A Combined Approach for Concern Identification in
KDM models

Daniel S. M. Santibéfiez*, Rafael Serapilha Durelli’, Bruno Marinho* and Valter Vieira de Camargo*
*Departamento de Computagao, Universidade Federal de Sdo Carlos,
Caixa Postal 676 — 13.565-905, Sdao Carlos — SP — Brazil
Email: {daniel.santibanez,bruno.santos,valter } @dc.ufscar.br
TInstituto de Ciéncias Mateméticas e Computacdo, Universidade de Sao Paulo,
Av. Trabalhador Sao Carlense, 400, Sdo Carlos — SP — Brazil
Email: rsdurelli@icmc.usp.br

Abstract—The several maintenance tasks a system is submit-
ted during its life usually cause its architecture deviates from
the original conceived design, therefore software engineers need
techniques for recovering the knowledge embedded in legacy
systems in order to get a better software comprehension. With the
advent of ADM (Architecture-driven modernization), an OMG
standard for modernizing legacy software systems, the reverse
engineering process follows a model-driven approach using the
KDM metamodel (Knowledge Discovery Metamodel) as the cor-
nerstone of the standard. Nevertheless, although ADM provides
the process to modernize legacy systems, it does not support
the identification and modularization of crosscutting concerns
which is a sort of modernization. In order to overcome this
disadvantage it is necessary to extend ADM with new techniques
and tools. This paper proposes an approach called CCKDM for
identifying crosscutting concerns by means a combination of a
concern library and a K-means clustering algorithm. The input
of the approach is a KDM model instance and the result is the
same KDM model with annotated concerns. To provide some
evidence of the precision and recall of our approach we conducted
an empirical evaluation that involve two well-known systems.
In this evaluation we compared our approach with other ones
(XScan and Timna) by using three levenshtein. The results that
we achieved seen to be similar or equal as compared to those
approaches.

Keywords—ADM, KDM, crosscutting concerns, concern min-
ing.

I. INTRODUCTION

Software systems are considered legacy when their main-
tenance costs are raised to undesirable levels but they are still
valuable for organizations. However, they can not be discarded
because they incorporate a lot of embodied knowledge due
to years of maintenance and this constitutes a significant
corporate asset. As these systems still provide significant
business value, they must then be modernized/re-engineered
so that their maintenance costs can be manageable and they
can keep on assisting in the regular daily activities.

Several approaches have been developed to support soft-
ware engineers in the comprehension of systems where reverse
engineering (RE) is one of them [If]. RE supports program
comprehension by using techniques that explore the source
code in order to find relevant information related to functional
and non-functional features [2]]. In a parallel research line,
researchers have been shifted from the typical RE approach to
the so-called Architecture-Driven Modernization (ADM) [3].

ADM has been proposed by OMG (Object Management
Group) and advocates conducting RE following the principles
of MDA (Model-Driven Architecture) [4], i.e., it treats all the
software artifacts involved in the legacy system as models
and can establish transformations among them. For instance,
firstly a reverse engineering is performed starting from the
source code and a model instance (Plataform Specific Model
- PSM) is created. Next successive refinements are applied to
this model up to reach a good abstraction level (PSM) in model
called KDM (Knowledge Discovery Metamodel). Upon this
model, several refactorings, optimizations and modifications
can be performed to solve problems found in the legacy
system. Secondly, a forward engineering is carried out and
the source code of the modernized target system is generated
again.

According to the OMG the most important artifact provided
by ADM is the KDM metamodel, which is a multipurpose
standard metamodel that represents all aspects of the existing
information technology architectures. The idea behind the stan-
dard KDM is that the community starts to create parsers from
different languages to KDM, thus, everything that takes KDM
as input can be considered platform and language-independent.
For example, a refactoring catalogue for KDM can be used for
refactoring systems implemented in different languages. The
KDM is divided into four layers representing both physical
and logical software assets of information systems at seve-
ral abstraction levels. Each layer is further organized into
packages. Each package defines a set of meta-model elements
whose purpose is to represent a certain independent facet of
knowledge related to existing legacy systems. However, in this
paper we are only interested in the Program Elements layer,
which is used to represent a language-independent intermediate
representation for programming languages.

On the other hand mining of crosscutting concerns or
Aspect Mining as is also known is another important research
field that has be exploited in the last years and it is totally
related to reverse engineering [S]] [6]. The main purpose is to
be able to automatically locate existing crosscutting concerns
in the source code of a system [7]]. They are indispensable for
modernization processes because most of the legacy systems
suffer from the existence of a lot of crosscutting concerns
spread over their architecture.

Although ADM/KDM had been created to support

modernization of legacy systems, to the best of our knowledge
there is not research that address the mining of crosscutting
concerns using the KDM metamodel. We claim that this is
indispensable because once the legacy systems are instantiated
by the KDM they tend to: (i) have complex architectures with
several clones spread out throughout the KDM model, (ii) in-
volve several kinds of crosscutting concerns, e.g., patterns, ar-
chitectural styles, business rules and non-functional properties
and (iii) be very large, making the manual mining impractical.
Therefore, identifying those concerns which are scattered and
tangled with others concerns, it could add an additional value
to the KDM model, and also for helping engineers in the
software comprehension to take better decisions in software
maintenance activities. Besides, we also argue that creating
a mining approach which takes as input the KDM makes this
language-independent, considering the existence of parsers that
generate KDM instances from several languages [8]] [9] [3]].

In order to overcome this limitation, in this paper we
present a mining approach for crosscutting concerns based
on a concern library and string clustering algorithm which
uses the standard metamodel KDM (CCKDM). In other words,
the input of our technique is a KDM model and the output
is the same model but with annotated concerns. Thus, the
software engineers may perform refactorings over the KDM
model, modularizing the concerns without touching the source
code. Furthermore, to evaluate our technique, we applied the
approach CCKDM in three well known systems - Health-
Watcher v10, PetStore v1.3.2 and ProgradWeb.The aim of the
evaluation is to identify the precision and the recall during the
mining of crosscutting concern of “Persistence”.

II. BACKGROUND

Knowledge Discovery Metamodel (KDM) is the key within
set of standards [[10]. KDM allows standardized representation
of knowledge extracted from legacy systems by means of
reverse engineering. KDM provides a common repository
structure that makes possible the exchange of information
about existing software assets in legacy systems. This infor-
mation is currently represented and stored independently by
heterogeneous tools focused on different software assets [4}
p. 32]. Figure[I|shows each of the varying views of the existing
IT architecture represented by the KDM. For example, the
build view, depicts system artifacts from a source, executable,
and library viewpoint. Other perspectives include design, con-
ceptual, data, and scenario views.

The Level 0 (LO) encompasses the Infrastructure and
Program Elements Layer. Infrastructure Layer consists of
the Core, kdm, and Source packages which provide a small
common core for all other packages. Program Elements Layer
consists of the Code and Action packages providing pro-
gramming elements such as data types, data items, classes,
procedures, macros, prototypes, templates and captures the
low level behavior elements of applications, including detailed
control and data flow between statements. The Level 1 (L1)
cover the Resource Layer which represents the operational
environment of the existing software system. For example, the
knowledge related to events and state-transition, the knowledge
related to the user interfaces of the existing software system
and the knowledge related to persistent data, such as indexed
files, relational databases, and other kinds of data storage. The

Levels of compliance
All KDM domains

L2~

Build Structure Data Business ul Event Platform Analysis

. . Ny Rules . . . !
Domain Domain Domain D : Domain Domain Domain Domain

omain

L1~ Ipuild| Structure |Data Conceptual | Ul |Event|Platform ch'r&l»

Lo~ Core + KDM + Source + Code + Action ‘

| -

-

Domain of compliance

Figure 1: KDM domains of artifact representation (Adapted
from Ulrich and Newcomb [4])

Level 2 (L2) cover the Abstraction Layer which represents
domain and application abstractions.

As we stated earlier, herein we are only interested in
the Program Element Layer - more specifically in the Code
Package, which represents the code elements of a program
and their associations. Therefore, it is important to dig a little
deeper in this metamodel because it is mainly used by our
approach in order to identify concerns.

In a given KDM instance, each instance of the code meta-
model element represents some programming language con-
struct, determined by the programming language of the existing
software system. Each instance of a code meta-model element
corresponds to a certain region of the source code in one of the
artifacts of the existing software system. In addition, the Code
package consists of 24 classes and contains all the abstract
elements for modeling the static structure of the source code.
However, we are particularly interested in MethodUnit and
StorableUnit packages because they implement crosscutting
concerns. In Figure [2is depicted a chunk of the Code package.
It worth to notice that the more important metaclasses used
herein are highlighted.

ComputationalObject
AN AN

DataElement

ext: String ControlElement
size: Integer 0.1
ﬁJ? DataType : —
StorableUnit__| |[_ItemUnit__ || [Unit__|T [__CallableUnit | [kind: MethodKind
[Kkind:StorableKind _| [export: ExportKind_| | [kind: CallableKind || export: ExportKind
[indexUnit_|[Unit__| —CiassUnit
kind:ParameterKind | SsApbstract: boolean
pos:Integer
ation: ation: <<Enumeration>> || <<Enumeration>>
ExportKind ind C i ind
public global external method
private local regular constructor
protected static operator destructor
final external store operator
unknown register unknown virtual
unknown abstract
unknown

Figure 2: Chunk of the Code Package (OMG Group [11])

As can be seen in Figure [2] the root metaclass is Computa-
tionalObject which has two sub-metaclasses, i.e., DataElement
and ControlElement. The former sub-metaclass, DataElement,
is a generic modeling element that defines the common prop-
erties of several concrete classes that represent the named data
items of existing software systems, for example, global and lo-

cal variables, record files, and formal parameters. DataElement
has five sub-metaclasses - StorableUnit, IndexUnit, ItemUnit,
ParameterUnit and MemberUnit. StorableUnit is a concrete
sub-metaclass of the StorableElement meta-class that repre-
sents variables of the existing software system. IndexUnit
class is a concrete subclass of the DataElement class that
represents an index of an array datatype. Instances of ltemUnit
class are endpoints of KDM data relations which describes
access to complex datatypes. ParameterUnit class is a concrete
subclass of the DataElement class that represents a formal
parameter; for example, a formal parameter of a procedure.
MemberUnit class is a concrete subclass of the DataElement
class that represents a member of a class type. Finally, the
latter, ControlElement is a sub-metaclass that contains two
sub-metaclasses - MethodUnit and CallableUnit. MethodUnit
element represents member functions owned by a ClassUnit,
including user-defined operators, constructors and destructors.
The CallableUnit represents a basic stand-alone element that
can be called, such as a procedure or a function. As can be seen
below the dashed line in Figure [2] there are also the following
enumerations: “ExportKind”, “StorableKind”, “CallableKind”,
“MethodKind”, which are sets os literals used as properties of
the metaclasses.

Our approach uses those meta-classes to identify the
crosscutting concerns rather than using source code. More
information about the approach can be seen in Section [T

III. CONCERN IDENTIFICATION

The developed technique called CCKDM aims to identify
code structures into KDM models which may implement
crosscutting concerns. The output is an annotated KDM with
concerns. Our technique could be classified as a token-based
approach, that means analysis of sequences of characters [7].

The Figure [3] depicts the overall process, which is divided
into four sub-processes denoted by its corresponding letters at
the left side.

N Source N
E Code Modisco E oM oc
= ‘ ma
A @ sqL @n

J =) KDM Repository
| = | KDM

EERE

KDM Repository i?l;‘:::

Concern Mining

~ —0
@ + @ Annotated KOM Logs bt
c Outputs
Centroids KDM Repository osv
=ICluster Log n
N N
0

Annotated KDM Logs
Outputs

s |G

Outputs End

—0
_,ﬁ7> Annotated KOM Logs

=
|=Icentroids

Concern Mining
A
~ ™
D - . E -

CSV Cluster Log

End

Filtering

Figure 3: The CCKDM mining process

A. Recovery of Code Structures

The subprocess [A] of the technique starts with user inter-
vention which provide the source code or a KDM file as input
to the technique. If the source code is the input, then it is con-
verted to a KDM model by means Modisco™ |'| which makes
available some APIs called discoverers to convert the source
code of a system into a KDM model. After that, the KDM
model is queried to recover code structures of the application
under study such as methods and properties because they are
the most suitable items to find concern seeds [[12]. To do that,
a combination of three technologies are used to achieve this
purpose; a set of simple OCL (Object Constraint Language)
queries to recuperate all packages, all classes, all methods
and all properties of the model. Then, using the Java Model
Query (JMQ) of Modisco™ programmatically are retrieved
method calls, methods containers, container classes, method
signatures, method types and property types. The last step is
to persist these elements (strings) into a KDM repository which
is a relational database. Figure [shows the EER (Enhanced
Entity Relationship) model which is composed by eight tables.
Table Class persists class names. Table Method persists method
names. Table Import persists application imports. Table Pack-
age persists application packages. Table GlobalProperty per-
sists class properties. Table MethodProperty persists variables
belonging to a certain method. Table Class_has_Import per-
sists the relation import/class and table Method_has_Method
persists method calls.

] Import v] Class_has_Import ¥
idimport INT ‘ Qass_jdCass INT ‘
name VARCHAR(45) | Import_idImport INT
> >] Method v
idMethod INT
i name VARCHAR(255)
] Class v :—_—_ ® Qass idCass INT
] Package v idClass INT JE— | sigrature VARCHAR(500)
idPackage INT == » Package_idPackage INT type VARCHAR(255)
name VARCHAR(255) HI— -} —I<g ¥ Qass_iiQass INT M-— 7777 visibiity VARCHAR(255)
] name VARCHAR(255) ‘ retunType VARCHAR(2SS)

|

* package jdPackage INT | : |
> type VARGHAR(255) i—1 : >

|

|

.

) Method_has_Method ¥

] MethodProperty ¥
idMethodProperty INT
¢ Method_idMethod INT

® Qass_idQass INT

name VARCHAR(255) \ Method_idMethod INT
stasc BOOLEAN Pl name VARCHAR(255) Method_idMetod1 INT
visbility VARCHAR(255) static BOOLEAN >
type VARCHAR(255) visibility VARCHAR(255)

» type VARCHAR(255)

Ld

Figure 4: EER model

B. Concern Identification by Concern Library

The subprocess [B] is triggered by user. SQL queries are
performed over the KDM repository with information of our
concern library which is an XML file containing concern
definitions based on [13]]. A concern definition is an XML
entry composed by a concern name and one or more well-
known names of classes implementing the concern, as shown

IModisco provides an extensible framework to develop model-
driven tools to support use-cases of existing software modernization,
http://www.eclipse.org/MoDisco/.

in Figure 3] Specifically, we are interested in identify possible
APIs used by the system because they could be used to
implement several concerns. The result is a set of elements
(strings) related with some of the classes of the concern library.
These strings will be the initial seeds of our approach and
the initial information (centroids) for our string clustering
approach detailed in the next section. If user does not want
to perform the subprocess [C] then the mining process stop
and the outputs are log files and the annotated KDM with the
identified concern names.

v<ConcernLibrary>

v<Concern name="Persistence"=>
» <Package name="java.sql">...</Package>
</Concern>

» <Concern name="Logging">...</Concern>

v<Concern name="Authentication">
v<Package name="javax.security.auth">
<Element>Destroyable</Element>
<Element>Refreshable</Element>
<Element>AuthPermission</Element>
<Element>Policy</Element>
<Element>PrivateCredentialPermission</Element>
<Element>Subject</Element>
<Element>SubjectDomainCombiner</Element>
<Element>DestroyFailedException</Element>
<Element>RefreshFailedException</Element>
/Package>
v<Package name="java.security">
<Element>Principal</Element>
</Package>
v<Package name="javax.ejb"=>
<Element>SessionBean</Element>
<Element>SessionContext</Element>
</Package>
</Concern>
</ConcernLibrary>

A

Figure 5: Concern Library

C. Concern Identification by Clustering

The subprocess [C] performs a string clustering by means
a K-means algorithm [14]. The main idea behind this is that
“programmers tend to use similar variable names to implement
logic programming that meets the same objectives where the
contexts are different”. In that sense, this subprocess com-
plements the previous one because its objective is to identify
names code structures which were not previously identified but
have similar names with the strings identified in subprocess B.
Thus, we could suppose they implement same concerns. For
example, when we applied our approach to HealthWatcher, it
identified variables declared by PersistenceMechanismExcep-
tion and PersistenceMechanism which are not part of Java APIL.

The strings identified in subprocess [B], which already
belong to a certain concern, are the K centroids for our
cluster algorithm (i.e. the strings where others strings will be
clustered). Then, these centroids are compared with method
names and property names of the KDM repository by using
the Levenshtein distance which is a string metric for measuring
the difference between two sequences [[15]]. If the Levenshtein
resulting value is closer to 1.0 then the compared strings are
more similar, on the other hand if it is more closer to 0.0 then
the compared strings are more dissimilar. Users can determine
the Levenshtein distance threshold if they want a more flexible
or more restrictive string clustering. Finally, the new identified

strings are annotated with their respective concern into the
KDM model. The outputs are log files and the annotated KDM.

D. Manual Filtering

The subprocess [D] is optional and gives the possibility to
users performing manual filtering of elements identified by the
subprocess [C] by means a CSV file generated in the previous
subprocess containing all the strings identified by our cluster
algorithm with their respective concern name. Users must tag
with a “X” at the end of the line in the CSV file if it still be
annotated into the KDM file. For all the strings without the
“X” tag in the CSV file, the annotation concern into the KDM
file will be remove. The outputs are the updated KDM file and
log files.

E. Annotating the concerns into the KDM model

The technique performs the annotation activity by introduc-
ing a new attribute to the KDM meta-model called concern.
Thus, methods and properties are annotated with their respec-
tive concerns in the following form: concern="CONCERN".
Figure 6] shows an annotated example of part of a KDM file for
Persistence and Logging. Of course, the new attribute added
to the model does not belong to the KDM meta-model so we
extended it in order to work with this new feature.

</codeElement>
<codeElement] concern="Persistence"] xsi:type="code:
<attribute tag="export" value="private"/=
<source language="java"s
<region file="/0/@model.2/@nventoryElement.g"
=/source=
<comment text="/%* S#x08; */" />
</codeElement>
<codeElement xsi:type="code:StorableUnit" name="me
<attribute tag="export" value="private"/=
<source language="java"=
<region file="/0/@model.2/@ nventoryElement.g"
</source=
</codeElement=>
<codeElement [concern="Persistence" |xsi:type="code:
model.0/@codeElement.0/@codeElement. 0/@codeElement. 2/@
<attribute tag="export" value="public"/=
<source language="java"=>
<region file="/0/@model.2/@nventoryElement.g"
</source=
</codeElement>
=/codeElement=
<codeElement xsi:type="code:Package" name="model"=
<codeElement xsi:type="code:ClassUnit" name="User" 1
<attribute tag="export" value="public",/=
<source language="java"=>
<region file="/0/@model.2/@inventoryElement. 10"
=/sources=
</codeElement>
<codeElement xsi:type="code:StorableUnit" name="1d
<attribute tag="export" value="private" /=
<source language="java"=>
<region file="/0/@model.2/@ nventoryElLement. 10
</source>
=/codeElement=>

<codeElement|[concern="Logging" |xsi:type="code:Stor
imadal 1 fAcadAET Ament 1 (AcadAC] ament 2 MAFAdAClT Amen+ Mifa

Figure 6: Annotated concerns into KDM

However, we argue this is neither a problem nor a limitation
of our approach once according to the KDM’s specification it
is quite easy to extend it by using the light-weight extension
mechanism. The KDM light-weight extension mechanism is a

standard way of adding new ‘“‘virtual” meta-model elements to
KDM [11]].

IV. EXPERIMENTAL STUDY

The goal of our experimental study was to evaluate the ef-
fectiveness of our combined technique. Unlike other empirical
case studies of concern mining techniques, which describe in
detail the kinds of candidates discovered by their tools, we
focus here on the precision and recall. We compared empir-
ically CCKDM using 3 levenshtein values with XScan [16]
and Timna [17)]. The levenshtein values were chosen after an
statistical analysis which was not included int this work due
space limitation reasons.

XScan identifies code units named concern peers and they
are detected based on their similar interactions, i.e., similar
calling relations in similar contexts, either internally or exter-
nally. Timna is a framework in which new and existing mining
analyses can be easily added and included in the decision as
to whether a code segment is a seed of a scattered concern.
The main difference is that our technique use a KDM model
as input instead of the source code.

A. Subject Programs

In Table [l we summarize the applications software under
study. All the listed software were used to perform a com-
parative analysis in terms of precision and recall with others
concern mining tools. As we can see, they have a reasonable
size (KLOC < 9K) which make them suitable to perform a
manual analysis of concerns to calculate the recall metric.

Table II: Applications software under study

System LOC Classes Methods Properties
T HealthWatcher vIO 8K 118 894 1290
2 PetStore v1.3.2 9K 228 1917 3002

The HealthWatcher is a real health complaint system devel-
oped to improve the quality of the services provided by health
care institutions. The system has a web-based user interface for
registering complaints and performing several other associated
operations. PetStore is an application that allows customers to
purchase goods via a browser.

B. Empirical Evaluation

In Table [l we show the comparison of our technique with
XScan and Timna in terms of precision and recall for Persis-
tence. XScan just presents the recall value for HealthWatcher
and Timna just presents the precision value for PetStore.

Our technique with a levenshtein value of 0.3 obtained
100% of precision and recall when we analyzed Health-
Watcher. Which means, there are no false negatives and false
positives. For levenshtein values of 0.3 and 0.4 precision
value still remains but the recall decrease. That is normal
because higher values of levenshtein implies that strings must
match more precisely and as a consequence generating false
negatives. The scenario changes for PetStore where while the
levenshtein value increase, the precision increase and the recall
decrease. That is because on one hand false negatives increase
and on the other hand false positives decrease.

The recall is sensitive to false negatives and on the other
hand, precision is sensitive to false positives. If the levenshtein
value tends to be high then false positives could increase and
if the levenshtein value tends to be low then false negatives
could increase.

If we compare precision and recall for CCKDM using the
three levenshtein values with XScan and Timna, we can see it
reaches similar or equal values than the other techniques, so
it is possible to say CCKDM has the same effectiveness.

C. Threats to Validity

The lack of representativeness of the subject programs
may pose a threat to external validity. We argue that this is
a problem that all software engineering research, since we
have theory to tell us how to form a representative sample
of software. Apart from not being of industrial significance,
another potential threat to the external validity is that the
investigated programs do not differ considerably in size and
complexity. To partially ameliorate that potential threat, the
subjects were chosen to cover a broad class of applications.
Also, this experiment is intended to give some evidence of
the efficiency and applicability of our implementation solely
in academic settings. A threat to construct validity stems from
possible faults in the implementations of the techniques. With
regard to our mining techniques, we mitigated this threat by
running a carefully designed test set against several small
example programs. Similarly, XSCan and Timna have been
extensively used within academic circles, so we conjecture that
this threat can be ruled out.

V. RELATED WORK

Concern mining or aspect recommendation has been a
popular research topic in recent years. Static mining and
history-based mining are two major techniques based on source
code analysis. The static technique analyzes source code of
a version of software to extract seeds of concerns. A Fan-
in value, which is the number of unique callers of each
method/function, was first introduced by Marin and others [[18§]]
and further generalized by Zhang and others [[19] to propose
Clustering-Based Fan-in Analysis (CBFA). The history-based
mining technique was first adopted by Breu and others [20],
who proposed History-based Aspect Mining (HAM). HAM
clusters methods/functions that add or remove a call to the
same method/function, and groups together methods/functions
that are called by the same cluster as concern seeds.

Lengyel et al. [21] proposes a semi-automatic approach
to identify crosscutting constraints. The approach uses sev-
eral algorithms to support the detection of the crosscutting
constraints in metamodel-based model transformations. The
input of the approach is a transformation (transformation rules
and a control flow model), and the expected output is the
list of the crosscutting constraints separated as aspects. Van
Gorp et al. [22] proposed a UML profile to express pre
and post-conditions of source-code refactorings using Object
Constraint Language (OCL) constraints. The proposed profile
allows that a CASE tool: (i) verify pre and post-conditions
for the composition of sequences of refactorings; and (ii) use
the OCL consulting mechanism to detect bad smells such as
crosscutting concerns.

Table I: Comparison values of precision and recall for persistence

CCKDM-0.3 CCKDM-0.4 CCKDM-0.5 XScan Timna
Systems P C P P C P C
HealthWatcher vI0 | 100% 100% 100% 80% 100% 76,11% | - 100% - -
PetStore v1.3.2 95% 100% | 95,73% 84,15% | 98,79% 75,44% | - - 93.80% -

The differential of our approach described herein in relation
to the others is that our approach mines crosscutting concerns
by using KDM instead of another models or source code. It is
important to note that to the best of our knowledge there is no
previous research that addresses mining crosscutting concerns
by using KDM model as input.

VI. CONCLUSIONS

We presented a new mining approach for crosscutting
concerns called CCKDM which aims to identify and tag
crosscutting concerns into KDM models. It is important to
note this is the first work in concern mining area that use a
standardized model in the context of ADM to perform search
of concerns and we believe that ADM standards will be widely
used in a near future because is an OMG initiative.

We also argue, although there are a number of other tools
based on more sophisticated techniques than string analysis,
our combined technique obtained reasonable values in terms
of precision and recall according to our empirical evaluation.
In the future we plan to improve our mining technique to
identify other type of concerns such as architectural and
business patterns in KDM models. Thus, it could be interesting
determine possible relations between concerns belonging to
high layer levels with concerns belonging to low layer levels
for better comprehension of software systems.

ACKNOWLEDGMENTS

Daniel Santibafiez would like to thank the financial support
provide by CAPES. Rafael Durelli would like to thank the
financial support provided by FAPESP, 2012/05168-4. Valter
Camargo would like to thank FAPESP, 2012/00494-0.

REFERENCES

[1] G. Canfora, M. Di Penta, and L. Cerulo, “Achievements and challenges
in software reverse engineering,” Commun. ACM, vol. 54, pp. 142-151,
Apr. 2011. [Online]. Available: http://doi.acm.org/10.1145/1924421.
1924451

[2] E. J. Chikofsky and J. H. Cross II, “Reverse Engineering and Design
Recovery: A Taxonomy,” IEEE Software, vol. 7, no. 1, pp. 13-17, 1990.

[3] L. Mainetti, R. Paiano, and A. Pandurino, “Migros: A model-driven
transformation approach of the user experience of legacy applications,”
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7387
LNCS, pp. 490493, 2012, cited By (since 1996) 0.

[4] W. M. Ulrich and P. Newcomb, Information Systems Transformation:
Architecture-Driven Modernization Case Studies. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2010.

[5S] M. von Detten, M. Meyer, and D. Travkin, “Reverse engineering
with the reclipse tool suite,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 2, ser.
ICSE "10. New York, NY, USA: ACM, 2010, pp. 299-300. [Online].
Available: http://doi.acm.org/10.1145/1810295.1810360

(6]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

M. Marin, A. V. Deursen, and L. Moonen, “Identifying crosscutting
concerns using fan-in analysis,” ACM Trans. Softw. Eng. Methodol.,
vol. 17, pp. 3:1-3:37, December 2007. [Online]. Available: http:
/ldoi.acm.org/10.1145/1314493.1314496

R. Durelli, D. M. Santibanez, N. Anquetil, M. E. Delamaro, and
V. V. Camargo, “A Systematic Review on Mining Techniques for
Crosscutting Concerns.” Coimbra, Portugal: ACM SAC, 2013.

G. Deltombe, O. L. Goaer, and F. Barbier, “Bridging kdm and astm for
model-driven software modernization.” in SEKE. Knowledge Systems
Institute Graduate School, 2012, pp. 517-524.

R. PA@rez—Casti]lo, I. De Gusz\;n, D. Caivano, and M. Piattini,
“Database schema elicitation to modernize relational databases,” vol.
1 DISI, no. AIDSS/-, 2012, pp. 126-132, cited By (since 1996) 0.

R. Perez-Castillo, I. G.-R. de Guzman, O. Avila-Garcia, and M. Piattini,
“On the use of adm to contextualize data on legacy source code for
software modernization,” in Proceedings of the 2009 16th Working
Conference on Reverse Engineering, ser. WCRE ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 128-132. [Online].
Available: |http://dx.doi.org/10.1109/WCRE.2009.20

OMG, “Object Management Group (OMG)
Architecture-Driven Modernisation,” Disponivel em:
http:/fwww.omgwiki.org/admtf/doku.php ?id=start, 2012, (Acessado

2 de Agosto de 2012).

K. Mens, A. Kellens, and J. Krinke, “Pitfalls in aspect mining,”
in Proceedings of the 2008 15th Working Conference on Reverse
Engineering. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 113-122.

P. Parreira Junior, W. Mendes, V. de Camargo, R. Penteado, and
H. Costa, “Mining crosscutting concerns with comscid: A rule-based
customizable mining tool,” in Informatica (CLEI), 2012 XXXVIII Con-
ferencia Latinoamericana En, 2012, pp. 1-9.

J. Han, Data Mining: Concepts and Techniques. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc., 2005.

V. Levenshtein, “Binary Codes Capable of Correcting Deletions, Inser-
tions and Reversals,” Soviet Physics Doklady, vol. 10, p. 707, 1966.

T. T. Nguyen, H. V. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Aspect
recommendation for evolving software,” in Proceeding of the 33rd
International Conference on Software Engineering. New York, NY,
USA: ACM, 2011, pp. 361-370.

D. Shepherd, J. Palm, L. Pollock, and M. Chu-Carroll, “Timna: a
framework for automatically combining aspect mining analyses,” in
Proceedings of the 20th IEEE/ACM international Conference on Au-
tomated software engineering. New York, NY, USA: ACM, 2005, pp.
184-193.

M. Marin, A. V. Deursen, and L. Moonen, “Identifying crosscutting
concerns using fan-in analysis,” ACM Trans. Softw. Eng. Methodol.,
vol. 17, pp. 1-37, 2007.

Z. Danfeng, G. Yao, and C. Xiangqun, “Automated aspect recommen-
dation through clustering-based fan-in analysis,” in Proceedings of the
2008 23rd IEEE/ACM International Conference on Automated Software
Engineering. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 278-287.

S. Breu and T. Zimmermann, “Mining aspects from version history,”
in Proceedings of the 21st IEEE/ACM International Conference on
Automated Software Engineering. Washington, DC, USA: IEEE
Computer Society, 2006.

L. Lengyel, T. Levendovszky, and L. Angyal, “Identification of cross-

cutting constraints in metamodel-based model transformations,” in
EUROCON 2009, EUROCON ’09. IEEE, 2009, pp. 359-364.

P. Gorp, H. Stenten, T. Mens, and S. Demeyer, “Towards automating
source-consistent uml refactorings,” 2003.

http://doi.acm.org/10.1145/1924421.1924451
http://doi.acm.org/10.1145/1924421.1924451
http://doi.acm.org/10.1145/1810295.1810360
http://doi.acm.org/10.1145/1314493.1314496
http://doi.acm.org/10.1145/1314493.1314496
http://dx.doi.org/10.1109/WCRE.2009.20

	Introduction
	Background
	Concern Identification
	Recovery of Code Structures
	Concern Identification by Concern Library
	Concern Identification by Clustering
	Manual Filtering
	Annotating the concerns into the KDM model

	Experimental Study
	Subject Programs
	Empirical Evaluation
	Threats to Validity

	Related Work
	Conclusions
	References

