
On the costs of applying logic-based criteria to
mobile applications:

An empirical analysis of predicates in real-world Objective-C and Swift applications

Juliana Botelho
Universidade Federal de Lavras

juliana.botelho@posgrad.ufla.br

Vinicius H. S. Durelli
Universidade Federal de São João

del-Rei

durelli@ufsj.edu.br

Simone S. Borges
Universidade de São Paulo

sborges@icmc.usp.br

Andre T. Endo
Universidade Tecnológica Federal do

Paraná
andreendo@utfpr.edu.br

Marcelo M. Eler
Universidade de São Paulo

marceloeler@usp.br

Marcio E. Delamaro
Universidade de São Paulo

delamaro@icmc.usp.br

Rafael S. Durelli
Universidade Federal de Lavras

rafael.durelli@dcc.ufla.br

ABSTRACT
The proliferation of mobile devices has given rise to an increas-
ing demand for software that is well-suited to this particular
environment. However, ensuring the quality of mobile applica-
tions is challenging. Much of the overall complexity of mobile
applications stems from logic expressions, i.e., predicates,
which appear in control-flow statements (e.g., if, if–else,
while, and do-while) and define much of the behavior of soft-
ware. Thus, testing predicates is key to ensuring the quality
of mobile applications. We argue that an apt way to test pred-
icates is by leveraging well-established logic-based criteria.
Many logic-based criteria have been devised, e.g., the ac-
tive clause coverage (ACC) and modified condition/decision
coverage (MCDC). Given that ACC/MCDC are considered
expensive, we set out to examine the cost of applying these
criteria to mobile applications. We probed into a basic, but
relevant, proxy for cost: the complexity of predicates, i.e.,
number of clauses in predicates. We examined 35 open-source
mobile applications implemented in Objective-C and Swift
ranging from 129 to 58,140 lines of code with a total of 19,345
predicates. We looked at the frequency and percentage of
predicates. We also analyzed the relationship between overall
measures of size and the frequency of predicates. We found
that, although about 99% of the predicates in mobile applica-
tion have at most three clauses, there is a significant positive
linear correlation between overall measures of size and the

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
SAST, September 18–19, 2017, Fortaleza, Brazil

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5302-1/17/09. . . $15.00
https://doi.org/10.1145/3128473.3128477

number of predicates with four or more clauses. We conclude
that mobile applications do not have many multi-clause pred-
icates and hence sophisticated logic-based criteria are needed
on only a small portion of the predicates.

CCS CONCEPTS
• Software and its engineering � Software verification and
validation;

KEYWORDS
Logic-based test criteria; Active clause coverage (ACC) crite-
ria; Modified condition-decision coverage; Replication study

ACM Reference format:
Juliana Botelho, Vinicius H. S. Durelli, Simone S. Borges, Andre
T. Endo, Marcelo M. Eler, Marcio E. Delamaro, and Rafael S.
Durelli. 2017. On the costs of applying logic-based criteria to
mobile applications:. In Proceedings of SAST, Fortaleza, Brazil,

September 18–19, 2017, 9 pages.
https://doi.org/10.1145/3128473.3128477

1 INTRODUCTION
Logic predicates, which are expressions that evaluate to
Boolean values, are common in a multitude of software arti-
facts. Although predicates appear in many software artifacts,
this research focuses on predicates found in source code. Pred-
icates are particularly common in source code, where they
are instrumental in controlling the software’s behavior and
defining the possible flows of control. From a software test-
ing standpoint, predicates are the most important part of
control-flow statements (e.g., if–else and while) given that
they play a central role in determining which blocks of code
should be executed.

When predicates are wrong, the software behaves incor-
rectly. Given the importance and ubiquitousness of predicates
in source code, testers devise test cases to ascertain whether

https://doi.org/10.1145/3128473.3128477
https://doi.org/10.1145/3128473.3128477

SAST, September 18–19, 2017, Fortaleza, Brazil Botelho et al.

predicates behave as expected. This is called logic-based test-

ing [1] and it is conducted during unit testing by designing
tests from decisions in the source code.

Over the years, several logic-based criteria have been de-
vised. The most straightforward logic-based criterion is con-
cerned with designing test cases that cause predicates to
become true and false. This criterion is often called pred-

icate coverage (PC) [1].1 It is also common to design tests
that cause every portion (i.e., clause) of every predicate to
evaluate to true and false, this is known as clause coverage

(CC).2 Two more rigorous criteria are combinatorial cover-

age (CoC)3 and active clause coverage (ACC).4 The former
causes every predicate to take on all of its possible truth
values. The latter has the goal of yielding test cases that
cause every clause to become true and false while the other
clauses have values that ensure that the clause under test
dictates the outcome of the predicate [1].

The ever-increasing demand for mobile devices has given
rise to a need for more and better software tailored to this
particular environment. To provide the high-quality experi-
ence mobile users have come to expect, mobile applications
have to be tested properly. Programmers try to create code
that contains only simpler predicates, since it is easier to rea-
son about these predicates. Nevertheless, e�ectively testing
even simple predicates is hard. Hence, logic-based criteria are
key to help testers face the complexities of mobile applica-
tion testing. In other contexts, the importance of logic-based
testing has already been recognized by several government
agencies including the United States Federal Aviation Ad-
ministration (FAA), which requires that ACC be used to
certify safety critical parts of avionics software in commercial
aircraft [12].

Since the cost-e�ectiveness of logic-based criteria hinges
on the size of predicates, we set out to provide a greater
understanding of the complexity of predicates found in mobile
applications. To this end, we carried out an empirical study
that examines the frequency and percentage of predicates
found in mobile applications. We also looked at the correlation
between overall measures of size (number of lines of code and
source files) and the frequency of predicates.

Our motivation is based on the fact that if complex predi-
cates are not common in mobile applications, sophisticated
logic-based criteria are not needed. On the other hand, if
complex predicates are common, high-end logic-based test
criteria may be crucial to e�ective testing. We examined
the predicates from 35 Objective-C and Swift programs and
asked two questions:

(i) How many clauses do predicates that appear in real-
world mobile applications have? (ii) Is the number of clauses
per predicate correlated with the size of mobile applications,
namely, are complex predicates more likely to appear in large
mobile applications?
1PC is also called decision coverage (DC).
2CC is also known as condition coverage.
3CoC is also referred to as modified condition coverage.

4ACC is otherwise known as modified condition, decision cover-

age (MCDC).

Essentially, this is a replication study [14], repeating the
empirical study conducted by Durelli et al. [7] but with pro-
grams implemented in di�erent programming languages and
that belong to di�erent domains. The growing awareness of
the importance of replication studies among software engi-
neering researchers has lead them to realize that the true
goal of empirical research is not conducting individual studies
but developing an in-depth understanding of the benefits and
shortcomings of various techniques. Oftentimes, it is hard
to extrapolate the results of empirical studies to all possible
domains, thus no single study on a technology or domain
should be considered definitive [13]. As a result, many e�orts
have been made in conducting more replication studies in a
variety of contexts: this paper falls into this category.

The remainder of this paper is organized as follows. Sec-
tion 2 provides background on logic-based criteria, presenting
definitions for the concepts in this paper. Section 3 describes
the experimental design. Section 4 presents the results of the
experiment and Section 5 describes our experimental results
and the results of related work. Section 6 provides concluding
remarks.

2 BACKGROUND
As mentioned, the result of a predicate is a Boolean value, i.e.,
either true or false. However, predicates may have Boolean
and non-Boolean values. Relational operators (>, <, Ø, Æ,
=, and ,) are used to compare values within predicates and
logical operators (·, ‚, ü, æ, and ¡) define the internal
structure of predicates. The portions of a predicate, which are
named clauses, are connected together by logical operators [1].
An example predicate is (r Ø s) · t. This example contains
two clauses: (i) a relational clause (r Ø s), wherein r and s
are non-Booleans, and (ii) a clause with only a Boolean value,
t. One possible way to implement the example predicate in
Objective-C is shown in Listing 1. The predicate appears
inside an if statement and the two clauses are connected by
the logical “and” operator (i.e., &&). The predicate accepts
two integers and a Boolean value and, as mentioned, evaluates
to a Boolean value.

Listing 1: Predicate containing two clauses implemented in
Objective-C.⌥ ⌅
1 i n t r , s ;
2 b o o l t ;
3 . . .
4 i f (r >= s && t) { . . . }⌦⌃ ⇧

As previously stated, predicates and clauses are used in
logic-based criteria, of which PC is the simplest example. Let
P be a set of predicates with clauses C. For each predicate
p œ P , Cp is the set of clauses in p. Formally, PC can be
defined as follows [1, 7].

Definition 1 (PC). For each p œ P , there are two test

requirements: p evaluates to true and p evaluates to false.

On the costs of applying logic-based criteria to mobile applications SAST, September 18–19, 2017, Fortaleza, Brazil

Considering again the example (r Ø s) · t, two tests that
satisfy PC are {r = 9, s = 3, t = true} and {r = 5, s = 10, t =
true}. It follows that PC requires two tests per predicate.
The main shortcoming of this criterion is that it does not
fully exercise individual clauses. For instance, in the example,
t evaluates to true in both tests. CC remedies this problem
by requiring tests at the clause level [1]:

Definition 2 (CC). For each c œ C, there are two test

requirements: c evaluates to true and c evaluates to false.

For the example, CC can be satisfied by two tests: {r =
3, s = 6, t = true} and {r = 6, s = 4, t = false}. CC also
requires exactly two tests per predicate. Nevertheless, CC
can be satisfied without causing the predicate to become
both true and false, as in this example. The criterion that
evaluates both individual clauses and the predicate by trying
all combinations of values is CoC [1].

Definition 3 (CoC). For each p œ P , the predicate must

evaluate to each possible combination of truth values.

Table 1 shows the complete truth table for (r Ø s) · t.
CoC requires 2n tests, where n is the number of clauses. So
CoC is unwieldy at best, being impractical for predicates
with more than a few clauses [2, 7].

Table 1: Truth table for the predicate (r Ø s) · t.

r Ø s t (r Ø s) · t
1 true true true
2 true false false
3 false true false
4 false false false

It is important to evaluate the overall e�ect of individual
clauses on a predicate. One way to accomplish this is to eval-
uate predicates with all possible truth values. However, this
entails creating 2n tests (some of which might be infeasible),
which is prohibitively expensive in most cases. To mitigate
this issue, several logic-based criteria that exercise clauses
with a reasonable amount of tests were devised. These criteria
are based on the idea of making clauses “active” [1]. Active
clause criteria are centered around the idea of determina-

tion: a clause is active (i.e., it independently determines the
predicate’s outcome) when changing its values changes the
value of the predicate. Following the convention proposed by
O�utt and Ammann [1], throughout this paper we refer to
the clause under test as major clause, ci. The other clauses,
cj , where j , i, are minor clauses. For ACC, each clause is
considered in turn to be major [1, 7].

For the example p = (r Ø s) · t and assuming that ci = (r
Ø s) is the major clause. It is easy to see that when the minor
clause (cj = t) is true, the value of the predicate corresponds
to the value of ci. Hence, ci determines p. ACC is based on
selecting values for minor clauses so that the major clause
determines the predicate. Each major clause results in two
test requirements: ci evaluates to true and ci evaluates to
false.

ACC yields four test requirements for our example predi-
cate, two for clause (r Ø s) and two for clause t. When (r Ø
s) is major: ((r Ø s) = true, t = true) and ((r Ø s) = false,
t = true). The clause t, determines p if and only if (r Ø s)
evaluates to true. Thus, it entails two test requirements, ((r
Ø s) = true, t = true) and ((r Ø s) = true, t = false).
These test requirements are listed in the partial truth table
in Table 2. The major clauses are shown in gray in Table 2.

Table 2: Partial truth table for (r Ø s) · t.

r Ø s t (r Ø s) · t
1 true true true
2 false true false
3 true true true
4 true false false

It is worth noting that two test requirements are identical
(the ones in rows one and three), so only three tests are
needed. More specifically, ACC needs between n + 1 and
2n tests, where n represents the number of clauses. n + 1
is enough when n < 4, given the overlap among tests. The
number of tests needed gets closer to 2n as n grows [7].

3 EXPERIMENT SETUP
This section outlines the setup we used to replicate the empir-
ical study carried out by Durelli et al. [7]. In many ways, our
setup is akin to the one described by Durelli et al. in [7]. We
set out to examine the following research questions (RQs):

• RQ1: How many clauses do most predicates in real-
world mobile applications have?

• RQ2: To what extent is the number of clauses per
predicate related to overall measures of program size?

In our study, the size of mobile applications is determined
by the number of physical lines of code (i.e., non-comment
and non-blank) and the number of source files. In the next
subsection we set forth the hypotheses we set out to examine.

3.1 Hypothesis Formulation
We formalized RQ2 into two hypotheses named size influences

predicates (SIP):
• Null hypothesis, SIP0: There is no association between

the size of a mobile application and the number of
clauses in its predicates.

• Alternative hypothesis, SIP1: As the size of a mobile
application increases, average predicate size also in-
creases.

3.2 Variables Selection
Prior to carrying out experiments, conceptual definitions
of the problem at hand need to be turned into measurable
variables. This process is called operationalization. This sub-
section describes the operational definitions of the variables
we set out to examine. The independent variables are (i) the
number of physical lines of code and (ii) the number of source

SAST, September 18–19, 2017, Fortaleza, Brazil Botelho et al.

files in each of the selected mobile applications. The number
of predicates and their respective clauses are the dependent
variables.

3.3 Goal Definition
Defining the scope of an experiment comes down to setting its
goals. We used the organization proposed by the Goal/Ques-
tion/Metric (GQM) [14] template to do so. According to
this goal definition template, the scope of our study can be
summarized as follows.

Object of study: The objects of study are open-source
mobile applications implemented in Objective-C and Swift.

Purpose: The purpose of this experiment is to evaluate
how cost e�ective logic-based criteria are by looking at how
often predicates have at least four clauses. In addition, we
also intend to examine if overall measures of size (i.e., number
of lines of code and source files) exert any influence over the
number of multi-clause predicates.

Quality focus: The primary e�ect under investigation is the
average number of clauses per predicate. Given that criteria
similar to ACC only have significant savings over CoC when
predicates have more than three clauses, we are interested
in determining how often predicates contain at least four
clauses.

Perspective: from the standpoint of a researcher.
Context: We used 35 open-source mobile applications whose

size ranges from 129 to 58,140 lines of code. These applica-
tions had from two to 475 source files.

3.4 Measurement Method
In order to analyze the predicates in open-source mobile appli-
cations we built upon and extended two ANTLR-based [11]
grammars. We changed these grammars so the generated
parsers would count the number of clauses in predicates im-
plemented in Objective-C and Swift by examining control-flow
statements.

3.5 Sample Selection
We randomly selected 35 mobile applications from GitHub [10],
which is a web-based Git repository widely used to host
open-source software projects.5 More specifically, each mo-
bile application in [10] was assigned a number and a simple
random draw was made. Although the sample was randomly
selected, we tried to balance the proportions of the selected
applications by choosing applications that di�ered in size and
complexity. When more than three applications that fall into
the same category (e.g., web browsers) were randomly se-
lected, only the first three applications were included into the
final sample. The resulting sample contains web browsers (i.e.,
Firefox and Onion Browser), a text editor (i.e., Edhita), mo-
bile games (i.e., FlappySwift and Chess), instant messaging
applications (i.e., Actor, Antidote, and Rocket.Chat), an
expense tracker application (i.e., Buck Tracker), photo edit-
ing applications (i.e., Meme Maker and PixPic), and a quick

5https://github.com/

response (QR) code scanner (i.e., QR Blank). It is worth not-
ing that all programs in our sample are real-world mobile
applications.

4 EXPERIMENTAL RESULTS
The selected applications are listed in Table 3. Table 3
presents the number of physical lines of code (LOC), the
number of source files (NSF), and the number of predicates
in each of the mobile applications. It is worth emphasizing
that code related to test suites was not taken into account
in our analysis.

4.1 Analysis
The application with the most one-clause predicates was
Actor (3,257) and the ones with the fewest one-clause pred-
icates were Colorblind and Chess, with three one-clause
predicates each. Several applications had predicates whose
size ranged from six to 10 clauses: Actor (six), rTracker (six),
LogU (four), Wire (three), Buck Tracker (two), Concurrency
(two), OnionBrowser (two), Money for GitHub (one), Dono
(one), and Meme Maker (one). Only three applications had
predicates with more than 10 clauses: Firefox for iOS,
Actor, and rTracker. Firefox for iOS was the only applica-
tion with a predicate containing more than 15 clauses which
was the largest predicate we found, containing 19 clauses. It
can be seen that the amount of predicates in mobile appli-
cations steadily dwindles as the number of clauses increases,
which is similar to the results reported by Durelli et al. [7]
for Java and C/C++ applications.

Table 3 lists raw data on the mobile applications. Given
that these applications vary in size, it is hard to pick out
patterns. Thus, we calculated the percentage of di�erent sized
predicates in these applications. The resulting percentages
are listed in Table 4.

The percentages in Table 4 would seem to suggest that
one-clause predicates are by far the most common in all ap-
plications. The application containing the lowest percentage
of one-clause predicates is Chess (60%), which is the second-
smallest application containing 232 LOC. Chess is also the ap-
plication with the highest percentage of two-clause predicates:
40%. Game of Life and Alarm contain the highest percent-
age of three-clause predicates: 10%. Dono contains the highest
percentage of four-clause predicates: 0.966%. The applica-
tions with the highest percentage of predicates containing five
clauses is OnionBrowser (0.288%). As shown in Table 4, on
average, predicates whose size ranges from six to 10 clauses
seem to be more common than five-clause predicates. The
application with the highest percentage of predicates whose
size ranges from six to 10 clauses is rTracker (0.339%, six
predicates).

From analyzing Table 4, we see that, apart from Workdays,
only application with more than 5,000 LOC have predicates
with more than four clauses. Furthermore, only applications
with more than 16,000 LOC have predicates whose size ranges

https://github.com/

On the costs of applying logic-based criteria to mobile applications SAST, September 18–19, 2017, Fortaleza, Brazil

Table 3: Complexity of predicates in mobile applications. The entries in the table are in descending order by the number of lines
of code (LOC).

Number of Predicates with n Clauses
Program Name LOC† NSF‡ n=1 n=2 n=3 n=4 n=5 n=6-10 n=11-15 n=16-20

Wire 58,145 475 2,929 331 41 18 4 3 0 0
Firefox iOS 51,214 349 1883 117 15 3 4 0 1 1
Actor 28,011 73 3,257 548 63 12 5 6 1 0
LogU 21,166 166 1,262 172 42 11 2 4 0 0
rTracker 16,433 54 1,598 142 15 6 3 6 1 0
Buck Tracker 15,187 122 1,005 178 30 7 3 2 0 0
Monkey for GitHub 11,756 91 1,047 78 11 5 0 1 0 0
Antidote 11,752 155 215 15 0 0 0 0 0 0
Dono 10,314 168 548 54 12 6 0 1 0 0
Gulps 9,521 127 237 19 0 1 0 0 0 0
Meme Maker 9,064 68 513 44 10 2 0 1 0 0
Concurrency 7,261 25 638 85 12 4 1 2 0 0
OnionBrowser 5,976 28 612 55 18 5 2 2 0 0
PixPic 5,290 83 232 10 1 0 0 0 0 0
AlzPrevent 4,531 75 126 5 2 0 0 0 0 0
Speak 3,421 31 91 6 0 0 0 0 0 0
VPN On 3,072 61 162 5 1 0 0 0 0 0
Designer News 2,009 31 120 4 0 0 0 0 0 0
Workdays 1,724 21 129 9 1 1 0 0 0 0
Rocket.Chat 1,296 44 31 1 0 0 0 0 0 0
Swift 2048 1,271 9 22 2 0 0 0 0 0 0
Adblock Fast 1,142 12 59 1 3 0 0 0 0 0
HTY360Player 1,054 6 79 0 0 0 0 0 0 0
DownTube 790 11 58 1 0 0 0 0 0 0
Jim 690 18 36 4 0 0 0 0 0 0
OpenIt Today 568 7 63 1 1 0 0 0 0 0
Edhita 552 8 26 1 0 0 0 0 0 0
EMI Calculator 386 10 4 1 0 0 0 0 0 0
Colorblind 353 12 3 0 0 0 0 0 0 0
FlappySwift 262 4 9 1 0 0 0 0 0 0
Game of Life 260 6 8 1 1 0 0 0 0 0
Alarm 254 8 9 0 1 0 0 0 0 0
TODO 238 6 15 0 0 0 0 0 0 0
Chess 232 14 3 2 0 0 0 0 0 0
QR Blank 129 2 5 0 0 0 0 0 0 0

Total 285,324 2,380 17,034 1,893 280 81 25 28 3 1
MaxRaw 3,257 548 63 18 5 6 1 1
MinRaw 3 0 0 0 0 0 0 0

Mean 486.690 54.090 8 2.314 0.686 0.8 0.086 0.029

Percentages 88.05% 9.79% 1.45% 0.41% 0.13% 0.14% 0.02% 0.005%
99.29% 0.68% 0.025%

†Physical lines of code (non-comment and non-blank lines).
‡Number of source files (only Objective-C and Swift files were counted).

from 11 to 15 clauses. Some applications have a higher per-
centage of predicates with at least six and up to 10 clauses
than five-clause predicates (e.g., Actor, LogU, and rTracker).

Table 4 also presents summary statistics over all subject
programs. According to our results, the predicates in mobile
applications have on average (mean) 90.99% one clause, about

7.35% contain two clauses, around 1.37% have three, only
approximately 0.193% contain four clauses, only about 0.04%
have five, around 0.06% contain six to 10 clauses, 0.004%
contain 11 to 15 clauses, and only 0.001% have predicates
whose size ranges from 16 to 20 clauses. This suggests that
predicates with more than three clauses are rare.

SAST, September 18–19, 2017, Fortaleza, Brazil Botelho et al.

Table 4: Percentage of n-clause predicates in mobile applications. The entries in this table follow the order in Table 3.

Percentage of Predicates with n Clauses
Program Name n=1 n=2 n=3 n=4 n=5 n=6-10 n=11-15 n=16-20

Wire 88.063% 9.952% 1.233% 0.541% 0.120% 0.090% 0% 0%
Firefox iOS 93.034% 5.781% 0.741% 0.148% 0.198% 0% 0.049% 0.049%
Actor 83.684% 14.080% 1.619% 0.308% 0.128% 0.154% 0.026% 0%
LogU 84.528% 11.520% 2.813% 0.737% 0.134% 0.268% 0% 0%
rTracker 90.232% 8.018% 0.847% 0.339% 0.169% 0.339% 0.056% 0%
Buck Tracker 82.041% 14.531% 2.449% 0.571% 0.245% 0.163% 0% 0%
Monkey for GitHub 91.681% 6.830% 0.963% 0.438% 0% 0.088% 0% 0%
Antidote 93.478% 6.522% 0% 0% 0% 0% 0% 0%
Dono 88.245% 8.696% 1.932% 0.966% 0% 0.161% 0% 0%
Gulps 92.218% 7.393% 0% 0.389% 0% 0% 0% 0%
Meme Maker 90% 7.719% 1.754% 0.351% 0% 0.175% 0% 0%
Concurrency 85.984% 11.456% 1.617% 0.539% 0.135% 0.270% 0% 0%
OnionBrowser 88.184% 7.925% 2.594% 0.720% 0.288% 0.288% 0% 0%
PixPic 95.473% 4.115% 0.412% 0% 0% 0% 0% 0%
AlzPrevent 94.737% 3.759% 1.504% 0% 0% 0% 0% 0%
Speak 93.814% 6.186% 0% 0% 0% 0% 0% 0%
VPN On 96.429% 2.976% 0.595% 0% 0% 0% 0% 0%
Designer News 96.774% 3.226% 0% 0% 0% 0% 0% 0%
Workdays 92.143% 6.429% 0.714% 0.714% 0% 0% 0% 0%
Rocket.Chat 96.875% 3.125% 0% 0% 0% 0% 0% 0%
Swift 2048 91.667% 8.333% 0% 0% 0% 0% 0% 0%
Adblock Fast 93.651% 1.587% 4.762% 0% 0% 0% 0% 0%
HTY360Player 100% 0% 0% 0% 0% 0% 0% 0%
DownTube 98.305% 1.695% 0% 0% 0% 0% 0% 0%
Jim 90% 10% 0% 0% 0% 0% 0% 0%
OpenIt Today 96.923% 1.538% 1.538% 0% 0% 0% 0% 0%
Edhita 96.296% 3.704% 0% 0% 0% 0% 0% 0%
EMI Calculator 80% 20% 0% 0% 0% 0% 0% 0%
Colorblind 100% 0% 0% 0% 0% 0% 0% 0%
FlappySwift 90% 10% 0% 0% 0% 0% 0% 0%
Game of Life 80% 10% 10% 0% 0% 0% 0% 0%
Alarm 90% 0% 10% 0% 0% 0% 0% 0%
TODO 100% 0% 0% 0% 0% 0% 0% 0%
Chess 60% 40% 0% 0% 0% 0% 0% 0%
QR Blank 100% 0% 0% 0% 0% 0% 0% 0%

Max% 100 40 10 0.966 0.288 0.339 0.056 0.049
Min% 60 0 0 0 0 0 0 0
Mean 90.985 7.35 1.374 0.193 0.040 0.057 0.004 0.001

Std. dev. 7.733 7.380 2.417 0.287 0.081 0.102 0.013 0.008

Figure 1 outlines the data from Table 4 in boxplots. These
boxplots clearly indicate that most predicates have less than
four clauses. Predicates with more than four clauses are very
rare in mobile applications. Based on our analysis of the data,
we argue that the answer to RQ1 is that most predicates in
mobile applications implemented in Objective-C and Swift
have one, two, or up to three clauses. Very few predicates
have four or more clauses.

4.1.1 Hypothesis Testing. We probed into the relation-
ship between the measures of size describe in Section 3 and
the frequency of predicates with at least four clauses. We

started by generating a scatter diagrams (Figure 2) to test
the hypotheses SIP0 and SIP1. The scatter diagrams show
the lines of best fit for predicates whose sizes range from four
to five clauses considering each independent variable: LOC
and NSF. The linear regressions lines suggest that there is
an association between the size of predicates and the size of
mobile applications: that is, the size of the predicates and
the size of mobile applications covary.

It is worth noting that the plots in Figure 2 do not fit a
straight line, which indicates a departure from linearity. In
addition, the boxplot in the bottom right corner of Figure 1

On the costs of applying logic-based criteria to mobile applications SAST, September 18–19, 2017, Fortaleza, Brazil

indicates that the data on four-clause predicates contain
outliers. Therefore, we applied Spearman’s rank correlation
coe�cient [8] to evaluate the correlation between predicate
complexity and application size. Spearman’s correlation co-
e�cient measures the strength and direction of monotonic
association between two variables. It is worth mentioning
that monotonicity is not as restrictive as a linear relation-
ship [3]. Correlation coe�cient values (fl) range from -1 to 1:
1 indicates a positive relation, -1 indicates a negative relation,
and 0 represents no relation [8].

Table 5 lists the correlation coe�cients between the per-
centage of predicates with n clauses (as shown in Table 4),
and both the LOC and NSF. We interpret the correlation
values in the following way: a large correlation value is 0.5
or greater, a medium correlation has a value of 0.3, and 0.1
indicates a small correlation [6].

The results in Table 5 suggest that there is a strong pos-
itive correlation between the percentage of predicates that
contain four clauses or more and LOC and a medium positive
correlation between these complex predicates and NSF. There
is also a medium positive correlation between predicates with
at least five and up to 15 clauses and LOC. As for NSF, this
medium correlation is present only for predicates whose sizes
range from six to 10 clauses.

The results in Table 5 provide us with enough evidence to
reject the null hypothesis (SIP0). Our alternative hypothesis
(SIP1) is partially supported by the results in Table 5: there
is a strong correlation between predicates whose sizes range
from five to 10 and LOC and NSF.

4.1.2 Threats to Validity. A threat to the external validity
of our replication study is the representativeness of the subject
programs. According to Miller [9], it is not possible to validate
the representativeness of a given population. Despite the
fact that all mobile applications used in our investigation
are “real-world” programs, we cannot assure that we would
reach similar conclusions if we had used a di�erent sample.
To mitigate this threat, we sought to eliminate selection
bias by selecting the subjects randomly. We believe that our
results are not far o� in representing the population of mobile
applications. Furthermore, to the best of our knowledge this
is the largest study of predicates involving industrial-scale
mobile applications.

As for the external validity of our study, it is worth men-
tioning that we are not sure whether our results can be
generalized to other programming languages used to imple-
ment mobile applications. Thus, replications of this study
are needed for di�erent programming languages.

Potential threats to the construct validity stem from pos-
sible faults in the Objective-C and Swift parsers. We tried
to mitigate these threats by evaluating the parsers against
several small programs.

5 DISCUSSION AND COMPARISON WITH
RELATED WORK

Our data indicate that most predicates in mobile applica-
tions are not very complex: most predicates have up to 3

60
70

80
90

10
0

One−clause predicates

N
um

be
r o

f p
re

di
ca

te
s

0
10

20
30

40

Two−clause predicates

N
um

be
r o

f p
re

di
ca

te
s

0
2

4
6

8
10

Three−clause predicates

N
um

be
r o

f p
re

di
ca

te
s

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Four−clause predicates

N
um

be
r o

f p
re

di
ca

te
s

Figure 1: Distribution of predicates with up to four clauses. As
indicated by the middle bar in the boxplots, which represents
the median, four-clause predicates are uncommon.

clauses. From a testing standpoint, this can be seen as an
indication that ACC is an interesting criterion to test mo-
bile applications and not nearly as expensive as some might
conjecture.

0 10000 30000 50000

0.
00

0.
10

0.
20

0.
30

LOC

Nu
m

be
r o

f S
ix−

to
−t

en
−c

la
us

e
Pr

ed
ica

te
s

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NSF

%
 o

f F
ou

r−
cla

us
e

Pr
ed

ica
te

s

0 100 200 300 400

0.
00

0.
10

0.
20

NSF

%
 o

f F
ive
−c

la
us

e
Pr

ed
ica

te
s

0 100 200 300 400

0.
00

0.
10

0.
20

0.
30

NSF

Nu
m

be
r o

f S
ix−

to
−t

en
−c

la
us

e
Pr

ed
ica

te
s

Figure 2: Scatter plots with regression lines that highlight
the best linear approximation to the association between the
complexity of predicates and measures of size.

As pointed out by Durelli et al. [7], there is a lack of
studies investigating the complexity of predicates in “real”

SAST, September 18–19, 2017, Fortaleza, Brazil Botelho et al.

software. In addition, previous studies were based on much
smaller samples. Related work is listed in Table 6: the study
by Durelli et al. [7], which investigated predicates in Java and
C/C++ programs, a 2001 unpublished technical report, and
a 1994 paper. Table 6 summarizes data from these studies and
contrasts that data with data from our study. The top part of
the table gives raw numbers of predicates whose sizes range
from one, two, three, etc. The bottom part shows percentages
of the total clauses.

Table 5: Correlation coe�cients (fl) indicating the extent to
which the percentage of predicates with varying sizes is re-
lated to LOC and NSF (confidence level 95%).

Spearman’s Rank Correlation (fl)
Clauses úúúúú LOC NSF

n=1 fl = -0.294,
p-value = 0.09

fl = -0.277,
p-value = 0.11

n=2 fl = 0.369,
p-value = 0.03

fl = 0.341,
p-value = 0.05

n=3 fl = 0.381,
p-value = 0.02

fl = 0.287,
p-value = 0.09

n=4 fl = 0.717,
p-value < 0.01

fl = 0.615,
p-value < 0.01

n=5 fl = 0.637,
p-value < 0.01

fl = 0.437,
p-value < 0.01

n=6-10 fl = 0.652,
p-value < 0.01

fl = 0.472,
p-value < 0.01

n=11-15 fl = 0.443,
p-value < 0.01

fl = 0.271,
p-value = 0.12

n=16-20 fl = 0.272,
p-value = 0.11

fl = 0.272,
p-value = 0.11

Our results confirm previous studies on the complexity
of predicates. Predicates with one, two, or three clauses are
by far the most common predicates (Table 6). Our results
indicate that mobile applications are as complex as Java pro-
grams and not as complex as railway and airborne software:
while 4.82% of the predicates in the safety-critical programs
have four or more clauses, Java programs have only 0.67%
predicates with at least four clauses and mobile applications
implemented in Objective-C and Swift have only 0.71%.

6 CONCLUDING REMARKS
Predicates are key elements of control-flow statements, which
are widely used in imperative programming languages. When
predicates are erroneously encoded, the program’s conditional
behavior is bound to be wrong. Logic based criteria (e.g., PC,
CoC, and ACC) can be used to test predicates.

As discussed, when predicates contain many clauses, PC
is not e�ective and the cost of CoC becomes considerable. In
e�ect, the motivation for using MCDC or ACC is based on the
need to test large predicates. The results of our experiment
show that mobile applications have few complex predicates.
The main contribution of this research is that our results

indicate that sophisticated logic-based criteria as MCDC and
ACC are only needed on a small fraction of all the predicates.
To the best of our knowledge [15], this is the first study
to evaluate the cost of applying logic-based criteria to test
mobile applications.

From a testing standpoint, the results of our study can
be seen as an indication that ACC is an interesting criterion
to test mobile applications and not nearly as expensive as
some might conjecture. We elaborate on the cost of using
logic-based criteria to test mobile applications in the next
subsection.

6.1 Cost Analysis
Evaluating cost is notoriously complex because the notion
of cost can be characterized and measured in many di�erent
ways. In this study, we characterize cost according to the
three proxies used by Durelli et al. [7]:

(1) The number of tests needed. Tests add to the cost of
testing since they need to implemented and run.

(2) Evaluating whether a set of tests satisfies a given cri-
terion. This task can be carried out manually (2a),
imposing human cost, or through tool support (2b),
which imposes computational cost.

(3) Generating tests to satisfy a criterion. This task can
also be carried either by hand (3a), which entails human
cost, or automatically with a tool (3b), which imposes
computational cost.

The number of complex predicates (i.e., multiclause predi-
cates) mainly influences 1, 2a, and 3a. So our analysis em-
phasizes these costs.

We found that the vast majority of predicates have one
clause (around 88%). For these predicates, PC, CoC, MCDC,
and ACC have the same cost. That is, MCDC or ACC entail
zero additional cost.

Two clause predicates are also prevalent in real-world mo-
bile applications. PC yields two tests for two-clause predicates,
MCDC and ACC require three, and CoC results in four tests.
Considering the number of tests (proxy 1) for two-clause
predicates, the cost of using MCDC and ACC is 50% higher
than PC and 25% lower than CoC. As for 2a, (i.e., evaluating
whether a test suite satisfies a given criterion by hand), the
cost of CoC is less, but the same for cost 2b (i.e., using tool
support to evaluate whether the tests satisfy the criterion).

According to our results, 1.45% of the predicates in mobile
applications are three-clause predicates. These predicates
require two tests for PC, four for MCDC and ACC, and eight
for CoC. Considering the proxy for cost 1, the cost of using
MCDC or ACC is 100% more than the cost of using PC, and
75% less than CoC. As for 2a, the cost of CoC is lower.

We found that 0.41% of the predicates have four clauses.
For these predicates, two tests are needed for PC, five to
eight for MCDC and ACC, and 16 for CoC. For proxy 1, the
cost of using MCDC or ACC is approximately 250% to 400%
more than PC and 50% less than CoC. Considering 2a, the
cost of CoC is much less.

On the costs of applying logic-based criteria to mobile applications SAST, September 18–19, 2017, Fortaleza, Brazil

Table 6: Comparison with previous studies.

Number of Predicates with n Clauses
Source n=1 n=2 n=3 n=4 n=5 n=6-10 n=11-15 n=16-20 n >=21 Total

Chilenski’s report [4] 16,491 2,262 685 391 131 219 35 36 6 20,256
Software Tools [5] 446 72 9 0 0 0 0 0 0 527
Booch Components [5] 9,048 402 52 0 0 0 0 0 0 9,502
EFIS avionics display [5] 1,343 182 38 16 18 11 3 0 0 1,611
Durelli et al. [7] (Java) 354,660 38,048 5,414 1,647 465 497 53 21 6 400,811
Durelli et al. [7] (C/C++) 18,661 3,767 933 511 215 359 81 17 2 24,546
Our replication study 17,034 1,893 280 81 25 28 3 1 0 19,345

Percentage of Predicates with n Clauses
Source n=1 n=2 n=3 n=4 n=5 n=6-10 n=11-15 n=16-20 n >=21 Total n > 3

Chilenski’s report [4] 81.41% 11.17% 3.38% 1.93% 0.65% 1.08% 0.17% 0.18% 0.03% 4.04%
Software Tools [5] 84.63% 13.66% 1.71% 0% 0% 0% 0% 0% 0% 0%
Booch Components [5] 95.22% 4.23% 0.55% 0% 0% 0% 0% 0% 0% 0%
EFIS avionics display [5] 83.36% 11.30% 2.36% 0.99% 1.12% 0.68% 0.19% 0% 0% 2.98%
Durelli et al. [7] (Java) 88.49% 9.49% 1.35% 0.41% 0.12% 0.12% 0.013% 0.005% 0.0015% 0.67%
Durelli et al. [7] (C/C++) 76.02% 15.35% 3.80% 2.08% 0.88% 1.46% 0.33% 0.07% 0.008% 4.82%
Our replication study 88.05% 9.79% 1.45% 0.41% 0.13% 0.14% 0.02% 0.005% 0% 0.71%

Approximately 0.30% of the predicates have more than
four clauses. These predicates need two tests for PC, at most
2n for MCDC and ACC (where n is the number of clauses),
and 2n for CoC. As for 1, the cost of using MCDC or ACC
is 2n ◊ 100%: much less than CoC. The cost of CoC is much
less considering 2a. An important result is that, similar to
Java programs [7], the amount of predicates that have more
than four clauses is negligible, which means that these extra
costs are unlikely to be significant when considering the total
development cost.

All in all, 3a (i.e., generating tests by hand to satisfy
a given criterion) is much more expensive than 3b for all
predicates with more than one clause for MCDC or ACC and
CoC. Moreover, as noted by Durelli et al. [7], MCDC and
ACC are harder than CoC for both 3a and 3b.

It is worth mentioning that the cost analysis we performed
does not take into account a feasibility analysis. That is, some
of the aforementioned test requirements may be infeasible.
Consequently, when drawing conclusions from the above
cost information, one should interpret it as a conservative
bound on the number of test requirements of these logic-based
criteria.

7 ACKNOWLEDGMENTS
Andre T. Endo is financially supported by CNPq/Brazil
(grant number 445958/2014-6).

REFERENCES
[1] P. Ammann and J. O�utt. 2008. Introduction to Software Testing.

Cambridge University Press. 344 pages.

[2] P. Ammann, J. O�utt, and H. Huang. 2003. Coverage Criteria
for Logical Expressions. In 14th International Symposium on

Software Reliability Engineering (ISSRE). 99–107.
[3] Bruce J. Chalmer. 1986. Understanding Statistics. CRC Press.

448 pages.
[4] J. J. Chilenski. 2001. An Investigation of Three Forms of the

Modified Condition Decision Coverage (MCDC) Criterion. Tech-
nical Report DOT/FAA/AR-01/18. FAA Tech Center Report.

[5] J. J. Chilenski and S. P. Miller. 1994. Applicability of Modi-
fied Condition/Decision Coverage to Software Testing. Software

Engineering Journal 9, 5 (1994), 193–200.
[6] J. Cohen. 1988. Statistical Power Analysis for the Behavioral

Sciences (2nd ed.). Routledge Academic. 567 pages.
[7] V. H. S. Durelli, J. O�utt, N. Li, M. E. Delamaro, J. Guo, Z. Shi,

and X. Ai. 2016. What to Expect of Predicates: An Empirical
Analysis of Predicates in Real World Programs. Journal of

Systems and Software 113 (2016), 324 – 336.
[8] J. Miles and M. Shevlin. 2000. Applying Regression and Correla-

tion: A Guide for Students and Researchers. Sage Publications.
274 pages.

[9] J. Miller. 2004. Statistical Significance Testing - A Panacea
for Software Technology Experiments? Journal of Systems and

Software 73, 2 (2004), 183–192.
[10] Open-Source iOS Apps. 2017. https://github.com/dkhamsing/-

open-source-ios-apps. (2017). Accessed: May 20, 2017.
[11] T. Parr. 2013. The Definitive ANTLR 4 Reference (2nd ed.).

Pragmatic Bookshelf. 328 pages.
[12] RTCA-DO-178B. 1992. Software Considerations in Airborne

Systems and Equipment Certification. (December 1992).
[13] F. Q. B. Silva, M. Suassuna, A. C. C. França, A. M. Grubb,

T. B. Gouveia, C. V. F. Monteiro, and I. E. dos Santos. 2014.
Replication of Empirical Studies in Software Engineering Research:
A Systematic Mapping Study. Empirical Software Engineering

19, 3 (2014), 501–557.
[14] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and

A. Wesslén. 2012. Experimentation in Software Engineering.
Springer. 236 pages.

[15] S. Zein, N. Salleh, and J. Grundy. 2016. A Systematic Mapping
Study of Mobile Application Testing Techniques. Journal of

Systems and Software 117 (2016), 334–356.

	Abstract
	1 Introduction
	2 Background
	3 Experiment Setup
	3.1 Hypothesis Formulation
	3.2 Variables Selection
	3.3 Goal Definition
	3.4 Measurement Method
	3.5 Sample Selection

	4 Experimental Results
	4.1 Analysis

	5 Discussion and Comparison with Related Work
	6 Concluding Remarks
	6.1 Cost Analysis

	7 Acknowledgments
	References

