ii) Graph-based ACC approaches;
iii) MDE-based approaches and iv) other approaches.
AST-based ACC approaches: DCL [28], ArchJava [4], and
ArchLint [20] rely on AST (Abstract Syntax Tree) as the un-
derlying model for performing ACC. DCL [28] employs static
analysis for identifying the structural dependencies that does
not respect the rules specified in the PA. ArchJava [4] extends
Java with architectural modeling constructs that seamlessly
unify software architecture with implementation, ensuring
that the implementation is according to the architectural
constraints. ArchLint [20] is a data mining approach for
ACC that identifies architectural violations based on a com-
bination of static and historical source code analysis that
frees architects from specifying the architectural constraints.
These three studies share the same weakness. Although they
achieve good levels in ACC, they do not support multiple lan-
guages, architectural styles, and explicitly hierarchy between
the architectural elements as our approach does.
Graph-based ACC approaches: ConQAT [12], SAVE [17, 14],
and SotoArch [15] rely on graphs as the underlying model to
perform ACC. ConQAT [12] identifies divergences and ab-
sences based on the comparison between a machine readable
specification of the intended architecture and the knowledge
of the dependencies extracted automatically from the source
code. Based on pure reflexion model concepts, SAVE [17,
14] highlights convergent, divergent, and absent relationships
between the high-level model and the source-code model
that are also automatically extracted from the source code.
SotoArc [15] provides means to visualize and understand
the static structure of a software system, including modeling
the intended architecture and detecting architectural vio-
lations. Although complete and accurate, these tools rely
on proprietary models to represent the intended architec-
ture. Our approach, on the other hand, relies on an ISO
meta-model (KDM) to represent the PA and CA. It means
that researchers who are familiar to KDM can develop and
improve any of our approach steps, e.g., implementing a
more sophisticated CA extraction algorithm or performing
high-level refactorings for the identified violations.
MDE-based ACC approaches: ArchConf [1], ReflexML [2],
and Herold and Rausch’s approach [16] rely on MDE mod-
els to perform ACC. ArchConf [1] generates a conformance
view and computes metrics between two C&C (component
and connector) views. They uniformly represent various
languages of the system in the form of a meta-model of
the relevant source artifacts at the desired level of detail.
ReflexML [2] defines the traceability of UML component
models to code using AOP type pattern expressions. Herold
and Rausch [16] express architectural rules as formulas on
a common ontology, and models are mapped to instances
of that ontology. A knowledge representation and reason-
ing system is then used to check whether the architectural
rules are satisfied for a given set of models. Although MDE-
based approaches promote reuse, they do not accurately
represent implementation details. Our approach, however,
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Table 1: Recovered relationships of the CA LabSys

Architectural Blement 1| Architectural Flement 2 | o] Implements | Extends [ tmports | Creatcs | UsesType | HasType | HasValue
view - Layer controller - Layer
view - Layer model - Layer
controller - Layer model - Layer 240/240 21/21 52/52 19/19 150/150
view - Layer repository - Module
controller - Layer repository - Module 208/208 24/24 11/11
model - Layer repository - Module 6/6 24/24 37/37 1/1 2/2 128/128 3/3
view - Layer generic - Component
controller - Layer generic - Component 108,/108 8/8
model - Layer generic - Component
repository - Module generic - Component 25/25
view - Layer validator - Module
controller - Layer validator - Module 16/16 8/8 2/2
model - Layer validator - Module 9/9 8/8 8/8 1/1 1/1 9/9 1/1
repository - Module validator - Module 12/12
generic - Component validator - Module
view - Layer converter - Component
controller - Layer converter - Component 1/1
model - Layer converter - Component 2/2 12/12 12/12 1/1
repository - Module converter - Component 1/1 1/1
generic - Component converter - Component
validator - Module converter - Component

A = Algorithm, O = Oracle

Table 2: Violations in LabSys and SIGA

Application | AV | AVO | FP | FN
LabSys 43 43 0 0
SIGA 115 - 0 -

Table 3: Violations between different elements

Element 1 | Element 2 | LabSys | SIGA

Layer Layer Yes Yes
Layer Subsystem Yes Yes
Layer Component Yes Yes
Layer Module Yes Yes
Subsystem | Component Yes Yes
Subsystem Module Yes Yes
Module Component Yes Yes
Subsystem | Subsystem No Yes
Module Module Yes Yes

Component | Component Yes Yes

relies on KDM, which provides a complete specification of
architectural elements and allows source code elements to be
represented with one-to-one precision.

Other ACC approaches: LDM [25] relies on Dependency
Structure Matrices (DSMs) to perform ACC. A DSM is a
weighted square matrix whose both rows and columns denote
classes from an object-oriented system and the number of
references that B contains to A is represented in cell (A,B).
Although DSM is important for documentation purposes
and communication with stakeholders, DSM is not an archi-
tecture specification that is independent of the systemaAZs
implementation. In the dynamic analysis research line, Dis-
coTect [29] dynamically monitors a running system to derive
its software architecture. Thus, architects can develop map-
pings to exploit regularities in the system implementation
and architectural styles. Similarly, ConArch [7] is a runtime
verification approach for detecting inconsistencies between
the dynamic behavior of the documented architecture and
the actual runtime behavior of the system. However, these
studies share the same problem: mappings between low-
level system observations and architectural events are not
usually one-to-one and hence it is not straightforward to
indicate implementation patterns that represent the target
architecture.

6. CONCLUSION

Our approach can be used for checking the conformance
of systems implemented in any language. This is possible
because all the algorithms are dependent only on the KDM
terminology. Besides, as our algorithms are totally based on
an ISO pattern, they have a great potential for reuse. This
does not happen when algorithms are developed over a propri-
etary or language-dependent model. Summing up, the main
advantage of our approach is that it performs all the activities
over an ISO platform and language-independent meta-model,
and not over proprietary one. KDM is implemented by the
MoDisco tool, which is a good reverse engineering tool. So,
to use our approach one needs to convert their systems into
a KDM representation using MoDisco and install our plug-in.
We believe the use of KDM is what makes our approach
attractive and unique.

Considering the GRQ2 shown in Section 1, an important
discussion is, an important discussion here is regarding the
suitability of the KDM for representing software architec-
ture. The code package is clearly able of representing a
very good/low level of details, however, the quality of the
Structure package is more difficult to evaluate. For example,
although the Structure package has the most conventional
meta-classes for representing architectural details, it lacks
of some other important ones, for example: Filters, Connec-
tors, Ports, Required and Provided Interfaces, etc. In our
case studies these classes were not necessary. It is worth to
note that we did not extend KDM to represent architectural
details, e.g., ports and connectors. Thus, we were restricted
to the abstractions provided by KDM.

In the last step of our approach, both representations are
compared and a list of architectural violations are obtained.
As both system representations are instances of the same
meta-model, the algorithm (see Algorithm 2) becomes clearer,
easier to understand and, as a consequence, easier to main-
tain, reuse, and evolve. To conclude, based on our evaluation,
the ACC was applied successfully. The usage of KDM does
not impact the process quality, mainly because the Code
meta-model is in an abstraction level very similar to the
source code, thus, every detail to perform an architectural
check, such as dynamic code actions (calls, instantiations,
etc.) are available. Although checking for relationships is the
unique type of ACC we cover, this is also the most common
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type of deviations existent in software systems. We claim the
deviation types we have approached represent a significant
portion of all architectural deviation that occur in reality.
Another important point to note is that the advantage
of KDM is its standardization. Thus, modernization tools
now have good reasons for adopting KDM as the main un-
derlying meta-model. The reason is that there probably will
be a lot of resources (e.g., ACC/refactoring algorithms/tool-
s/techniques) available that can be reused [28, 29]. Our
algorithms are reusable across KDM-compliance tools be-
cause their source-code only mentions the original names of
KDM meta-classes. To sum up, there is good evidence that
its perfectly possible to conduct ACC in the ADM context
and to obtain good results in terms of violation detection.
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