
KDM-AO: An Aspect-Oriented Extension of the
Knowledge Discovery Metamodel

Bruno M. Santos, Raphael R. Honda,
Valter V. de Camargo

Departamento de Computação
Universidade Federal de São Carlos - UFSCar

São Carlos – SP – Brazil
{bruno.santos, raphael.honda, valter}@dc.ufscar.br

Rafael S. Durelli
Instituto de Ciências Matemáticas e Computação

Universidade de São Paulo - USP
São Carlos – SP – Brazil

rsdurelli@icmc.usp.br

Abstract— Architecture-Driven Modernization is the new
generation of software reengineering. The main idea is to
modernize legacy systems using a set of standard models. The
first step is to obtain, by reverse engineering, an instance of an
ISO metamodel called KDM that represents all details of the
legacy system. Then, refactorings and optimizations can be
applied over this model turning it into a target/modernized
KDM. Afterwards the source code of the target system can be
generated. In its original form, KDM does not provide aspectual
concepts, preventing an aspect-oriented modernization to be
properly conducted. In this paper we present KDM-AO, an
aspect-oriented heavyweight extension for the KDM metamodel.
The extension has been created based on a well known aspect-
oriented profile for AspectJ language. To evaluate our extension,
we applied it in an aspect-oriented modernization whose goal was
to remodularize the persistence concern of an application using a
Persistence Crosscutting Framework. The case study showed that
KDM-AO is able to represent high-level and low-level aspect-
oriented abstractions.

Keywords— KDM profile; Architecture-Driven Modernization;
KDM; aspect-oriented modernization; Crosscutting Frameworks

I. INTRODUCTION
Systems are termed as "legacy" when their maintenance

and evolution cost increasingly rise to unbearable levels, but
they still deliver great and valuable benefits for companies. In
order to make information systems continue satisfying their
previously established requirements, they need to be
continuously evolved or they probably will fail in fulfilling
their goals. Many companies have systems that suffer the
phenomena of erosion and aging. These phenomena are result
of successive changes systems suffer along years of
maintenance, for example, functionalities that were removed,
modified or added; hence compromising their overall quality
[1][4].

In 2003 the Object Management Group (OMG) created a
task force called Architecture Driven Modernization Task
Force (ADMTF). It was aimed to analyze and evolve typical
reengineering processes, formalizing them and making them
supported by models [2]. ADM advocates the conduction of
reengineering processes following the principles of Model-
Driven Architecture (MDA) [22][2], i.e., all the software
artifacts considered along with the process are models.
 According to OMG the most important artifact provided

by ADM is the Knowledge Discovery Metamodel (KDM). By
using KDM, it is possible to represent all system’s artifacts,
such as configuration files, graphical user interfaces,
architectural views and source-code details. The idea behind
KDM is to motivate the community to start creating parsers
and tools that work over KDM instances; thus, every tool that
takes KDM as input can be considered platform and language-
independent. For instance, a refactoring catalogue for KDM
can be used for refactoring systems implemented in different
languages [32]. One of the primary uses of KDM is during
reverse engineering processes, in that a parser reads source-
code of a system and generates a KDM instance representing
it. After that, refactorings and otimizations can be performed
over this model, aiming to solve previously identified
problems.

Whenever one decides to modernize legacy systems
aiming to remodularize concerns, a candidate paradigm is
Aspect-Orientation (AO), which provides abstractions to
improve the modularization of crosscutting concerns [29].
Although ADM/KDM had been created to support
modernization of legacy systems, the original version of the
KDM does not contains metaclasses suitable for representing
AOP concepts [32]; hampering modernization processes
whose goal is to remodularize crosscutting concerns [3].

A possible alternative is to extend KDM using a
lightweight solution (Profiles) that is based on set of
stereotypes and tag definitions. Profiles are able to impose
restrictions on existing metaclasses, respecting the metamodel.
However, the lightweight extension mechanism provided by
KDM does not guarantee type checking in models,
transferring all that responsibility for tools and Software
Engineers.

In order to overcome the aforementioned limitation, in this
paper we present a heavyweight extension for KDM called
KDM-AO. Heavyweight extensions are based on a modified
KDM metamodel, including new metaclasses or changing the
existing ones. The goal was to create an extension that allows
representing both high-level as low-level details, but still
respecting the language and platform independence offered by
KDM. One important characteristic of our heavyweight
extension is that we have not changed the existing KDM
metaclasses, we had just added new ones. Therefore, it can be
easily incorporated in existing KDM tools.

2014 Brazilian Symposium on Software Engineering

978-1-4799-4223-7/14 $31.00 © 2014 IEEE

DOI 10.1109/SBES.2014.20

61

Our KDM-AO is totally based on an existing UML profile
for creating class diagrams with AO stereotypes proposed by
Evermann [8]. However, although Evermann´s profile is
specific to class diagrams, when its stereotypes are mapped to
the KDM, the KDM extension inherits all infrastructure
available for this metamodel, allowing one to represent all
static and dynamic details of a system. To support the creation
of KDM-AO instances, we have also created an Eclipse plug-
in to facilitate this process.

Another contribution of this paper is to present a
preliminary mapping between UML metamodel and KDM
metamodel. This mapping is a conceptual tool for converting
UML profiles in KDM extensions. The success of
modernization processes is heavily dependent on the
abstractions which are possible to be represented in KDM. As
most of the abstractions of recent domains (web services,
embedded systems, aspects, business processes, cloud, etc) are
not presented in KDM in an explicit way, we consider the
conversion of UML profiles in KDM extensions (either heavy
or lightweight) an important activity.

In order to assess our KDM-AO we carried out a
Crosscutting Framework-based modernization process in a
management system of a CD Shop [3]. The evaluation showed
that KDM-AO is able to represent all the details inherent in
this type of framework, as well as all AO concepts. In
addition, the results show that by using the KDM-AO is
possible to modernize a legacy system to AOP. However, it is
beyond our scope the forward engineering of the system.

This paper is structured as follows: Section II shows
background about ADM/KDM and Aspect-Oriented KDM. In
Section III the Aspect-Oriented KDM is described. A case
study is shown in Section IV. The related works are shown in
Section V. Finally, in Section VI, the discussions and
conclusions are presented.

II. BACKGROUND

A. ADM/KDM
In 2003, OMG initiated efforts to standardize the process

of modernization of legacy systems using models by means of
the ADMTF [2]. The aim of the ADM is the revitalization of
existing applications by adding or improving functionalities,
using existing OMG modeling standards and also considering
MDA principles. In other words, the OMG through ADMTF
took the initiative to standardize reengineering processes.

According to ADM [2], ADM does not replace
reengineering, but improves it through the use of MDA. The
basic process flow of modernization has three phases: Reverse
engineering, restructuring and forward engineering. In the
reverse engineering, the knowledge is extracted and a
Platform-Specific Model (PSM) is generated. The PSM model
serves as the basis for the generation of a Platform
Independent Model (PIM) called KDM. Then this PIM can
serve as basis for the creating of a Computing Independent
Model [2].

 In order to support the modernization process, in 2006 the
KDM metamodel was created. It can be used to represent the
system and their operating environments. KDM is language
and platform-independent, i.e., a PIM that is able to represent

physical and logical artifacts of legacy systems at different
levels of abstraction. KDM contains twelve packages and it is
structured in a hierarchy of four layers: (i) Infrastructure
Layer, (ii) Program Elements Layer, (iii) Runtime Resource
Layer and (iv) Abstractions Layer [2]. These layers are created
automatically, semi-automatically or manually through the
application of various techniques of extraction of knowledge,
analysis and transformations [5]. Fig. 1 depicts the
architecture of KDM. By observing this figure it is fairly
evident that each layer is based on the previous layer, thus,
they are organized into packages that define a set of
metamodel, whose purpose is to represent a specific and
independent interest of knowledge related to legacy systems
[2].

Herein, we are especially interested in the Program
Elements Layer because it defines the Code package which is
widely used by our extension. The Code package possesses a
set of metaclasses to represent program elements in
implementation level. In other words, this package contains a
set of metaclasses that represent the common named elements
in the source code supported by different programming
languages such as data types, classes, procedures, methods,
templates and interfaces [6].

Figure 1. KDM Architecture [2] (Adapted).

As in UML, it is also possible to define either lightweight
or heavyweight extension in KDM by means of extension
mechanism. Heavyweight extensions are based on a modified
KDM metamodel, including new metaclasses or changing the
existing ones. On the other hand, lightweight extensions (also
known as profiles) are based on set of stereotypes, tag
definitions, and constraints, which are basically "notes" over
the model. Profiles are able to impose restrictions on existing
metaclasses, but they respect the metamodel, without
modifying the original semantics of the elements. One of
major benefits of profiles is that they can be handled in a
natural way by existing tools.

In general, the drawback of heavyweight extensions is that
existing tools get no longer compatible with the new
metamodel. However, the only way to guarantee model
correctness in model level is using heavyweight extensions.
This happens because it is possible to relate metamodel
elements by their types and not just by their names, as it
usually happens in lightweight extensions. Using lightweight
extensions, the correctness of the model must be guaranteed
by tools. Besides, when heavyweight extensions do not change
the original metamodel (just adding new ones), it acts like a

62

lightweight one, as the extended part can be make available as
an independent module and can be easily incorporated in
existing KDM tools.

Another important and interesting point here is the
following. KDM is not a metamodel intended to serve as base
for diagrams, like UML. While UML instances are usually
created by humans, KDM instances are system representations
created by parsers and processed by tools. So, lightweight
profiles make much more sense in the context of UML than in
the context of KDM.

B. Aspect-Oriented Profile
The main decision before the creation of KDM-AO was to

choose an UML profile which was broad enough to represent
all the AO concepts. In this sense, we conducted a literature
review to identify Aspect-Oriented metamodels and UML
profiles that could be considered good candidates. We had
analyzed several proposals [10] [11] [13] [14] [15] [16] [17]

[18] [19] [31], but the Evermann’s profile was considered the
most suitable one because it incorporates the level of details
that we are interested in [8].

Although this profile has been primarily proposed for
AspectJ language, it incorporates all the AO generic concepts.
Observing aspect-oriented languages like AspectJ, AspectC++
and AspectS, it is possible to notice that Evermann´s profile
involves all of the details presented in these languages,
obviously using different terminology. It is like a superset for
aspect-oriented programming. This is not a problem because if
we want to represent an AspectS program using Evermann´s
elements the only possible problem is that some elements will
keep empty. However, this is acceptable in the KDM
philosophy, since it has an element called ClassUnit for
representing classes, but we can also create KDM instances
for procedural systems. Therefore, this type of element would
not be created.

Figure 2. KDM-AO and Evermann’s Profile (Adapted).

Fig. 2 shows both the Evermann’s profile and the KDM-
AO. Each class/element has four words in its first
compartment. The first word (in bold) represents the name of
the metaclass we have created in our extension, for example,
AspectUnit. The second word inside the brackets is the KDM
superclass we have chosen to make the actual element extends
from. For example, we have decided to make our new
metaclass AspectUnit extends the KDM metaclass ClassUnit.

Below the mentioned elements, we also have two more words
representing the Evermann’s profile. For example, the
stereotype <<Aspect>> created by Evermann extends the
UML metaclass Class. These are the third and fourth words.
So, in this figure, each element/class represents either a KDM-
AO’s metaclass, or an Evermann’s stereotype, or an
enumeration of values.

63

As previously mentioned, the profile proposed by
Evermann uses specific AspectJ elements. However, the
higher level elements are common to all AO languages, such
as Aspect, Advice and Pointcut. Another point that has also
guided our decision in choosing Evermann profile was that it
had already been reviewed and modified by Gottardi [12],
which allowed us to get a better view of its construction.

III. ASPECT-ORIENTED KDM
In this section we present some details of KDM-AO,

which can be seen in Fig. 2. The first pair of brackets ([])
under the name of the each element exhibits the name of the
KDM metaclass that was extended.

One of the biggest challenges when extending metamodels
is to know if the metaclasses chosen as base for a new element
is the most suitable ones. As Evermann´s profile elements had
already previously been mapped to UML metaclasses
(extending them through stereotypes), our main task was to
identify KDM metaclasses that had similar characteristics to
those ones used by Evermann. Due to that, it had been
necessary to develop a mapping between both metamodels
(UML and KDM), which can be seen in Table 1.

This mapping table identifies KDM metaclasses
possessing similar characteristics to UML metaclasses. Some
metaclasses can be direct mapped, such as Class from UML,
which can be easily mapped to the ClassUnit metaclass from
KDM. Both present the same goal and characteristics;
representing classes in an object-oriented context. However, as
KDM aims to represent lower-level details than UML, some
UML metaclasses do not have just one candidate in the KDM
side. This is the case of Property. This UML metaclass has
three possibilities in KDM: StorableUnit, ItemUnit or
MemberUnit. StorableUnit represents primitive type
variables; ItemUnit represents registers and MemberUnit
represents associations with other classes. This abstraction gap
occurs because the Code package of KDM is in a lower
abstraction level than UML.

TABLE I. KDM-UML MAPPING

UML
Element

KDM
Element Differences

Class ClassUnit

The metaclass Class (UML/ Basics package)
has four properties: isAbstract,
ownedProperty[*], ownedOperation[*] and
superClass. The ClassUnit element, from
Code Package encompasses all of these
properties through the AbstractCodeElement
class. A ClassUnit may have any attribute
whose type is a concrete class of
AbstractCodeElement, like StorableUnit,
MemberUnit, ItemUnit, MethodUnit,
CommentUnit, KDMRelationships, etc.

Operation MethodUnit

Operation (UML/Basics package) is a
behavioral element that has the following
properties: class (specifies the owner class),
ownedParameter (Operation’s parameters)
and raisedException (Operation’s
exceptions). The MethodUnit class is the ideal
element to represent Operations because it is a
behavioral KDM element capable to represent
the most diverse programming languages

operations. MethodUnit has attributes like
kind (defines the kind of the operations, for
example: abstract, constructor, destructor,
virtual, etc.) and export (defines the access
modifiers, for example: public, private and
protected)

Property
Storable,

Member or
ItemUnit

Property (UML) represents variables in
general (local variables, global variables,
arrays, associations, etc.), while KDM has an
element for each kind of Property: primitive
type variable (StorableUnit), records and
arrays (ItemUnit) class members
(MemberUnit)

Package Package

A Package on UML (Basics package) is very
similarly to a KDM Package (Code Package).
Both are containers for program elements,
like classes, and others code elements. A
Package could have one or more classes, and
a class could have many others elements, like
methods, properties, comments, etc.

Structural
Feature DataElement

StructuralFeature (UML/Core::Abstractions
package) is an abstract metaclass that can be
specialized to represent a structural member
of a class, like a property. The KDM has the
DataElement class (Code package), that can
be specialized to StorableUnit, MemberUnit
or ItemUnit.

Behavioral
Feature

Control
Element

BehavioralFeature (UML/
Core::Abstractions package) is an abstract
metaclass that can be specialized to represent
behavioral members of a class. The equivalent
class on KDM is the ControlElement, an
abstract class that can be specialized to
represent callable elements, including
behavioral elements like MethodUnit.

Parameter Parameter
Unit

Parameter (UML/ Core:Abstractions) is an
abstract metaclass to represent the name and
the type of the element that will be passed by
parameter in a behavioral element. On the
KDM we can use the ParameterUnit class.
This metaclass can also represent the name,
type, position of the parameter in the
signature and the kind of paremeter (value or
referece)

Relationship KDM
Relationship

Both Relationship and KDMRelationship
metaclasses are abstract metaclasses that can
be specialized to represent some kind of
relationship between two elements, like
Aggregation, Generalization, etc.

...

In Table 1 it is possible to see the existing relation between

the metaclasses and also some comments about it. As KDM is
a metamodel much broader than UML, most of the relations
just make sense considering the Code Package of KDM, as
this package is the one that aims to represent classes,
attributes, methods, relationships and other static
characteristics. The other KDM packages are more
concentrated on details that are absent in UML, like Graphical

64

User Interface (GUI), architecture and conceptual elements.
Because of space limitations, our mapping table shows just the
main elements we have used in our KDM-AO extension.
However, notice that we mapped all the classes from
Evermann's profile.

Based on this mapping, we developed our KDM-AO by
creating a new KDM metaclass for every stereotype presented
in the Evermann´s profile but exchanging the metaclasses that
was extended. For example, if a stereotype in the Evermann´s
profile extends the Class metaclass, we then created a new
corresponding metaclass in KDM (naming it in a similar way)
and make it extends the ClassUnit metaclass from KDM.

 As can be seen in Fig. 2, the main object-oriented
elements (concepts) of Evermann´s profile are represented for
higher level classes/stereotypes, which are:
CrosscuttingConcern, Aspect, Advice, Pointcut and
StaticCrossCuttingFeature. The remainders are subclasses of
these higher level elements, representing subtypes. In this
section we describe the corresponding elements we have
created for each of the main elements. As it was presented
earlier, in our KDM-AO, the name of most of our elements
ends with the word Unit, for example, AspectUnit, AdviceUnit
and PointCutUnit. That is the way we have used to
differentiate between our elements from Evermann´s ones.

In Evermann´s profile, the CrosscuttingConcern element
extends the Package UML metaclass and aims to represent the
existence of a crosscutting concern like persistence, security
and concurrency. In our KDM-AO this element extends the
Package metaclass. This KDM metaclass represents a package
in which is possible to encapsulate Aspects, Classes and others
elements.

Figure 3. AspectUnit.

AspectUnit is our element for representing aspects, which
extends the ClassUnit KDM metaclass (Fig. 3). We decided to
extend this metaclass because aspects have all the
characteristics classes have, besides pointcuts, advices and
intertype declarations. From Fig. 3 to Fig. 6, we decided to
omit the attributes/properties because all of them can be seen
in the corresponding class in Fig. 2.

Figure 4. AdviceUnit.

Our element for representing advices is AdviceUnit (Fig.
4), which extends the ControlElement metaclass. Knowing

that advice is an element that specifies behavior, we could
consider it like a method. However, advices do not have
neither access specifiers (public, private, protected) nor types
(constructor, destructor, etc). Because of that we have decided
do not make it extends MethodUnit.

PointCutUnit is our element for representing pointcuts.
According to Evermann´s profile, pointcut is a structural
element and extends the UML metaclass StructuralFeature.
KDM has also a class for representing structural
characteristics called DataElement, which is an abstract
metaclass. Its descendents are StorableUnit, MemberUnit and
ItemUnit. As StorableUnit and ItemUnit cannot be abstract,
MemberUnit was chosen to be the superclass of PointCutUnit.
Besides, another reason for extending MemberUnit was that
pointcuts can crosscuts other classes and MemberUnit is the
KDM metaclass used to denote references to other classes.
The relations in which these classes are involved can be seen
in Fig. 5.

Figure 5. PointCutUnit.

StaticCrossCuttingFeature is our element for representing
intertype declarations. In our KDM-AO we have decided to
extend two KDM metaclasses: StorableUnit e MethodUnit. In
this way, StaticCrossCuttingFeature is able to represent
structural and behavioral characteristics. Therefore, an
instance of StaticCrossCuttingFeature can be an attribute or a
method (see Fig. 6).

Figure 6. StaticCrossCuttingFeature.

Implementation Details. In order to create the KDM-AO,
we have used the Eclipse IDE and Eclipse Modeling
Framework (EMF) plug-in, which allows visualizing and
editing the KDM metamodel in the Ecore format, available at
the OMG website.

Each profile class is represented by means of EMF
elements: Eclass, EEnum, EPackage, EAtribute and
EReference. In Fig. 2, almost every class is represented inside

65

the metamodel for the EClass element. The elements denoted
as <<enumeration>> are represented by the elements EEnum.
The attributes inside the classes are recreated by the element
EAttribute and the relationships between the profile classes are
specified by the elements EReference. Fig. 7 shows one of our
AspectUnit metaclass represented in the KDM metamodel. It
is possible to see in part A the class attributes (isPrivileged,
perType, perPointCut, declaredParents e
declaredImplements) and relationships (precedes e
precededBy). Part B shows that metaclass already introduced
inside the KDM metamodel along with all of its attributes.

Figure 7. KDM-AO in EMF.

At every new added element there is a set of properties in
which some have already default value and other do not, that
is, it needs to be fulfilled. For instance, when adding a new
EClass element, the main properties that must be informed are
Name and ESuperTypes (super classes inherited by the new
element). In Fig. 8 we show the properties belonging to
AspectUnit metaclass. As long as all new metaclasses have
been created in KDM, we generated a plug-in called KDM-
AO plugin which allows the creation of KDM-AO instances.

Figure 8. AspectUnit properties.

IV. CASE STUDY
 In this section we present a case study showing that the

KDM-AO can be used to support a modernization process
based on Crosscutting Frameworks (CFs) [3][22]. CFs are
aspect-oriented frameworks that encapsulate in a generic way
just one crosscutting concern, like persistence, security and
cryptography [3][22]. CFs are composed of concrete and
abstract aspects and also concrete and abstract classes. Most of
them heavily rely on intertype declarations, dynamic
crosscutting and well known aspect-oriented idioms like
Container Introduction and Marker Interface [27].

The modernization scenario we regard here considers the
existence of i) an instance of KDM representing a legacy
system (here called “legacy KDM” or "base model") that
needs to be modernized; ii) one or more instances of KDM
representing CFs available in a repository; and iii) one or more
KDM instances representing the elements of instantiation, i.e.,

concrete classes and aspects created by the application
engineer to couple the CFs to a base code or base model (in
this case, the legacy KDM).

In this case study, we have modernized a management
system of a CD/DVD shop. The modernization goal was to
modularize the persistence concern with aspects. As our group
has some experience with Crosscutting Frameworks, the idea
was to use a Persistence CF previously developed in this
process. Doing that, we would be validating the KDM-AO in
representing aspects and also in representing CFs.

Note that the focus of this paper is to show that it is
possible to represent AO concepts with extended KDM. It is
out of our scope mining the legacy KDM looking for
crosscutting concerns, remove them or even provide a tool that
facilitates the coupling of CFs. Therefore, the first step was to
obtain a KDM instance representing the CD/DVD Shop
system. This was done using MODISCO [25], which has a
parser that automatically transforms Java source code into
KDM XMI instances. The second step was concerned in
obtaining an instance of our KDM-AO for our Persistence CF.
This was done using a plug-in developed in this work, called
KDM-AO plug-in, in which classes and aspects were
converted into a KDM instance representing the CF.

Because of space limitations, in this section are shown
only the main CF´s aspects with the wide variation in the use
of elements that were inserted into the KDM metamodel
related to the proposed in Evermann´s profile [8].

Figure 9. ConnectionComposition.aj in KDM-AO.

 In Fig. 9 we can see an abstract aspect of the CF called
ConnectionComposition.aj which is located inside the package
persistence.connection. The purpose of this aspect is to
provide a base behavior for opening and closing database
connections. During instantiation, one needs to provide
concrete implementations for the abstract pointcuts
openConnection() and closeConnection(). This aspect
has in your body an attribute, two abstract pointcuts, a
concrete and one abstract operation and two advices.

The visualization shown in Fig. 9 is possible because of
the use of KDM-SDK plug-in that allows one to edit XMI

66

models in accordance with the KDM metamodel [6].
However, you can also view the file generated by the plug-ins
KDM-SDK and KDM-AO-plugin in XMI version.

 Each line in Fig. 9 contains the element type and then its
value. For example, in the first line we can visualize the
existence of a CrossCuttingConcern element; whose value is
persistence, i.e., this is an instance of the
CrossCuttingConcern metaclass. Line 3 displays the name of
the aspect that is being modeled here; initially the type
(AspectUnit), then its value (ConnectionComposition).

The element Attribute export (line 4) is used to store the
visibility (Public, Private and Protected), as well as indicate if
the element is abstract or concrete. This element is used to
represent classes, aspects, methods, pointcuts, advices among
others elements that allow this type of statement. The element
StorableUnit (line 7) is used to declare variables and
PointCutCompositeUnit (lines 8 and 16) is used to represent
concrete or abstract pointcuts of an aspect.

The element Signature (lines 11 and 14) receives the same
name that the element does and has the function of storing the
parameters that were passed in Pointcuts, Methods and
Advices. AdviceUnit (line 12) represents an advice that was
declared in the aspect. It is essential to fill the Advice
Execution property because this property declares what kind
of advice that element represents (After, Before or Around). In
Fig. 9, the element BlockUnit (line 15) is the body of advice
and you can represent snippets such as try/catch, among
others. Comment Unit (lines 5, 6 and 10) stores comments that
have been made in the source code and MethodUnit (lines 17
and 18) allows representing methods in the aspect.

It’s Important to say that one source code in AspectJ
consists of Java code and aspect code. Elements such as
MethodUnit, CommentUnit, Signature, BlockUnit and
Attribute Export already exist in the KDM metamodel and are
being used to make the representation of the common
elements of the Java language within the aspect.

Figure 10. A snippet of the aspect OORelationalMapping.aj in XMI format.

In Fig. 10 is shown the OORelationalMapping aspect as an
instance of KDM-AO in XMI. This aspect aims to introduce
(by intertype declaration) dozens of persistence methods in
persistent classes of the application. In line 1, there is a
declaration of the OORelationaMapping, which is an
AspectUnit. Inside it, there are two Intertype Declarations
through StaticCrossCuttingFeature element (lines 4 and 11).
This kind of statement allows someone to insert properties and
operations in other elements, such as interfaces, aspects and
classes, just filling in the values in the onType attribute (lines
9 and 18). The first StaticCrossCuttingFeature (line 4) that
appears is inserting a StorableUnit (line 5) named tableName
in PersistentRoot interface. The second one (line 11) is
inserting a MethodUnit element (line 12) named getID
interface into the same Interface (PersistentRoot). In Fig. 11 is
the equivalent AspectJ source code represented in the XMI in
Fig. 10.

Figs. 9 and 10 showed that it is possible to represent and
store KDM instances that represent aspects of CF’s or

conventional aspects. Another essential activity during the
reuse of CFs is to perform the instantiation process and the
coupling of the CF to a code base. This is done specializing
concrete operations and pointcuts.

Figure 11. A snippet of the aspect OORelationalMapping.aj source code.

 In our case study, it was necessary to create four concrete
aspects and one class manually to perform the coupling of the
CF to the CDStore application. The aspects created were
MyOORelationalMapping, MyConnectionCompositionRules,
MyDirty and MyAspect and the class was
MyConnectionVariabilities. The MyConnectionVariabilities
class stores information about the database; the aspect
MyOORelationalMapping declares classes of the base
application that should receive persistence methods; the aspect

public abstract aspect OORelationalMapping {
 public String PersistentRoot.tableName = “”;
 [...]
 public abstract int PersistentRoot.getID();

67

MyConnectionCompositionRules specifies the points at the
connection to the database will be opened and closed. Finally
the aspect myDirty and myAspect that are abstracts and extend
aspects of the CF.

Fig. 12 shows the MyOORelationalMapping aspect (lines
1, 2 and 3), whose name can be seen on line 2. Inside this
aspect created by the application engineer there are declare
parents statements informing application classes that they
must extend a CF interface called PersistentRoot. This is done
so that all classes receive application persistence operations
defined in this interface.

Figure 12. A snippet of the aspect MyOORelationalMapping.aj in XMI
format.

In lines 5 to 7 and 8 to 10 are shown two Imports, the first
package is the persistence (CF package) and the second is the
application package (base application package). The lines 11
to 13 represent the Extends element that stores the information
that the aspect MyOORelationalMapping extends the behavior
of the OORelationalMapping aspect, present in the CF.

In lines 22 and 23 of this aspect can be visualized the use
of the declareParents element, this element stores the name of
a relationship between a base application class and a CF’s
aspect or interface.

To specify this relationship in a model, it’s necessary to
use an element that can store the name of the base application
class, the name of the CFs aspect or interface and the name of
the relationship between them. In KDM, the element capable
to do this representation is the Implements, however, he does
not have a name property, thus it was necessary to extend this
element and add the "name" property. This new element
created from Implements was called InterfaceRealization.

Lines 14 to 17 represent an instance of the element
InterfaceRealization where line 15 shows the CF
PersistentRoot interface, line 16 shows the Music basic
application class and the name of the relationship between
them can be seen in line 17. Another InterfaceRealization
instance can be seen in lines 18 to 21.

The second snippet in the source code instantiation to be
shown are the pointcuts that open and close the connection to
the database, present on the aspect
myConnectionCompositionRules. In Fig. 13 is shown a snippet
of a XMI file that contains the element pointcut
openConnection where is possible to see its main elements,
like CompositePointCutUnit, ExecutionPointCutUnit and
ParameterUnit. The CompostitePointCutUnit element (line 5)
is the encapsulation of all pointcuts that represent the
openConnection (line 6). The ExecutionPointCut (Line 9) is
the pointcut that crosscutting the main method (line 13) from
FindSomeCDs class (Line 11). Finally, the ParameterUnit
(lines 16 to 19) store the pointcut parameters.

Figure 13. A snippet of the aspect MyConnectionCompositionRules.aj in XMI
format.

 With the realization of this case study was possible to
ascertain the suitability of the extension developed to
represent the most important characteristics and specificities
of a CF implemented in AspectJ.

Lower level speficifications. To represent a generic pointcut
with our extension, it is only needed create an instance of
OperationPointCutUnit (Fig. 1) and inform the parameters
that crosscut the base system. But if a more specific pointcut
has to be represented, it’s possible to create an instance of a
more specific pointcut. For example, GetPointCutUnit and
SetPointCutUnit are specials kinds of PointCutUnit that
represent field accesses.

Another example is the control flow of a join point. A
control-flow pointcut always specifies another pointcut as its
argument. There are two control-flow pointcuts, and in our
extension they are represented by CFlowPointCutUnit and
CFlowBelowPointCut. The first pointcut captures all the
OperationPointCutUnit in the control flow of the specified
PointCutUnit, including the OperationPointCutUnit matching
the PointCutUnit itself. The second PointCutUnit excludes the
OperationPointCutUnit in the specified PointCutUnit [30].

Fig. 14 shows how the mentioned PointCutUnits can be
represented in the KDM-AO plug-in. Lines 2 and 3 represents
the GetPointCutUnit and SetPointCutUnit, representing that
the accountBalance field will be crosscut when it is read or
write. The CompositePointCutUnit (lines 4 and 7)

68

encapsulates the PointCutUnits, allowing the application
engineer specify the points of the base system that will be
affected by PointCutUnits. Line 6 shows a CallPointCutUnit
that is modified by a CFlowPointCutUnit (line 5) and Line 9
shows a ExecutionPointCutUnit that is modified by a
CFlowBelowPointCutUnit (line 8).

Figure 14. Lower level specifications example in KDM-AO plug-in.

There are others possible representations of pointcuts
supported by our extension, and the level of details of a KDM-
AO instance will depend mainly on the application engineer
and the parser that creates the instance.

V. RELATED WORKS
The research work most related to ours is the KDM AO

extension presented by Mirshams [9]. As we have done here,
this author also created a heavyweight KDM extension for
aspect-oriented programming. There are three main
differences between our works. Firstly, while Mirshams has
based her extension in an aspect model created by herself, we
have created our extension based on a very well known profile
for aspect-oriented programming. Evermann´s profile
encompasses all the AO concepts presented in AspectJ and in
other less known aspect-oriented languages, like Aspect C++
and AspectS [8].

The second difference is the level of abstraction of our
extensions. The aspect model used by Mirshams contains
much less elements than Evermann´s profile. That means our
extension is able to represent both a high level (using the most
generic metaclasses) and a low level (using most specific
metaclasses) view of the system. In her case, just a higher
level view is possible. The third difference is that her work is
limited to dynamic crosscutting as there are no elements for
representing intertype declarations. However, despite all of
these differences, the main similarity is that we have used the
same KDM metaclasses she has used too.

Another KDM extension is presented by Baresi and Miraz
[28]. They proposed a heavyweight KDM extension to support
Component-Oriented MOdernization (COMO). COMO is a
metamodel that supports traditional concepts of software
architecture, allowing to attach software components in KDM.
Using their extension it is possible to replace or add parts of a
system. Unlike we have done here, in their paper they had not
used an existing profile as the starting point for creating their
extension - they combined another metamodel to the KDM.

COMO extends some high level metaclasses of KDM,
such as KDMModel, KDMEntity and KDMRelationship. These
classes are the base of their extension and provide the link
between KDM and COMO metamodels.

The main similarity with our work is that they have also
performed a heavyweight extension in KDM. As a main
difference, the extension presented by them only extended
high level elements of KDM, while in our solution we have
use more specific elements such as ClassUnit and
MemberUnit.

VI. DISCUSSIONS AND CONCLUSIONS
As we have commented in Section II, a heavyweight

extension can change the original metamodel or simply add
new metaclasses. We have opted for this second choice
because it facilitates the reuse of our extension in other
contexts. Besides, only by using heavyweight extensions is
possible to guarantee some level of correctness in model-level.
Otherwise this responsibility must be transferred to tools.

By means of our case study, it is fairly evident that our
extension can represent all AOP elements. However, as we
have not carried out a complete case study to gauge how
reliable our extension is to represent aspects concepts in other
programming languages, such as AspectC++, we consider this
is a limitation of our extension. Nevertheless, to mitigate this
limitation, the elements of AspectC++ and AspectS were
analyzed. Consequently, we conclude that there are enough
elements in our extension that can be used to represent source
code in both AspectC++ and AspectS.

Apart from Mirsham´s work [9] we did not find another
work that has extended KDM for aspect-oriented
programming. Her extension is also a heavyweight solution
and does not include inter-type declarations. Besides, her
solution does not allow representing lower level concepts.

Another contribution here is to show a preliminary
mapping between UML and KDM which can be used to turn
UML profiles into to KDM extensions. In our case, we turned
an AO UML profile into a KDM heavyweight AO extension.
However, considering the mapping shown in Table 1, any
UML profile could be transformed. This is quite useful
because in Model-Driven Environments, systems that are
represented as KDM instances will need to be visualized as
class diagrams.

Although our case study has shown just the ability of
KDM-AO to represent existing code (reverse engineering), it
can also be used in forward engineering for code generation.
In this case, it seems to be more appropriate than the
Mirsham’s profile, since ours includes lower level details.

When conducting our case study using CFs, we have
noticed that our extension would be more useful and more
expressive if it had also metaelements for representing CF
characteristics, like hot spots, frozen spots and other
framework characteristics. We intend to perform these
modifications in a future work [3].

Another interesting work we intend to conduct in the
future is to compare our heavyweight extension with a
lightweight one. Currently, we are already developing a
lightweight version of our extension. However, we can already
anticipate that one of the biggest drawbacks of the lightweight
version is the possibility of including erroneous relationships
in the model. We are also planning to carry out an experiment
to list the vantages and disadvantages of each extension.

As other future works, we aim to conduct others case
studies using AspectC++ and AspectS in order to test the

69

KDM-AO extension, with the objective of evaluating the issue
of platform independence. Another future work that can be
done is to check if there is some other element to be added to
the profile, taking into account new additions to the aspect-
oriented programming from 2007 to the current year.

By conducting this research we have noticed that the
power of model-driven modernization is greatly influenced by
the capacity of representing specific concepts in a proper and
suitable way.

As we have shown, the absence of aspectual concepts in
the original KDM prevent the realization of aspect-oriented
modernizations, or at least, makes it very hard. The same
occurs when we consider other fields/domains, such as: web
services, embedded systems, business processes, fault
tolerance, testing, etc. All of these subareas has already UML
profiles, available at OMG [26] [27], aiming to represent
specific details/concepts/abstractions in a more precise way.
Therefore, our mapping table can be easily employed to create
KDM extensions from all of these UML profiles, as we have
exemplified here.

ACKNOWLEDGEMENTS

Bruno M. Santos and Raphael R. Honda would like to
thank CNPq for sponsoring our research. Rafael S. Durelli and
Valter V. de Camargo would like to thank the financial
support provided by FAPESP, processes numbers
2012/05168-4 and 2014/14080-9, respectively.

REFERENCES
[1] G. Visaggio, “Ageing of a data-intensive legacy system: symptoms and

remedies,” Journal of Software Maintenance 13. 2001, pp. 281–308, doi:
10.1002/smr.234.

[2] Architecture-Driven Modernization, 2014.
Document omg/ http://adm.omg.org/.

[3] V. V. Camargo and P. C. Masiero, “Frameworks Orientados a
Aspectos,” XIX Simpósio Brasileiro de Engenharia de Software,
Uberlândia. 2005, pp. 200-216.

[4] D. L. Parnas, “Software aging,” ICSE '94 Proc. of the 16th international
conference on Software engineering, Los Alamitos, CA, USA, 1994, pp.
279-287.

[5] K. Normantas, S. Sosunovas and O. Vasilecas, “An Overview of the
Knowledge Discovery Meta-Model,” Proc. of the 13th International
Conference on Computer Systems and Technologies -
CompSysTech’12, 2012, pp. 52-57.

[6] Knowledge Discovery Meta-Model. KDM Guide, August 2011.
Document omg/formal/2011-08-04.

[7] V. V. Camargo, P. C. Masiero, “An Approach to Design Crosscutting
Framework Families,” ACP4IS 08, Brussels, Belgium, 2008.

[8] J. Evermann, “An overview and an empirical evaluation of UML: an
UML profile for aspect-oriented frameworks,” Workshop AOM ’07,
Vancouver, British Columbia, Canada, 2007.

[9] P. S. Mirshams, “Extending the Knowledge Discovery Metamodel to
Support Aspect-Oriented Programming,” 79 p. Dissertation (Master in
Applied Science in Software Engineering) – Computer Science
Department and Software Engineering, University of Montreal, Quebec,
Canada, 2011, unpublished.

[10] M. Kande, J. Kienzle, and A. Strohmeier, “From AOP to UML - a
bottom-up approach,” Proc. of the AOM with UML workshop at AOSD,
2002, 2002.

[11] R. Pawlak, L. Duchien, G. Florin, F. Legond-Aubry, L. Seinturier, and
L. Martelli, “A UML notation for aspect-oriented software design,”
Proc. of the AOM with UML workshop at AOSD, 2002, 2002.

[12] T. Gottardi, R. A. D. Penteado and V. V. de Camargo, “A Process for
Aspect-Oriented Platform-Specific Profile Checking,” Proc. of the 2011
International Workshop on Early Aspects. New York, NY , USA. 2011.

[13] D. Stein, S. Hanenberg, and R. Unland, “Designing aspect-oriented
crosscutting in UML,” Proc. of the AOM with UML workshop at
AOSD, 2002.

[14] M. Basch and A. Sanchez, “Incorporating aspects into the UML,” Proc.
of the AOM workshop at AOSD, 2003.

[15] L. Fuentes and P. Sanchez, “Elaborating UML 2.0 profiles for AO
design,” Proc. of the AOM workshop at AOSD, 2006.

[16] E. Barra, G. Genova, and J. Llorens, “An approach to aspect modelling
with UML 2.0,” Proc. of the AOM workshop at AOSD, 2004.

[17] J. Grundy and R. Patel, “Developing software components with the
UML, Enterprise Java Beans and aspects,” Proc. of ASWEC 2001,
Canberra, Australia, 2001.

[18] C. Chavez and C. Lucena, “A metamodel for aspect-oriented modeling,”
Proc. of the AOM with UML workshop at AOSD, 2002.

[19] H. Yan, G. Kniesel, and A. Cremers, “A meta model and modeling
notation for AspectJ,” Proc. of the AOM workshop at AOSD, 2004.

[20] A. Rashid and R. Chitchyan, “Persistence as an Aspect,” 2nd
International Conference on Aspect Oriented Software Development
(AOSD), Boston–USA, March, 2003.

[21] C. F. M. Couto, M. T. O. Valente and R. da S. Bigonha, “Um Arcabouço
Orientado por Aspectos para Implementação Automatizada de
Persistência,” 2º. Workshop Brasileiro de Desenvolvimento de Software
Orientado a Aspectos (WASP’05), evento satélite do XIX SBES,
Uberlândia, MG, Brasil, outubro, 2005.

[22] T. Gottardi, R. S. Durelli, O. P. López and V. V. Camargo, “Model-
based reuse for crosscutting frameworks: assessing reuse and
maintenance effort,” Journal of Software Engineering Research and
Development, 2013, pp. 1-34, doi:10.1186/2195-1721-1-4.

[23] S. Soares, E. Laureano and P. Borba, “Implementing Distribution and
Persistence Aspects with AspectJ,” 17th ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications
(OOPSLA), November, 2002, pp 174-190.

[24] A. Rausch, B. Rumpe and L. Hoogendoorn, “Aspect-Oriented
Framework Modeling,” 4th AOSD Modeling with UML Workshop
(UML Conference 2003) October, 2003.

[25] H. Bruneliere, J. Cabot, F. Jouault and F. Madiot, “MoDisco: A generic
and extensible framework for model driven reverse engineering,”
IEEE/ACM international conference on Automated software
engineering, ACM New York, NY, USA, 2010, pp. 173-174.

[26] Object Management Group. OMG Specifications, April 2014.
Documents omg/ http://www.omg.org/spec/.

[27] S. Hanenberg, “Multi-Design Application Frameworks,” Generative and
Component-Based Software Engeneering Young Reaearchers
Workshop, Erfurt, October 10, 2000.

[28] L. Baresi and M. Miraz, “A Component-oriented Metamodel for the
Modernization of Software Applications,” 16th IEEE International
Conference on Engineering of Complex Computer Systems. 2011.

[29] G. Kiczales et al., “Aspect Oriented Programming,” Proc. of 11
ECOOP. pp. 220-242, 1997.

[30] R. Laddad, AspectJ in Action: Practical Aspect-Oriented Programming,
Manning Publications, Greenwich (74° w. long.), 2003, pp.75-77.

[31] J. U. Júnior, R. D. Penteado and V. V. Camargo, “An overview and an
empirical evaluation of UML-AOF: an UML profile for aspect-oriented
frameworks,” Proc. of the 2010 ACM Symposium on Applied
Computing. 2010, pp 2289-2296.

[32] R. S. Durelli et al., “A Mapping Study on Architechture-Driven
Modernization,” 15th IEEE International Conference on Information
Reuse and Integration, 2014, pp 1-8.

70

