Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4 h H H
oo serdcomycantent/ /1A ® Journal of Software Engineering
Research and Development

a SpringerOpen Journal

RESEARCH Open Access

Model-based reuse for crosscutting
frameworks: assessing reuse and
maintenance effort

Thiago Gottardi'", Rafael Serapilha Durelli?, Oscar Pastor Lopez? and Valter Vieira de Camargo'

*Correspondence:
thiago_gottardi@dc.ufscar.br Abstract

1 -

Departmento de Computacdo, Background: Over the last years, a number of researchers have investigated how to
Universidade Federal de Sao Carlos, .) S pees .
Caixa Postal 676, 13.565-905, 530 improve the reuse of crosscutting concerns. New possibilities have emerged with the
Carlos, Sao Paulo, Brazil advent of aspect-oriented programming, and many frameworks were designed
Full list of author information is considering the abstractions provided by this new paradigm. We call this type of
available at the end of the article 9) P y] P gm. yp

framework Crosscutting Frameworks (CF), as it usually encapsulates a generic and
abstract design of one crosscutting concern. However, most of the proposed CFs
employ white-box strategies in their reuse process, requiring two mainly technical
skills: (i) knowing syntax details of the programming language employed to build the
framework and (ii) being aware of the architectural details of the CF and its internal
nomenclature. Also, another problem is that the reuse process can only be initiated as
soon as the development process reaches the implementation phase, preventing it
from starting earlier.

Method: In order to solve these problems, we present in this paper a model-based
approach for reusing CFs which shields application engineers from technical details,
letting him/her concentrate on what the framework really needs from the application
under development. To support our approach, two models are proposed: the Reuse
Requirements Model (RRM) and the Reuse Model (RM). The former must be used to
describe the framework structure and the later is in charge of supporting the reuse
process. As soon as the application engineer has filled in the RM, the reuse code can be
automatically generated.

Results: We also present here the result of two comparative experiments using two
versions of a Persistence CF: the original one, whose reuse process is based on writing
code, and the new one, which is model-based. The first experiment evaluated the
productivity during the reuse process, and the second one evaluated the effort of
maintaining applications developed with both CF versions. The results show the
improvement of 97% in the productivity; however little difference was perceived
regarding the effort for maintaining the required application.

Conclusion: By using the approach herein presented, it was possible to conclude the

following: (i) it is possible to automate the instantiation of CFs, and (ii) the productivity
of developers are improved as long as they use a model-based instantiation approach.

© 2013 Gottardi et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons

L]
@ Sprlnger Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction

in any medium, provided the original work is properly cited.

mailto:thiago_gottardi@dc.ufscar.br
http://creativecommons.org/licenses/by/2.0

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4 Page 2 of 34
www.jserd.com/content/1/1/4

1 Content

This article is organized as follows: In Section 2 is presented the introduction of this
article. Section 3 presents the necessary background to understand this article. More
specifically, it is split into three sections, they are: Section 3.1 presents the concepts of
Model-Driven Development, Section 3.2 showns the general notion of Aspect oriented
programming and in Section 3.3 is presented the concepts of Crosscutting frameworks.
In Section 4 is presented the proposed approach. In Section 5 is presented the evaluation
of our approach. In Section 7 is presented some related works. Finally, in Section 8 we
present the conclusion of this article.

2 Introduction

Aspect-Oriented Programming (AOP) is a programming paradigm that overcomes the
limitations of Object- Orientation (Programming) providing more suitable abstractions
for modularizing crosscutting concerns (CC) such as persistence, security, and distribu-
tion. Aspect] is one of the programming languages that implements these abstractions
(Aspect] Team 2003). Since the advent of AOP in 1997, a substantial effort has been
invested in discovering how such abstractions can enhance reuse methodologies such as
frameworks (Fayad and Schmidt 1997) and product lines (Clements and Northrop 2002).
One example is the research that aims to design a CC in a generic way so that it can be
reused in other applications (Bynens et al. 2010; Camargo and Masiero 2005; Cunha et al.
2006; Huang et al. 2004; Kulesza et al. 2006; Mortensen and Ghosh 2006; Sakenou et al.
2006; Shah and Hill 2004; Soares et al. 2006; Soudarajan and Khatchadourian 2009; Zanon
et al. 2010). Because of the absence of a representative taxonomy for this kind of design,
in our previous work we have proposed the term “Crosscutting Framework” (CF) to rep-
resent a generic and abstract design and implementation of a single crosscutting concern
(Camargo and Masiero 2005).

Most of the CFs which are found in the literature adopt white-box reuse strategies in
their reuse process, relying on writing source code to reuse the framework (Bynens et al.
2010; Camargo and Masiero 2005; Cunha et al. 2006; Huang et al. 2004; Kulesza et al. 2006;
Mortensen and Ghosh 2006; Sakenou et al. 2006; Shah and Hill 2004; Soares et al. 2006;
Soudarajan and Khatchadourian 2009; Zanon et al. 2010). This strategy is flexible in terms
of framework evolution; however, application engineers need to cope with details not
directly related to the requirements of the application under development. Therefore,
the following problems exist when using such strategies: (i) the learning curve is steep
because application engineers need to learn the programming paradigm employed in the
framework design; (ii) a number of errors can be inserted because of the manual creation
of the source code,; (iii) the development productivity is negatively affected as several lines
of code must be written to define a small number of hooks, and (iv) the reuse processes
can only be initiated during the implementation phase as there is no source code available
in earlier phases.

To overcome these problems, we present a new approach for supporting the reuse of
CFs using a Model-Driven Development (MDD) strategy. MDD consists of a combina-
tion of generative programming, domain-specific languages and model transformations.
MDD aims at reducing the semantic gap between the program domain and its implemen-
tation, using high-level models that screen software developers from complexities of the
underlying implementation platform (France and Rumpe 2007). Our approach is based

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4 Page 3 of 34
www.jserd.com/content/1/1/4

on two models: the Reuse Requirements Model (RRM) and the Reuse Model (RM). Built
by a framework engineer, RRM documents all the features and variabilities of a CF. Appli-
cation engineers can then select just the desired features from the RRM and generate a
more specific model, referred to as the RM. Later, the application engineer can conduct
the reuse process by completing the RM fields with information from the application and
automatically generate the reuse code.

Furthermore, we present the results of two comparative experiments which used
the same Persistence CF (Camargo and Masiero 2005). The first experiment aimed to
compare the productivity of conducting a reuse process when using our model-based
approach versus the ad-hoc approach, i.e., writing the source code manually. The purpose
of the second experiment was to compare the effort of maintaining applications developed
with both our model-based approach versus the ad-hoc way. Our approach presented
clear benefits for the instantiation time (productivity); however, no differences were iden-
tified regarding the maintenance effort. Therefore, the main contribution of this paper is
twofold: (i) introduction of a model-based approach for supporting application engineers
during the reuse process of CFs and (ii) presentation of the results of two experiments.

3 Background

This section describes the background necessary to understand our proposed models.
It is split into three subsections: the first one contains the concepts of Model-Driven
Development, the second subsection has a basic description of aspect-oriented program-
ming and the third one exposes the general notion of Crosscutting Frameworks.

3.1 Model-driven development

Software systems are becoming increasingly complex as customers demand richer
functionality be delivered in shorter timescales (Clark et al. 2004). In this context,
Model-Driven Development (MDD) can be used to speed up the software development
and to manage its complexity in a better way by shifting the focus from the programming
level to the solution-space.

MDD is an approach for software development that puts a particular emphasis upon
making models the primary development artifacts and upon subjecting such models
to a refinement process by using automatic transformations until a running system is
obtained. Therefore, MDD aims to provide a higher abstraction level in the system
development which further results in the improved understanding of complex systems
(Pastor and Molina 2007).

Furthermore, MDD can be employed to handle software development problems that
originate from the existence of heterogeneous platforms. This can be achieved by keeping
different levels of model abstractions and by transforming models from Platform Inde-
pendent Models (PIMs) to Platform Specific Models (PSMs) (Pastor and Molina 2007).
Therefore, the automatic generation of application specific code offers many advan-
tages such as: a rapid development of high quality code; a reduced number of accidental
programming errors and the enhanced consistency between the design and the code
(Schmidt 2006).

It is worth highlighting that models in MDD are usually represented by a domain-
specific language (Fowler 2010), i.e., a language that adequately represents the informa-
tion of a given domain. Instead of representing elements using a general purpose language

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4 Page 4 of 34
www.jserd.com/content/1/1/4

(GPL), the knowledge is described in the language which domain experts understand.
Besides, as the experts use a suitable language to describe the system at hand, the acci-
dental complexity that one would insert into the system to describe a given domain is
reduced, leaving just the essential complexity of the problem.

3.2 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) aims at improving the modularization of a sys-
tem by providing language abstractions that are dedicated to modularize crosscutting
concerns (CCs). CCs are concerns which cannot be accurately modularized by using
conventional paradigms (Kiczales et al. 1997). Without proper language abstractions,
crosscutting concerns become scattered and tangled with other concerns of the software,
affecting maintainability and reusability. In AODP, there is usually a distinction between
base concerns and crosscutting concerns. The base concerns (or Core-concerns) are
those which the system was originally designed to deal with. The crosscutting concerns
are the concerns which affect on other concerns. Examples of crosscutting concerns
include global restrictions, data persistence, authentication, access control, concurrency
and cryptography (Kiczales et al. 1997).

Aspect-Oriented Programming languages allow programmers to design and implement
crosscutting concern decoupled from the base concerns. The AOP compiler has the
ability to weave the decoupled concerns together in order to attain a correct software
system. Therefore, on the source-code level, there is a complete separation of concerns
and the final release delivers the functionality expected by the users.

In this work we have employed the Aspect] language (Kiczales et al. 2001), which is
an aspect-oriented extension for Java, allowing the Java code to be compiled seamlessly
by the Aspect] compiler. The main constructs in this language are: aspect - a structure
to represent a crosscutting concern; pointcut - a rule used to capture join points of
other concerns; advices - types of behavior to be executed when a join point is cap-
tured; and intertype declarations - the ability to add static declarations from the outside
of the affected code. In our work, intertype declarations are used to insert more interface
realizations into classes of the base concern.

3.3 Crosscutting frameworks

Crosscutting Frameworks (CF) are aspect-oriented frameworks which encapsulate the
generic behavior of a single crosscutting concern (Camargo and Masiero 2005; Cunha
et al. 2006; Sakenou et al. 2006; Soudarajan and Khatchadourian 2009). It is possible
to find CFs to support the implementation of persistence (Camargo and Masiero 2005;
Soares et al. 2006), security (Shah and Hill 2004), cryptography (Huang et al. 2004), dis-
tribution (Soares et al. 2006) and other concerns (Mortensen and Ghosh 2006). The
main objective of CFs is to make the reuse of crosscutting concerns a reality and a more
productive task during the development of an application.

As well as other types of frameworks, CFs also need specific pieces of information
regarding the base application to be reused correctly and to work properly. We name
this kind of information “Reuse Requirements” (RR). For instance, the RR for an Access
Control CF includes: 1) the application methods that need to have their access controlled;
2) the roles played by users; 3) the number of times a user is allowed get an incorrect pass-

word. This information is commonly documented in manuals known as “Cookbooks”.

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4 Page 5 of 34
www.jserd.com/content/1/1/4

Unlike application frameworks, which are used to generate a whole new application,
a CF needs to be coupled to a base application to become operational. The conven-
tional process to reuse a CF is composed by two activities: instantiation and composition.
During the instantiation, an application engineer chooses variabilities and implements
hooks, while during the composition, he/she provides composition rules to couple the
chosen variabilities to a base code.

CF-based applications, i.e, applications which were developed with the support of CFs,
are composed by three types of modules: a base code module, a reuse code module and
framework itself. The “base code” represents the source code of the base application and
the “framework code” is the CF source code, which is untouched during the reuse process.
The “reuse module” is the connection between the base application and the framework
and it is developed/written by the application engineer. Applications can be composed by
several CFs, each one coupled by one reuse module. The source code created specifically
to reuse a CF, is referred here as “reuse code”.

In our previous work we have developed a Persistence CF (Camargo et al. 2004) which
is used here as a case study. This CF was designed like a product-line, so it has certain
mandatory features, for instance, “Persistence” and “Connection”. The first one aims to
introduce a set of persistence operations (e.g., store, remove, update, etc) into application
persistence classes. The second feature is related to the database connection and identifies
points in the application code where a connection needs to be established or closed. This
feature has variabilities as the Database Management System (e.g., MySQL, SyBase, Native
and Interbase). This CF also has a set of optional features such as “Caching”, which is used
to improve the performance by keeping copies of data in the local memory, and “Pooling”,

which represents a number of active database connections.

4 Model-based reuse approach

In this section we present our approach and the models that support during the instan-
tiation and composition of CFs: Reuse Requirements Model (RRM) and Reuse Model
(RM). These models have been formulated on top of Eclipse Modeling Framework and
Graphical Modeling Framework (Eclipse Consortium 2011). The formal definition of
both models is specified by the metamodel shown in Figure 1. It is comprised of a set of
enumerations, abstract and concrete metaclasses.

The metamodel was built based on the vocabulary commonly used in the context
of CFs, for example: pointcuts, classifier extensions, method overriding, and variability
selection. These concepts were mapped into concrete metaclasses, which are visible under
the dashed line of Figure 1.

Above the dashed line, there are also the following enumerations: “Visibility”,
“SuperType” and “CompositionType”, which are sets of literals used as metaclass proper-
ties. The other elements above the line are abstract metaclasses, which were created after
generalizing the properties of the concrete metaclasses. These abstract metaclasses can
be applied in similar approaches and are also important to improve modularity and to
avoid code replication of the reuse code generator.

Both of our proposed models are identical, however they are employed in different
moments of the process. The first proposed model, the RRM, is a graphical documen-
tation for Reuse Requirements, i.e., it graphically documents all the information needed
to couple a CF to a base application. Conventionally, this is known as “cookbooks”. This

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4 Page 6 of 34
www.jserd.com/content/1/1/4

NamedElement Definition Visibility SuperType
name : EString description : EString public Aspect
protected Class

? ? private Interface

T r—-— ReuseDefinition package
P undefined | [compositionType
~ 0.* and
! definitions T or

] AbstractDeclaredElement

VisibilityDefinition qualifiedOwnerName : EString
visibility : Visibility elementName : EString
superType : SuperType
argument : EString

T
| |

MultipleDefinition TypedElement 9 Variability

definitions : EString elementType : EString AN

Group
TypeExtension ftion
Pointcut enabled : EBoolean
composition : CompositionType Value 0..*
internalDefinition : EStrin ;
iterableDefinition : Esmng usedValue : EString | |OPtiOnGroup |~ options

Figure 1 Metamodel of the proposed models. A metaclass diagram of ‘CFReuse’, which contains all
metaclasses and enumerations.

model involves information regarding all CF features and must be developed/provided by
a framework engineer. The second model, the RM, is a subset of the RRM and contains
only the selected features for conducting a reuse process. Since both models share the
same metamodel, it is possible to employ a direct model transformation to instantiate a
RM from a RRM by selecting a valid set of features. Both of our models are represented
as forms containing boxes, as seen in Figure 2. Each box is an instance of a concrete meta-
class element and represents a reuse requirement. Each box contains three lines. The first
one contains both an icon representing the type of the element, (which is the same type
visible in the “Palette”) and the name of the reuse requirement. The second line shows
a description and the last line must be filled by the application engineer to provide the
necessary information regarding the base application. Notice that the last line is used only
in RMs.

By analyzing a RRM, the application engineer can identify all the information required
by the framework to conduct the reuse process. For example, this model represents
the variabilities that must be chosen by the application engineer and also indicates
join-points of the base code where crosscutting behavior must be applied to, as well as
classes, interfaces, or aspect names that must be affected.

Framework variabilities that must be chosen during reuse process are also visible. For
example, to instantiate a persistence CF, several activities must be done, among them:
i) informing points of the base application in which the connection must be open and
closed; ii) informing methods that represent data base transactions and iii) choosing
variabilities, e.g., the driver that should be used to connect to the database.

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4 Page 7 of 34
www.jserd.com/content/1/1/4

' Pointout: Connection Opening .= Palette b
Provide the names of methods which should execute only after a database connection is opened.
base.Customer.opening(); -

" Pointcut: Connection Closing = Group

Provide the names of methods which execute before a database connection should be closed. ? Pointcut
base.Customer.closing();)
- TypeExtension
‘- Pointcut: Transactional Methods
Provide the names of method which represent a database transaction. @ Value
base.Customer.commitOrder(); ™ Option
TypeExtension: Persistent Objects — .
|==| OptionGroup

Provide the name of classes that represent objects that should be persisted.
base.Customer; base.Resource; base.Order;

[i] Value: Dirty Objects Controller

Specify if the persistent objects records should be updated automatic...
true

[if] Value: Database Connection String

Provide the connection string necessary to connect to the database.
"127.0.0.1:5050/basename”

[j] Value: Database Username

Provide the username needed to connect to the database.
"BaseOwner"

[{] Value: Database Password

Provide the password needed to connect to the database.
"BasePassword"

Figure 2 Reuse requirements models and a reuse models editor. A graphical user interface of the model
editor. The editor is capable of editing Reuse Requirement Models and Reuse Models. The pallete on the right
of the figure lists every concrete metaclass, which can be modelled on model level by dragging and dropping.

The another model, the RM, is shown in Figure 2. It supports the reuse process
of a crosscutting framework by filling in the third line of the boxes. Therefore, RM
must be used by the application engineer to reuse a framework. For instance, the value
“base.Customer.opening()” is a method of the base application that was inserted by the
application engineer into the third line of the “Connection Opening” box to inform that
the DB connection must be established before this method runs.

The code generator transforms the Reuse Model into the Reuse Code, which consists of
pieces of Aspect] code used to couple the base application to the crosscutting framework.
This transformation is not a one to one conversion, i.e., every element in the model not
always generates the same number of code elements. This was a special underlying chal-
lenge we have experienced when implementing this approach. The code generator needs
to read the RM completely and to aggregate all data to identify how many files need to be
generated.

The reuse model elements contain attributes to define the super classes to be extended;
several elements may identify the same superclass. Therefore, the code generator must
identify every superclass in order to create a single subclass per superclass when
generating “Pointcuts”, “Options” and “Value Definitions”.

The generation of “Type Extensions” is slightly different. Whenever there is a single type
extension, the code generator creates a single aspect that aggregates every type extension
using “declare parents”; a specific type of intertype declaration.

The architecture of the generator is represented in Figure 3. Initially, the XTend
(Efftinge 2006) library is used as a front end of the compiler, loading the data of the model
into a hierarchical structure in memory, similar to a Domain Object Model. After the
structure is loaded, it is processed in order to identify the units that must be generated.
This process creates another structure that represents the resulting code, which is similar
to an abstract syntax tree. The “AJGenerator” is a back end of the generator that we have
also created; it is capable of transforming this tree into actual files of valid Aspect] code.

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4 Page 8 of 34
www.jserd.com/content/1/1/4

Reuse Code
XTend Generator AJGenerator

Figure 3 Reuse code generator architecture. The reuse code generator creates a reuse code by processing
a reuse model. This process is divided into three sub processes, which are shown in this figure.

4.1 Reuse process

This subsection explains the reuse process that is defined when using the new proposed
models (RRM and RM). From this point it is important to clarify the distinction between
the terms model and diagram. Model is a more generic term and it is physically repre-
sented by XML files, while a diagram is a visual representation of a model. So, in our case,
the Reuse Requirements Diagram (RRD) is a diagram that represents the Reuse Require-
ments Model and the Reuse Diagram (RD) is a diagram that represents the Reuse Model.
It is also worth mentioning that these diagrams are similar to forms, in which they must
be filled in. In order to explain the new process, there is an activity diagram in Figure 4
illustrating the perspective of both developers: framework engineers and application
engineers.

Since the CF must be completely defined before its reuse process is started, this expla-
nation begins from the framework engineer’s point of view. At the right side of the
Figure 4, the framework engineer starts developing a new CF for a specific crosscutting
concern. The first activity is to develop the framework itself (marked with ‘A’). Then, the
engineer should make the CF code available for reuse (‘B’) and should create the RRD
(‘C’), graphically indicating the information required to couple his CF to a base applica-
tion. This diagram (‘D’) will be available for the application engineer. Upon finishing this
process, the framework engineer has two artifacts that will be used by the application
engineer: the Reuse Requirements Diagram (‘D’) and the Framework code (‘B’).

The reuse process starts on the left side of the figure, where the perspective of applica-
tion engineers is considered. This engineer is responsible for developing the application,
which is composed by both the “Base” and “Reuse” modules. By analyzing the applica-
tion being developed (‘?), the application engineer must identify the concerns that would
affect the software, possibly by using an analysis diagram (‘b’). By having these concerns
identified, the application engineer is able to select the necessary frameworks and to start
the reuse process since the earlier development phases. After selecting and analyzing the
RRD of the selected frameworks (‘c), it is necessary to select a subset of the optional vari-
abilities (‘d’) because some elements may not be necessary (since the framework may be
supplied with default values), or to select mutually exclusive features. The selected ele-
ments will be carried to a new “Reuse” diagram (‘¢’). If there are more than one CF being
reused, then there should be a “Reuse” diagram for each one of them. The application
engineer should then design the base application (‘g’) documenting the name of the units,

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4 Page 9 of 34
www.jserd.com/content/1/1/4

Application Engineer Framework Engineer
Application Framework
Begin Begin
Application Development Framework Development
Base Reuse
g/ Identify a Analysis b ‘/ Develop
| concerns) Diagram | Framework)

77777777 - — - = = = = == = — A

Select a sub-set of G’ RR |
the RR Diagram
4
Design Base @
Application p

Base Application h
Design

Vs

ﬁ\

[Fill the
required
— — | fields
\ J

Create Reuse @
Diagram

Analyze
‘ Selected CF
| diagrams

— —

[more elements
must be added]

(Create Reuse
Requirements
Diagram
\ y

[design is completem

B eteto | |
-
(.)‘&realtii :‘?: ne /Execumckp
£ Process
h 4

Code

[more concerns Base Code “ Reuse Code - Framework Code B
must be added] |
ﬁ |
|
|

W |

[no more concerns] | |

@ Build Application \/~ — — T T T T T T T T T T g
\ .

o Final Application 0 @
Application Framework
End

End

Figure 4 Reuse process activity diagram. A UML activity diagram that represents the reuse process to be
employed when using the proposed models and the tools.

methods and attributes found on the base application (‘h’). By designing the names of ele-
ments needed by the framework, they will become available, meaning that it is already
possible to enter these names in the RD. This should be done before all required elements
of the iteration are designed. After defining these names, which are the values needed by
the reuse portion, they must be filled (7') in the reuse diagram (‘f’) to enable the coupling
among the modules.

The base application can be developed () in parallel with the reuse process execu-
tion (‘’k’), which is a model transformation to generate the “Reuse Code” (‘m’) from the
“Reuse Diagram” (‘f’). After completing the “Base Code” (‘') and the “Reuse Code” (‘my’),
the application engineer may choose between adding a new concern (and extending the
base application) or finishing the process. At that moment, the following pieces of code
are available: the “Base Code” (‘1'), the “Reuse Codes” (‘m’) and the selected “Framework
Codes” (‘B’). All of these codes are processed to build (‘n’) the “Final Application” (‘'0’) and
to conclude the process.

The transformation employed to create the RD avoids manual creation of this model.
This is possible by identifying the selected framework and by processing its RRD. Besides
accelerating the creation of this model, this also allows the RD to take all the needed ele-
ments from the earlier diagram to the code generation. However, the values regarding the
base application are still needed and must be informed by the application engineer. The
RRD contains information needed by the framework being reused. By identifying that
information during earlier development phases it is easier to define it correctly. Conse-
quently, the base application is not oblivious of the framework and its behaviors, however,

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4
www.jserd.com/content/1/1/4

the modules are completely isolated and have no code dependency among them. It is
important to point out that the Reuse Code itself depends on the Base Code during the
creation process, however, its definition can be made as soon as the base application
design is complete.

4.2 Approach usage example

An usage example of our approach is described in this section. Firstly, we briefly
describe the domain engineering which contains the creation of the framework reuse
model. Finally, the application engineering is described, which consists of reuse model
completion and reuse code generation, thus completing the process.

4.3 Domain engineering

The domain engineer must create a reuse model which contains the information
necessary to reuse a crosscutting framework. In the example provided herein, every infor-
mation needed to create a reuse model for a persistence framework. After the model
creation, its completion is shown during application engineering to reuse the framework
and couple it to an example application.

The reuse model template for the crosscutting framework in Figure 5, which was
derived from a reuse requirements model by describing the framework hotspots. In
Figure 6, the reuse model is shown after its completion.

The model elements are defined as follows: there are four value objects, two pointcut
objects, and one type extension object. The value objects are used to define strings needed

i 1.1 - Application Database Name

Please insert the value between quotes.
?
] 1.2 - Database Management System Name

Please insert the value between quotes.
?
[1.3 - Database Connection Driver Name

Please insert the value between quotes.
?
] 1.4 - Database Connection Protocol

Please insert the value between quotes.

?

% 2.1 - Connection Opening Joinpoints

Please insert the method name in "package.Class.method" format.

(1

\-' 2.2 - Connection Closing Joinpoints
Please insert the method name in "package.Class.method" format.
[]

' 3.1 - Classes that Represent Persistent Objects

Please insert the method name in "package.Class.method" format.

(1

Figure 5 Reuse model template. A reuse model template that must be provided by the domain engineer
in order to allow the application engineers to apply the process.

Page 10 of 34

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4 Page 11 of 34
www.jserd.com/content/1/1/4

il 1.1 - Application Database Name
Please insert the value between quotes.

"airlinedb"
i 1.2 - Database Management System Name

Please insert the value between quotes.
"derby"

[i] 1.3 - Database Connection Driver Name
Please insert the value between quotes.

"org.apache.derby.jdbc.EmbeddedDriver"
fi] 1.4 - Database Connection Protocol

Please insert the value between quotes.

"jdbc:derby:"

T' 2.1 - Connection Opening Joinpoints

Please insert the method name in "package.Class.method" format.

[baseapp.Airplane.landing,baseapp.Airport.opening,baseapp.Luggage.dispatch...

\L' 2.2 - Connection Closing Joinpoints

Please insert the method name in "package.Class.method" format.

[baseapp.Airplane.takeoff,baseapp.Airport.closing,baseapp.Luggage.retrieve...
3.1 - Classes that Represent Persistent Objects

Please insert the method name in "package.Class.method" format.

[baseapp.Airplane,baseapp.Airport,baseapp.Luggage,baseapp.Passenger...

Figure 6 Complete reuse model. A complete reuse model after the application engineer provides the
information regarding the base application, which will allow framework reuse by code generation.

by the framework in order to connect it to the database. They are used to define the
database name, the name of the database management system, the database connection
driver, and the database connection protocol. Every property of these items are then
represented on Tables 1, 2, 3 and 4.

The pointcut objects are used to define joinpoints of the base application. The first
pointcut object is represented on Table 5 and it must be used to inform where DB con-
nections must be established. To do that, the application engineer needs to inform which
methods execute right after a DB connection is established, i.e., methods that operate
properly only if there is a connection open. The second point cut object is represented
on Table 6 and it is used to inform methods that execute right before the connection is
closed, therefore, the last method that needs an open connection.

The last object is represented on Table 7, which is used to define the classes found in
the base application. These base application define object types that must be persisted on
the database.

This reuse model is provided along with the crosscutting framework to be used by
the application engineer in order to instantiate the framework, which is described in
Section 4.3.

4.4 Application engineering
An example of an application development is given in this subsection. This application
is referred to as Airline Ticket Management and must be coupled to the persistence CF

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4 Page 12 of 34
www.jserd.com/content/1/1/4

Table 1 Application database name

Value object: application database name

Name Name

“1.1 - Application database name”

Description Description

“Please insert the value between quotes.”

Qualified name of the owner QualifiedOwnerName

“persistence.instantiation.helper.ExtendedConnectionVariabilities”

Method to be overridden ElementName

“ExtendedConnectionVariabilities.setDatabaseName”

Value data type ElementType

"String”

Select supertype (aspect, class or interface) SuperType

"Class”

A string needed by the database connection APl in order to connect to a specific database managed by the database system.

previously mentioned. This application uses the Apache Derby Database Management
System (Apache Software Foundation 2012). The design of this application is shown on
Table 8.

Upon the reuse model completion, the resulting reuse model is similar to that shown in
Figure 7. Despite not being shown in the application details, every base application class
was created inside the package “baseapp”. After validating the model, the reuse code is
generated; it is divided into three units.

The first generated unit is an aspect that extends a framework class. The overridden
methods are used to return constant values that are necessary for the framework to suc-
cessfully get connected to the database. It is important to emphasize that the four values
have been defined in the same unit because they are owned by the same superclass. This
would not happen if their superclasses were different.

The second unit is shown in Figure 8, which is an aspect that overrides point-
cuts openConnection and closeConnection. These pointcuts are used to capture base

Table 2 Database management system name

Value object: database management system name

Name Name

"1.2 - Database management system name”

Description Description

"Please insert the value between quotes.”

Qualified name of the owner QualifiedOwnerName

“persistence.instantiation.helper.ExtendedConnectionVariabilities”

Method to be overridden ElementName

“ExtendedConnectionVariabilities.setSpecificDatabase”

Value data type ElementType

"String”

Select supertype (aspect, class or interface) SuperType

"Class”

A string needed by the database connection APl in order to select the database connection driver.

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4 Page 13 of 34
www.jserd.com/content/1/1/4

Table 3 Connection driver protocol

Value object: database connection driver name

Name Name

"1.3 - Database connection driver name”

Description Description

"Please insert the value between quotes.”

Qualified name of the owner QualifiedOwnerName

"persistence.instantiation.helper.ExtendedConnectionVariabilities”

Method to be overridden ElementName

“ExtendedConnectionVariabilities.getDriver”

Value data type ElementType

"String”

Select supertype (aspect, class or interface) SuperType

“Class”

A string needed by the database connection API in order to select the database connection driver.

application joinpoints that trigger the database connections and disconnections. They are
defined in a single aspect because they also share the same superclass.

Figure 9 shows another aspect, which uses static crosscutting features to define classes
that extend the interface specified by domain engineer by using the “Declare Parents”
syntax.

Our model generator is also capable of generating a validation code, which checks if the
base element names inserted into the reuse model are valid.

5 Methods

Two experiments have been conducted to compare our model-based reuse approach with
the conventional way of reusing CFs, i.e., manually creating the reuse code. The first
experiment is called Reuse Study and was planned to identify the gains in productivity
when reusing a framework. The second experiment is denominated “Maintenance Study”
and was designed to identify whether the our models help or not in the maintenance of

Table 4 Connection driver protocol

Value object: database connection protocol

Name Name

"14 - Database connection protocol name”

Description Description

“Please insert the value between quotes.”

Qualified name of the owner QualifiedOwnerName

“persistence.instantiation.helper. ExtendedConnectionVariabilities”

Method to be overridden ElementName

“ExtendedConnectionVariabilities.get/DBC"

Value data type ElementType

"String”

Select supertype (aspect, class or interface) SuperType
"Class”

A string needed by the database connection APl in order to connect to the database system.

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4 Page 14 of 34
www.jserd.com/content/1/1/4

Table 5 Connection opening joinpoint definition

Pointcut Object: connection opening joinpoints

Name Name

"2.1 - Connection opening joinpoints”

Description Description

“Please insert the method name in “package.Class.method” format.”

Qualified name of the owner QualifiedOwnerName

“persistence.instantiation.helper.ExtendedConnectionCompositionRules”

Pointcut to be overridden ElementName

"openConnection”

Composition operator Composition

or
Internal pointcut definition InternalDefinition
Iterable pointcut definition IterableDefinition

"

“execution (* %s(..)

Select supertype (aspect, class or interface) SuperType
“Class”

The second pointcut object is used to define methods that run right after the database connection must be open.

a CF-based application. This second study is important because maintenance activities
are usually performed more often than the reuse process. Each experiment has been
performed twice. In this paper, the first execution is referred to as “First” and the second
execution is referred to as “Replication”. Since there have been only two executions for
each experiment, we present four study executions in this section. The structure of the
studies has been defined according to the recommendations of Wohlin et al. (2000).

Table 6 Connection closing joinpoint definition

Pointcut object: connection closing joinpoints

Name Name

“2.2 - Connection closing joinpoints”

Description Description

“Please insert the method name in "package.Class.method" format.”

Qualified name of the owner QualifiedOwnerName

"persistence.instantiation.helper.ExtendedConnectionCompositionRules”

Pointcut to be overridden ElementName

“closeConnection”

Composition operator Composition

or
Internal pointcut definition InternalDefinition
Iterable pointcut definition IterableDefinition

“execution (* %s(..))

Select supertype (aspect, class or interface) SuperType

"Class”

The second pointcut object is used to define methods that run right before the database connection must be closed.

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4
www.jserd.com/content/1/1/4

Table 7 Persistent objects definition

Type extension object: persistent objects

Name Name

“3.1 - Classes that represent persistent objects”

Description Description

“Please insert the class name in "package.Class" format.”

Qualified name of the owner QualifiedOwnerName

"persistence.PersistentRoot”

Select supertype (aspect, class or interface) SuperType

“Interface”

The last object from the example that is used to define the persistent objects of the application.

5.1 Reuse study definition

The objective was to compare the effort of reusing frameworks by using a conventional
technique with the effort of using a model-based technique. The Persistence CF, briefly
presented in Subsection 3.3, has played the role of “study subject” and it was used in both
reuse techniques (conventional and model-based). The quantitative focus was determined

Table 8 Base application details

Constant definition

Application database name “airlinedb”
Database management system name "derby”
Database connection driver name “org.apache.derby jdbc.EmbeddedDriver”
Database connection protocol “jdbc:derby:”

Joinpoint definition (method execution)

Joinpoints Method execution

Connection opening joinpoints Class Method
Airplane Landing
Airport Opening
Luggage Dispatch

Checkin Confirm
Passenger Onboard

Flight Depart
Connection closing joinpoints Class Method
Airplane Takeoff

Airport Closing

Luggage Retrieve

Checkin Cancel
Passenger Unboard

Flight Arrive

Type extensions
Classes that represent persistent objects Class
Airport
Luggage
Checkin
Passenger
Flight

Details of a base application that needs to be coupled to the crosscuting framework.

Page 15 of 34

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4
www.jserd.com/content/1/1/4

ConcreteExtendedConnectionVariabilities0.aj

package persistence.reuse;
import persistence.instantiation.helper.ExtendedConnectionVariabilities;
public aspect ConcreteExtendedConnectionVariabilities0 extends
ExtendedConnectionVariabilities {
public String ExtendedConnectionVariabilities.setDatabaseName () {
return "airlinedb";

public String ExtendedConnectionVariabilities.setSpecificDatabase () {
return "derby";
}

public String ExtendedConnectionVariabilities.getDriver () {
return "org.apache.derby.jdbc.EmbeddedDriver";

public String ExtendedConnectionVariabilities.getJDBC () {
return "jdbc:derby:";
}

}

Figure 7 Reuse code - first unit. The first generated reuse code fragment contains an aspect that is used to
define the “Connection Variabilities” of the framework: these “Connection Variabilities” are provided by
overriding methods.

considering the time spent in conducting the reuse process. The qualitative focus was to
determine which technique takes less effort during the reuse process. This experiment
was conducted from the perspective of application engineers reusing CFs: the study object
was the ‘effort’ to perform a CF reuse.

5.2 Reuse study planning
The first experiment was planned considering the following question: “Which reuse
technique takes less effort to reuse a CF?”;

ConcreteExtendedConnectionCompositionRulesl.aj

package persistence.reuse;
import persistence.instantiation.helper.ExtendedConnectionCompositionRules;
public aspect ConcreteExtendedConnectionCompositionRulesl extends
ExtendedConnectionCompositionRules {
public pointcut openConnection () :
(

execution (* baseapp.Airplane.landing(..)) ||
execution (* baseapp.Airport.opening(..)) ||

execution (* baseapp.Luggage.dispatch(..)) ||
execution (* baseapp.Checkin.confirm(..)) ||

execution (* baseapp.Passenger.board(..)) ||

execution (* baseapp.Flight.depart(..))

)
public pointcut closeConnection () :
(

execution (* baseapp.Airplane.takeoff(..)) ||
execution (* baseapp.BAirport.closing(..)) ||
execution (* baseapp.luggage.retrieve(..)) ||
execution (* baseapp.Checkin.cancel(..)) ||
execution (* baseapp.Passenger.unboard(..)) ||
execution (* baseapp.Flight.arrive(..)

)
}
Figure 8 Reuse code - second unit. The second generated reuse code fragment contains an aspect that is
used to define the “Composition Rules” of the framework. The “CompositionRules” are provided by overriding
pointcuts.

Page 16 of 34

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4
www.jserd.com/content/1/1/4

ParentsDeclaration.aj

package persistence.reuse;
public aspect ParentsDeclaration extends Object {

declare parents : baseapp.Airplane implements
persistence.PersistentRoot;

declare parents : baseapp.Airport implements
persistence.PersistentRoot;

declare parents : baseapp.Luggage implements
persistence.PersistentRoot;

declare parents : baseapp.Checkin implements
persistence.PersistentRoot;

declare parents : baseapp.Passenger implements
persistence.PersistentRoot;

declare parents : baseapp.Flight implements

persistence.PersistentRoot;

Figure 9 Reuse code - third unit. The third generated reuse code fragment contains an aspect that is used
to define static crosscutting features needed during the framework reuse. By default, all static crosscutting
declarations are merged into a single aspect.

5.2.1 Context selection

Both studies have been conducted by students of Computer Science. In this section, they
are referred to as “participants”. Sixteen participants took part in the experiments, eight
of those were undergraduate students and the other eight were post-graduate students.
Every participant had a prior Aspect] experience.

5.2.2 Formulation of hypotheses
Table 9 contains our formulated hypotheses for the reuse study, which are used to
compare the productivity of our tool with the conventional process.

”

There are two variables shown on the table: “Tc,” and “Tm,”. “Tc,” represents the
overall time necessary to reuse the framework using the conventional technique while
“Tm,” represents the overall time necessary to reuse the framework using the model-

”

based technique. There are three hypotheses shown on the table: “HO,”, “Hp,” and
“Hn,”. “HO,” represents the null hypothesis, which is true when both techniques are

equivalent; then, the time spent using the conventional technique minus the time spent

Table 9 Hypotheses for the reuse study

There is no difference between using our tool and using an ad-hoc reuse process in terms of
productivity (time) to successfully couple a CF with an application.

HO, Then, the techniques are equivalent.

Tcr -Tmy %0

There is a positive difference between using our tool and using an ad-hoc reuse process in
terms of productivity (time) to successfully couple a CF with an application.

Hp, Then, the conventional technique takes more time than the model-based tool.
Tc,-Tmy >0

There is a negative difference between using our tool and using an ad-hoc reuse process in
terms of productivity (time) to successfully couple a CF with an application.

Hn, Then, the conventional technique takes less time than the model-based tool.

Tc,-Tmy, <0

Considering the Reuse Study, there are three hypotheses for the outcome. In the first one, both are equivalent, while in two
of them, a technique is faster.

Page 17 of 34

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4 Page 18 of 34
www.jserd.com/content/1/1/4

using the model-based tool is approximately zero. “Hp,” represents the first alternate
hypothesis, which is true when the conventional technique takes longer than the model-
based tool; then, the time spent to use the conventional technique minus the time
of the model-based tool is positive. “Hn,” represents the second alternate hypothesis,
which is true when the conventional technique takes longer than the model-based tool;
then, the time taken to use the conventional technique minus the time taken to use
the model-based tool is negative. As these hypotheses consider different ranges of a
single resulting real value, then, they are mutually exclusive and only one of them is

true.

5.2.3 Variable selection

The dependent variable in this work is the “time spent to complete the process”. The
independent variables are Base Application, Technique and Execution Types, which, are
controlled and manipulated.

5.2.4 Participant selection criteria

The participants were selected through a non-probabilistic approach by convenience, i. e.,
the probability of all population elements belong to the same sample is unknown. We have
invited every student from the computing department of Federal University of Sdo Carlos
that attended the AOP course, a total of 17 students. Every student had to be able to reuse
the framework by editing code during the training. Because of that, one undergraduate
student was rejected before the execution.

5.2.5 Design of the study

The participants were divided into two groups. Each group was composed by four gradu-
ate students and four undergraduate students. Each group was also balanced considering
a characterization form and their results from the pilot study. Table 10 shows the planned
phases.

Table 10 Study design
Phase Group 1 Group 2

. Reuse and maintenance training
General training

Repair shop
15t Reuse Conventional Models
Pilot phase Hotel application
279 Reuse Models Conventional
Pilot phase Library application
15C First Conventional Models
Reuse phase Deliveries application
2" First Models Conventional
Reuse phase Flights application
15 Replication Conventional Models
Reuse phase Medical clinic application
274 Replication Models Conventional
Reuse phase Restaurant application
1€ First Conventional Models

The Study Design contains every phase from both studies. It contains the sequence of operations, technique and the
conidered applications.

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4 Page 19 of 34
www.jserd.com/content/1/1/4

5.2.6 Instrumentation for the reuse study

Base applications were provided together with two documents. The first document was
a manual regarding the current reuse technique, and the second document was a list of
details, which described the classes, methods and values regarding the application to be
coupled.

The provided applications had the same reuse complexity. The participants had to spec-
ify four values, twelve methods and six classes in order to reuse the framework and to
couple it to each application. These applications were designed with exactly the same
structure of six classes. Each class contained six methods plus a class with a main method
which is used to run the test case.

Each phase row of the Table 10 is divided into sub-rows that contain the name of the
application and the technique employed to reuse the framework. For instance, during
the First Reuse Phase, the participants of the first group coupled the framework to the
“Deliveries Application” by using the conventional technique. The participants of the
second used the model-based tool to perform the same exercise.

5.3 Operation for reuse study

5.3.1 Preparation
During the maintenance study, the students had to fix a reuse artifact to complete the
process. Every participant had to fix every application by using only one of the techniques
in equal numbers.

5.3.2 Execution

The participants had to work with two applications; each group started with a different
technique. The secondary executions were replications of the primary executions with
two other applications They were created to avoid the risk of getting unbalanced results
during the primary execution, since some data that we gathered during the pilot study
were rendered invalid.

5.3.3 Data validation

The forms filled by the participants were confirmed with the preliminary data
gathered during the pilot study. In order to provide a better controllability, the
researchers also watched the notifications from the data collector to check if the
participants had concluded the maintenance process and had gathered the necessary
data.

5.3.4 Data collection

The recorded timings during the reuse processes with both techniques are listed on the
Table 11. Each table has five columns. Each column is defined by a letter or a word: “G”
stands for the group of the participant during the activity; “A” stands for the application
being reused; “T” stands for the reuse technique which is either “C” for conventional
or “M” for model-based tool; “P” column lists an identifying code of the participants
(students), whereas, the least, eight values are allocated to graduate students and the rest
are undergraduate students; “Time” column lists the time the participant spent to com-
plete each phase. The raw data we have gathered during the reuse study is also available
as Additional file 1.

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4 Page 20 of 34
www.jserd.com/content/1/1/4

Table 11 Reuse process timings

Primary execution Secondary execution

G A T P Time G A T P Time

1 Flights M 15 04:19.952015 2 Clinic M 10 02:59.467569
1 Flights M 13 04:58.604963 1 Restaurant M 13 03:56.785359
1 Flights M 8 05:18.346829 1 Restaurant M 15 04:23.629206
2 Delivery M 11 05:24.249952 2 Clinic M 1 04:25.196135
2 Delivery M 5 05:31.653952 1 Restaurant M 8 04:33.954349
2 Delivery M 9 05:45.484577 2 Clinic M 9 04:41.254920
2 Delivery M 3 06:16.392424 1 Restaurant M 12 05:05.524264
2 Delivery M 10 06:45.968790 2 Clinic M 3 05:45.333167
2 Delivery M 14 07:05.858718 2 Clinic M 14 05:57.009310
2 Delivery M 6 07:39.300214 2 Clinic M 5 06:31.365498
2 Delivery M 2 08:02.570996 2 Clinic M 2 06:59.967490
1 Flights M 1 08:38.698360 2 Restaurant C 2 07:18.927029
2 Flights C 2 08:42.389884 2 Clinic M 6 07:45.403075
1 Flights M 16 10:18.809487 2 Restaurant @ 10 08:56.765163
1 Delivery C 13 10:25.359836 1 Clinic C 16 09:20.284593
2 Flights C 9 10:51.761493 1 Restaurant M 7 09:23.574403
1 Flights M 7 10:52.183247 1 Restaurant M 4 09:25.089084
2 Flights C 10 10:52.495216 2 Restaurant C 14 09:27.112225
1 Delivery @ 8 11:39.151434 2 Restaurant @ 3 09:55.736324
1 Delivery C 15 12:03.519008 1 Clinic C 15 10:25.475603
1 Flights M 4 12:17.693128 2 Restaurant C 5 10:37.460834
2 Flights @ 3 12:26.993837 2 Restaurant @ 9 10:49.014842
2 Flights C 14 12:49.585392 1 Restaurant M 16 10:56.743477
2 Flights C 1 13:04.272941 1 Clinic C 13 11:04.485390
1 Delivery C 4 13:16.470523 1 Clinic C 4 12:06.690347
1 Delivery C 1 15:47.376327 1 Clinic C 8 13:38.014602
1 Delivery @ 16 18:02.259692 1 Clinic @ 12 14:37.197260
1 Flights M 12 20:03.920754 1 Restaurant M 1 17:09.073104
2 Flights @ 5 21:32.272442 2 Restaurant C 1 17:11.980052
2 Flights C 6 23:10.727760 1 Clinic C 7 19:35.816561
1 Delivery C 7 23:20.991158 2 Restaurant C 6 28:02.391335
1 Delivery C 12 41:29.414342 1 Clinic C 1 28:18.301114

The timings table contains data captured for each study, in this case, the maintenance study. By analysing this table, it is
possible to identify the time of each participant, their group, the technique and the considered application.

We have developed a data collector to gather the experiment data. This system has
stored the timings with milliseconds precision considering both the server and clients’
system clocks. However, the values presented in this paper only consider the server time.
The delays of transmission by the computers are not taken into consideration; prelim-
inary calculations considering the clients’ clocks have indicated that these delays are
insignificant, i.e., have not changed the hypothesis testing results. The server’s clock was
considered because we could verify that its clock had not been changed throughtout the
execution.

That system was able to gather the timings and the supplied information transpar-
ently. The participants only had to execute the start time, which was supervised, and to

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4 Page 21 of 34
www.jserd.com/content/1/1/4

work on the processes independently. After the test case had provided successful results,
which meant that the framework was correctly coupled, the finish time was automatically
submitted to the server before notifying the success to the participant.

5.4 Data analysis and interpretation for reuse study

The data of the first study is found on Table 11, which is arranged by the time taken to
complete the process. The first noteworthy information found on this table is that the
model-based reuse tool, which is identified by the letter ‘M, is found in the first twelve
results. The conventional process, which is identified by the letter ‘C’, got the last four
results.

The timings data of Table 11 is also represented graphically in a bar graph, which is
plotted on Figure 10. The same identifying code for each participant and the elapsed time
in seconds are visible on the graph. The bars for the used conventional technique and
the used model tool are paired for each participant, allowing easier visualization of the
amount of time taken by each of them. In other words, the taller the bar, the more time it
took to complete the process with the specified technique.

The second significant information found during the first study was that not a single
participant could reuse the framework faster by using the conventional process than by
using the reuse tool in the same activity.

Table 12 shows the average timings and their proportions. If we analyze the average
time that the participants from both groups have taken to complete the processes, we
could conclude that the conventional technique took approximately 97.64% longer than
the model-based tool.

5.5 Maintenance study definition

It is necessary to remind here that our objective was to compare the effort in modify-
ing a CF-based application by editing the reuse code (conventional technique) with the
effort in modifying the same application by editing the RM. The Persistence CF, shown in
the Section 3.3 was again used in the two maintenance exercises. The quantitative focus
was measured by means of the time spent in the maintenance tasks and the qualitative
focus was to determine which artifact (source code or RM) takes less effort during main-
tenance. This experiment was conducted from the perspective of application engineers

First Reuse Execution Second Reuse Execution
2500
@ Il Conv. o Il Conv.
© B Model = 2000 4 3 Model
g g 1500
~ ~ 1000
g £
£ £ 500
0
Participant (number) Participant (number)

Figure 10 Reuse process timings bars graph. A graph in which the reuse experiment timings are plotted.
Each bar represents the time taken by each participant in order to complete the reuse activities, which is
identifiable by the participant number.

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4 Page 22 of 34
www.jserd.com/content/1/1/4

Table 12 Reuse study average timings

A. Tech. Avg. Sum of Avg. Percents
First 16:13.44008
_ et Conv. o m 30:03.79341 66.7766%
Replication 13:50.35333
st Model 0804980525 14:57.441176 33.2234%
Replication 06:52.460651
Total 45:01.234586 100.0000%

The Study Average Timings table contains averages for the Reuse Study. It is possible to compare the general time effort
needed to complete the activities of both techniques.

who intended to maintain CF-based applications. Therefore, the study object is the ‘effort’
of maintaining a CF-based application.

5.6 Maintenance study planning

The core question we wanted to answer here was: “Which artifact takes less editing effort
during maintenance: the reuse model or the reuse code?” During this experiment we have
gathered and analyzed the timings taken to complete the process for each activity.

5.6.1 Context selection

Both studies were conducted by students of the Computer Science Department. In this
section, they are referred to as “participants”. Sixteen participants took part in the exper-
iments: eight of them were undergraduate students and the other eight were graduate

students. Every participant had a prior Aspect] experience.

5.6.2 Formulation of hypotheses

Table 13 contains three variables. “Tc,,” represents the overall time to edit the reuse code
during maintenance. “Tm,,” represents the overall time to edit the reuse model during
maintenance. “HO,,” represents the null hypothesis, which is true when the edition of
both artifacts is equivalent. “Hp,,” represents the first alternate hypothesis, which is true
when the edition of the reuse code takes longer than editing the RM. “Hn,,” represents
the second alternate hypothesis, which is true when the edition of the reuse code takes
less time than editing the RM. These hypotheses are also mutually exclusive: only one of
them is true.

Table 13 Hypotheses for the maintenance study

There is no difference between using editing a reuse model and editing the reuse code in
Ho,, terms of productivity (time) when maintaining an application that reuses a CF.

Then, it is equivalent to edit any of the artifacts. T¢,, - Tmm, ~ 0

There is a positive difference between using editing a reuse model and editing the reuse code
in terms of productivity (time) when maintaining an application that reuses a CF.

Hp, Then, editing the reuse code takes more time than editing a reuse model during maintenance.
Tcm-Tmm >0

There is a negative difference between using editing a reuse model and editing the reuse code
in terms of productivity (time) when maintaining an application that reuses a CF.

Hnp, Then, editing the reuse code takes less time than editing a reuse model during maintenance.

Tcm -Tmm < 0

Considering the Reuse Study, there are three hypotheses for the outcome. In the first one, both are equivalent, while in two
of them, a technique is faster.

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4 Page 23 of 34
www.jserd.com/content/1/1/4

5.6.3 Variable Selection

The dependent variable analyzed here was the “time spent to complete the process”. The
independent variables, which were controlled and manipulated, are: “Base Application”,
“Technique” and “Execution Types”.

5.6.4 Participant selection criteria

The participants were selected through a non probabilistic approach by convenience,
i. e, the probability of all population elements belong to the same sample is unknown.
Both studies share the same participants.

5.6.5 Design of the Maintenance Study

The participants were divided into two groups. Each group was composed of four gradu-
ate students and four undergraduate students. Each group was also balanced considering
the characterization form of each participant and their results from the first study. The
phases for this study are shown in Table 14.

5.6.6 Instrumentation for the maintenance study

The base applications provided for the second study were modified versions of the
same applications that had been supplied during the first study. These applicationswere
provided with incorrect reuse codes (conventional) and incorrect reuse models (model-
based): these incorrect artifacts had to be fixed by the participants. The participants
received a document describing possible generic errors that could happen when a reuse
code or a model are defined incorrectly. It is important to point out that that document
did not have details regarding the base applications; the participants had to find the errors
by browsing the source code.

The provided applications had the same reuse complexity: the reuse codes and models
had the same amount of errors. In order to fix each CF coupling, the participants had
to fix three outdated class names, three outdated method names, and three mistyped
characters. It is also important to emphasize that errors specific for the manual edition of
reuse codes were not inserted in this study.

Each phase row of the Table 14 is divided into sub-rows that contain the name of the
application and the technique employed during the maintenance. For instance, the par-
ticipants of the first group had to fix the reuse code of the “Deliveries Application” during

Table 14 Maintenance study design

Phase Group 1 Group 2

o Maintenance training
General training

Deliveries application

279 First Models Conventional
Maintenance phase Flights application
15t Replication Conventional Models
Maintenance phase Medical clinic application
279 Replication Models Conventional
Maintenance phase Restaurant application

The Study Design contains every phase from both studies. It contains the sequence of operations, technique and the
conidered applications.

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4 Page 24 of 34
www.jserd.com/content/1/1/4

the First Maintenance Phase, while the participants of the second group had to fix the
reuse model to perform the same exercise.

5.7 Operation for maintenance study

5.7.1 Preparation

During the maintenance study, the students had to fix a reuse artifact to complete the
process. Every participant had to fix every application. They have fixed each application
only once, by using only one of the techniques in equal numbers.

5.7.2 Operation Execution

The participants had to work with two applications; each group started with a different
technique. The secondary executions were replications of the primary executions with
two other applications They were created to avoid the risk of getting unbalanced results
during the primary execution, since some data that we gathered during the pilot study
were rendered invalid.

5.7.3 Datavalidation

The forms filled by the participants were confirmed with the preliminary data gath-
ered during the pilot study. In order to provide a better controllability, the researchers
also watched the notifications from the data collector to check if the participants had
concluded the maintenance process and had gathered the necessary data.

5.7.4 Data collection

The timings for the maintenance study are presented in Table 15. The column “G” stands
for the group of the participant; “A” stands for the application being reused; “T” stands
for the reuse technique which is either “C” for conventional or “M” for model-based
tool; “Time” column lists the time the participant spent to complete each phase, and
finally; and “P” column lists an identifying code of the participants. At least eight val-
ues are allocated to graduate students and the rest are undergraduate students; The
raw data we have gathered during the maintenance study is also available as Additional
file 2.

The data collector that was employed to gather the experiment data stored the timings
with milliseconds precision: both the server and clients’ system clocks were taken into
consideration. However, the values presented in this paper consider only the server
time. The delay of data transmission over the network was not taken into considera-
tion. We believe that they are insignificant in this case because preliminary calculations
considering the clients’ clocks did not change the order of results.

That system was able to gather the timings and the supplied information transparently.
The unique task of the participants was to click in a button to initialize the starting time.
Once the provided test case had succeed (meaning that the framework was correctly
coupled) the finishing time was automatically submitted to the server before notifying the
success to the participant.

5.8 Data analysis and interpretation for maintenance study
The data of the second study is found on Table 15. This study has provided results similar
to the first study. The first eleven values are related to the model-based tool, while the last

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4 Page 25 of 34
www.jserd.com/content/1/1/4

Table 15 Maintenance process timings

Primary execution Secondary execution

G A T P Time G A T P Time

2 Flights C 10 02:30.944685 2 Clinic M 5 01:43.801965
2 Flights C 9 02:54.232578 2 Clinic M 3 02:17.158954
1 Delivery C 8 03:02.751342 1 Clinic C 8 02:34.248260
2 Flights @ 2 03:11.695431 1 Clinic C 14 02:57.405545
1 Delivery C 15 03:31.801582 2 Restaurant C 2 03:01.547524
2 Flights C 12 03:45.692316 2 Restaurant C 10 03:09.169865
2 Flights C 3 05:09.817914 2 Clinic M 2 03:25.640129
2 Flights C 5 05:44.462030 2 Restaurant C 3 03:39.443080
1 Flights M 8 05:53.407296 1 Clinic C 7 04:28.998071
2 Flights C 11 07:08.687074 2 Restaurant C 6 04:35.517498
2 Flights C 6 07:38.576312 2 Restaurant C 12 04:41.052812
1 Flights M 4 07:53.595699 2 Restaurant C 11 04:46.028085
1 Flights M 14 08:14.148937 1 Restaurant M 8 04:51.290971
2 Delivery M 3 08:27.092566 2 Clinic M 6 04:53.800449
1 Delivery C 1 08:37.138931 1 Restaurant M 15 04:58.094389
1 Flights M 13 08:50.185469 1 Clinic C 15 05:21.846560
1 Flights M 1 09:15.253791 2 Restaurant C 5 05:42.389865
2 Delivery M 5 09:15.934211 2 Clinic M 10 07:18.533351
1 Delivery C 14 09:32.031612 1 Restaurant M 14 07:24.342788
1 Delivery C 7 10:04.694800 1 Clinic C 16 07:37.332151
1 Flights M 15 11:07.617639 1 Restaurant M 1 07:44.516376
2 Delivery M [§ 11:32.482992 2 Clinic M 1 08:08.144168
2 Delivery M 2 11:49.247460 2 Restaurant C 9 08:13.115942
1 Delivery C 16 12:12.576158 1 Restaurant M 13 08:32.056119
1 Flights M 7 12:27.297563 1 Restaurant M 16 11:28.592180
1 Delivery C 13 12:49.443610 1 Restaurant M 7 11:45.459699
2 Delivery M 11 13:00.604583 2 Clinic M 9 12:42.958789
1 Delivery C 4 13:25.433748 1 Restaurant M 4 13:57.879299
2 Delivery M 9 15:51.117061 1 Clinic C 1 14:46.465482
2 Delivery M 12 15:56.048486 1 Clinic C 4 17:55.176353
2 Delivery M 10 21:23.533192 1 Clinic C 13 18:02.486509
1 Flights M 16 32:32.875079 2 Clinic M 12 25:54.176697

The timings table contains data captured for each study, in this case, the maintenance study. By analysing this table, it is
possible to identify the time of each participant, their group, the technique and the considered application.

four are related to the conventional technique. Only the Participant 16 was able to reuse
the framework faster by applying the conventional process, which contradicts the results
of the same participant in the previous study. This participant said he got confused when
he had to correct the reuse model. That was the reason why he had to restart the process
from the very beginning, causing this longer time.

The plots for the maintenance study are found on Figure 11. These plots follow the same
guidelines that were used when plotting the graphs for the previous study. Considering the
timings of the maintenance study, the reuse model edition does not provide any advantage
in terms of productivity, since most of participants took longer to edit the model than the
reuse code.

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4 Page 26 of 34
www.jserd.com/content/1/1/4

First Maintenance Execution Second Maintenance Execution
2500 2500
@ Il Conv. @ [l Conv.
° 2000 | 5 Model A ° 2000 4 5 Model
g 1500 . £ é 1500
2 1000 o H 2 1000
g g e EEHBEL. nE &
F osopEakEaFE BEEHEEEH £ o0
0 H H - - - =l =1 =1 21 21 212 0
Participant (code) Participant (code)
Figure 11 Maintenance process timings bars graph. A graph in which the maintenance experiment
timings are plotted. Each bar represents the time taken by each participant in order to complete the
maintenance activities, which is identifiable by the participant number.

Table 16 illustrates the average timings and their proportions. Considering only the
average time, the participants who applied the conventional technique took less time than
their counterparts who used our model-based approach.

6 Results and discussion

6.1 Hypotheses testing for reuse study

In this section, we present statistical calculations to evaluate the data of the reuse study.
We applied Paired T-Tests for each execution and another T-Test after removing eight
outliers. The time consumed in each execution was processed using the statistic compu-
tation environment “R” (Free Software Foundation, Inc 2012). The results of the T-Tests
are shown on Table 17, which is actually a pair of tables. The time unit is “seconds”.

The first columns of these tables contain the type of T-Test and the second ones indicate
the source of the data. The “Means” columns indicate the resultant mean for each T-
Test. For a paired T-Test, there is one mean, which is the average of subtracting each
set member by its counterpart in the other set. For the non-paired T-Tests, there are
two means, which are the averages for each set. In this case, the first set represents the
conventional technique; the second set represents the use of the model-based tool. The
“d.t” columns stand for the degrees of freedom, which is related to how many different
values are found in the sets; “t”and “p” are variables considered in the hypothesis testing.

The Paired T-Test is used to compare the differences between two samples related to
each participant. In this case, the time difference of every participant is considered indi-
vidually; then, the means of the differences are calculated. In the “Two-Sided” T-Tests,
which are unpaired, the means are calculated for the entire group, because a participant

Table 16 Maintenance study average timings

A. Tech. Avg. Sum of Avg. Percents
First 06:57.498758
et Conv. SOTATE8 13:55.762733 39.5521%
Replication 06:58.263975
First 12:43.152626
- Model - 21:17.305521 60.4479%
Replication 08:34.152895
Total 35:13.068254 100.0000%

The Study Average Timings table contains averages for the Maintenance Study. It is possible to compare the general time
effort needed to complete the activities of both techniques.

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4 Page 27 of 34
www.jserd.com/content/1/1/4

Table 17 Reuse study t-test results

T-Test Data Means d.f. t p
Paired First 4884596 15 5.841634 3.243855.107%
Paired Replication 417.8927 15 5.285366 9.156136:107°°
7714236
Two-sided Both ARt 43.70626 6.977408 1.276575-10798
409.4295

T-Test is a statistical test used to determine the correct hypothesis for both studies. This table lists the results for the reuse
study.

may be an outlier in a specific technique, which breaks the pairs. It is referred to as two-
sided because the two sets have the same number of elements, since the same number of
outliers was removed from each group.

The “Chi-squared test” was applied to both studies in order to detect the outliers, which
were then removed when calculating the unpaired T-Test. On the table, the unpaired T-
Tests are refered as “Two-sided”. The results of the “Chi-squared test” for the reuse study
are found on Table 18. The ‘M’ in the techniques column indicates the use of our tool,
while ‘C’ indicates the conventional technique. The group column indicates the number
of the group. The X? indicates the result of subtracting each value by the variance of
the complete set. The position column indicates their position on the set, i.e., highest or
lowest. The outlier column shows the timings in seconds that were considered abnormal.

In order to achieve a better visualization of the outliers, we also provide two plots of the
data sets. In Figure 12 there are line graphs which may be used to visualize the dispersion
of the timing records. In these plots, the timings for each technique are ordered by their
performance; therefore, the participant numbers in these plots are not related to their
identification codes.

Considering the reuse study and according to the analysis from Table 17 we can state the
following. Since all p-values are less than the margin of error (0.01%), which corresponds
to the established significance level of 99.99%, then, statistically, we can reject the “HO,”
hypothesis that states the techniques are equivalent. Since every t-value is positive, we can
accept the “Hp,” hypothesis, which implies that the conventional technique takes more
time than ours.

6.2 Hypotheses testing for maintenance study

In this section, we present statistical calculations to evaluate the data of the mainte-
nance study. Similarly to the reuse study, we applied Paired T-Tests for each execution

Table 18 Chi-squared test for outlier detection applied on reuse study

Study T. G. X2 p Position Outlier
c 1 5.104305 0.02386654 highest 2489414342
First 2 2930583 0.08691612 highest 1390.72776
M 1 4.091151 0.04310829 highest 1203.920754
2 2228028 0.1355267 highest 482.570996
c 1 4.552248 0.03287556 highest 1698.301114
Replication 2 5.013908 0.02514448 highest 1682.391335
M 1 3917559 0.04778423 highest 1029.073104
2 2943313 0.08623369 lowest 179.467569

Chi-squared test is a statistical test used to detect outliers. It was employed to detect eight outliers in the reuse study. These
outliers are removed in the last t-test.

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4 Page 28 of 34
www.jserd.com/content/1/1/4

First Reuse Execution Second Reuse Execution
2500 $ 2500
) —e— Conv.) —e— Conv.
2 007 g Model 2 20009 & Model
% 1500 S 1500
< 1000 :&_%/ 1000
(] (0]
£ 500 £ 500
= =
OIIIIINIIIIIIIII\ OIXNXXNXXNXINXNNN
Participant (order) Participant (order)

Figure 12 Reuse process timings line graph. A graph in which the reuse experiment timings are plotted.
The timings are plotted as points in ascendant order, which are then linked with lines. This graph is useful to
visualize the data dispersion.

and another T-Test after removing eight outliers. The seconds that were spent during
the process were processed using the statistic computation environment “R” (Free Soft-
ware Foundation, Inc 2012). The results of the T-Tests are shown on Table 19.

The first column of this table contain the type of T-Test. The second columns indi-
cate the source of the data, which refers to the datasets created for each technique. The
“Means” columns indicate the resultant means. The “d.t” columns stand for the degree of
freedom; “t” and “p” are variables considered in the hypothesis testing.

The “Chi-squared test” was applied in order to detect the outlier. The results of the
“Chi-squared test” for the maintenance study are found on Table 20. These outliers were
removed when calculating the unpaired T-Test. On the table, the unpaired T-Test is
refered as “Two-sided”. The ‘M’ in the techniques column indicates the use of our tool,
while ‘C’ indicates the conventional technique. The group column indicates the number of
the group. The X2 indicates the results of an comparison to the variance of the complete
set. The position column indicates their position on the set, i.e., highest or lowest. And
finally, the outlier column shows the timings in seconds that were considered abnormal.

In order to achieve better visualization of the outliers, we also provide two plots of
the data sets. In Figure 13, there are line graphs which may be used to visualize the dis-
persion of the timing records. In these plots, the timings for each technique are ordered
independently. Therefore, the participant numbers in these plots are not related to their
identification codes.

If we take into consideration the maintenance study and its analysis illustrated on
Table 19, we cannot reject the “HO,,” hypothesis that states the techniques are equivalent
because all p-values are bigger than the margin of error (0.01%), which corresponds to the
established significance level of 99.99%. Therefore, statistically , we can assume that the
effort needed to edit a reuse code and a reuse model is approximately equal.

Table 19 Maintenance study t-test results

T-test Data Means d.f. t p
Paired First -345.6539 15 -3.971923 0.001227479
Paired Replication -95.88892 15 -1.191781 0.2518624
431.3323
Two-sided Both - 24.22097 -2.662684 0.0135614
641.0024

T-Test is a statistical test used to determine the correct hypothesis for both studies. This table lists the results for the
maintenance study.

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4
www.jserd.com/content/1/1/4

Table 20 Chi-squared test for outlier detection applied on maintenance study

Study T. G. X2 p Position Outlier
c 1 2.350449 0.1252469 lowest 182.751342
First 2 2.152789 0.1423112 highest 458576312
M 1 5.788559 0.0161308 highest 1952.875079
2 3.598538 0.05783041 highest 1283.533192
c 1 1771974 0.183138 highest 1082.486509
Replication 2 4.338041 0.03726978 highest 493.115942
M 1 2422232 0.1196244 highest 837.879299
2 4.87366 0.02726961 lowest 1554.176697

Chi-squared test is a statistical test used to detect outliers. It was employed to detect eight outliers in the maintenance
study. These outliers are removed in the last t-test.

6.3
6.3.1

Threats to validity

Internal validity
Experience Level of Participants. The different levels of knowledge of the participants
could have compromised the data. To mitigate this threat, we divided the
participants in two balanced groups considering their experience level and later we
rebalanced the groups considering the preliminary results. Although all participants
already had a prior experience in how to reuse the CF in the conventional way,
during the training phase, they were taught how to make the reuse with the
model-based tool and also how to reuse it in the normal way. So, this could have
provided the participants even more experience with the conventional technique.
Productivity under evaluation. The students could have thought that their results in
the experiment will influence their grades in the course. In order to mitigate this, we
explained to the students that no one was being evaluated and their participation was
considered anonymous.
Facilities used during the study. Different computers and configurations could have
affected the recorded timings. However, participants used the same configuration,
make, model, and operating system in equal numbers. The participants were not
allowed to change their computers during the same activity. This means thatevery

participant had to execute every exercise using the same computer.

2500
2000
1500
1000
500
0

Time (seconds)

This graph

First Maintenance Execution

—&—— Conv.
—— Model

T T T T T T 17T
— ANM T NONDOO

10 4
11
12
13
14
15
16 —

Participant (order)

is useful to visualize the data dispersion.

Time (seconds)

Figure 13 Maintenance process timings line graph. A graph in which the maintenance experiment
timings are plotted. The timings are plotted as points in ascendant order, which are then linked with lines.

Second Maintenance Execution

2500
2000
1500
1000

500

Participant (order)

Page 29 of 34

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4 Page 30 of 34
www.jserd.com/content/1/1/4

6.3.2 Validity by construction
e Hypothesis expectations: the participants already knew the researchers and knew
that the model-based tool was supposed to ease the reuse process, which reflects one
of our hypothesis. Both of these issues could affect the collected data and cause the
experiment to be less impartial. In order to avoid impartiality, we enforced that the

participants had to keep a steady pace during the whole study.

6.3.3 External validity
e Interaction between configuration and treatment. It is possible that the reuse
exercises were not accurate for every reuse of a crosscutting framework for real world
applications. Only a single crosscutting framework was considered in our study and
the base applications were of the same complexity. To mitigate this threat, we
designed the exercises with applications that were based on the ones existing in
reality.

6.3.4 Conclusion validity
e Measure reliability. It refers to metrics used to measuring the reuse effort. To
mitigate this threat, we have used only the time, necessary to complete the process,
which was captured by a data collector in order to allow better precision;

e Low statistic power. The ability of a statistic test to reveal the reliable data. We
applied three T-Tests to analyze the experiment data statistically to avoid the low
statistic power.

7 Related work

The approach proposed by Cechticky et al. (2003) allows the reuse of object-oriented
application framework by applying the tool called OBS Instantiation Environment. That
tool supports graphical models to define the settings to generate the expected appli-
cation. The model-to-code transformation generates a new application that reuses the
framework.

In another related work, Braga and Masiero (2003) proposed a process to create frame-
work instantiation tools. The process is specific for application frameworks defined by a
pattern language. The process application assures that the tool is capable of generating
every possible framework variability.

The approach defined by Czarnecki et al. (2006) defines a round-trip process to cre-
ate domain specific languages for framework documentation. These languages can be
employed to represent the information that the framework programming interfaces need
during the instantiation and the description of these interfaces. This is a bilateral process,
i.e., two transformers are fashioned: a transformer from model to code and a transformer
from code to model. Generated codes are transformed back to models. This allow the
comparison of the source model with the generated model, which should be perfectly
equal. If differences are found, the language or the transformers should be improved in
the activity called “conciliation”.

Santos et al. proposed a process and a tool to suport framework reuse (Santos et al.
2008). In this approach, the domain engineer must supply a reuse example which must
be tagged. These tags mark points of the reuse example that is to be replaced in order to
create different applications.

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4 Page 31 of 34
www.jserd.com/content/1/1/4

The tags are mapped into a domain specific language that lists information that the
application engineer should supply in order to reuse the framework. This domain specific
language instances are, then, interpreted by a tool that is capable of listing the points to
complete framework instantiation. This is the only related work that uses Aspect] and the
aspect-oriented programming.

Our proposal differs from their approach on the following topics: 1) their approach is
restricted to frameworks known during the development of the tool; 2) the reuse process
is applied to application frameworks, which are used to create new applications.

Another approach was proposed by Oliveira et al. (2011). Their approach can be applied
to a greater number of object oriented frameworks. After the framework development,
its developer may use the approach to ease the reuse by writing the cookbook in a formal
language known as Reuse Definition Language (RDL) which can also be used to gener-
ate the source code. This process allows us to select variabilities and resources during
the reuse procedure, as long as the framework engineer specifies the RDL code correctly.
These approaches were created to support the reuse procedure during the final develop-
ment stages. Therefore, the approach that is proposed in this paper differs from others
by supporting earlier development phases. This allows the application engineer to initiate
the reuse process since the analysis phase while developing an application compatible to
the reused frameworks.

Although the approach proposed by Cechticky et al. (2003) is specific for only one
framework, it can be employed since the design phase. The other related approach can
be employed in a greater number of frameworks: however, it is used on a lower abstrac-
tion level, and does not support the design phase. Another difference is the generation
of aspect-oriented code, which improves code modularization. Finally, the last difference
that must be pointed out is the use of experiments to evaluate the approach, while the
presented related works only show case studies employing their tools.

8 Conclusions

In this article we presented a model-based approach that raises the abstraction level
of reusing Crosscutting Frameworks (CFs) - a type of aspect-oriented framework. The
approach is supported by two models, called Reuse Requirements Model (RRM) and
Reuse Model (RM). The RRM serves as a graphical view for enhancing cookbooks
and the RM supports application engineers in performing the reuse process by fill-
ing in this model and generating the source-code. Considering our approach, a new
reuse process is delineated allowing engineers to start the reuse in early develop-
ment phases. Using our approach, application developers do not need to worry about
either architectural or source-code details, shortening the time necessary to conduct the
process.

We have evaluated our approach by means of two experiments. The first one was
focused on comparing the productivity of our model-based approach to the ad-hoc
approach. The results showed the improvement of approximately 97% in favor of our
approach. We claim that this improvement can be influenced by the framework charac-
teristics but not by the application characteristics. If a CF requires a lot of heterogeneous
joinpoints we think this percentage will go down because the application engineer will
need to write the joinpoints (method names, for instance) either using both our approach
or the ad-hoc one. However, if the CF is heavily based on inter-type declarations and the

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4 Page 32 of 34
www.jserd.com/content/1/1/4

returning of values, then we claim that the productivity can be even higher, as it is very
straightforward to do so while using our approach.

The second experiment was focused on observing the effort in maintaining applications
that were developed with our approach (CF-based applications) and with the ad-hoc one.
It was not possible to conclude which process takes less effort in this case; however, we
believe that they are approximately equivalent. The participants argued that the tool could
be improved to avoid opening new forms while entering the model attributes, which, as
they claim, had disrupted their work and prevented them from reaching a better perfor-
mance in this case. It is important that in this experiment we did not provide errors that
developers could create while using the conventional approach, since our model approach
shields the developers from doing that. We have also provided the raw data gathered
during the studies as Additional files 1 and 2.

As the possible limitations of our work, we can mention the following. Once the
models have been created on top of the Eclipse Modeling Project, they cannot be used
in another development environment. Besides, the code generator only produce codes
for Aspect], therefore, only crosscutting frameworks developed in this language can be
currently supported. A simple extension is possible to allow this approach to support
the reuse of non-crosscutting frameworks written in Java and Aspect]. Also, we have
not yet evaluated how to deal with coupling of multiple CFs to a single base applica-
tion. Although this functionality is already supported in our approach, some frameworks
may select the same joinpoints, which may cause conflicts and lead to unpredictable
results.

Long term future works are: (i) providing a support for framework engineers so that
they do not have to build the RRM manually. The idea is to develop a tool which can assist
them in creating this model in a more automatic way; (ii) performing an experiment to
verify whether the abstractions of the model elements are on a suitable level (iii) analyzing
the reusability of the metamodel abstract classes.

Additional files

Additional file 1: Contains the raw data gathered during the Reuse study.
Additional file 2: Contains the raw data gathered during the Maintenance study.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

Every author was important for the completion of this article, however, their previous activities are also important to
reach the research results, then, these activities are listed in this section. TG developed the models, model editors and
model transformers. He also designed and conducted the studies and the considered applications. This work was also
presented as a master's thesis in Federal University of Sdo Carlos, Brazil. RSD was a contributor who developed the related
tools in which this work is related to. He developed a repository for crosscutting frameworks that allow their sharing and
integrates to the tool described herein in order to provide a full featured crosscutting framework reuse environment.
These tools are available as Eclipse plugins. VWWdC is a professor at Federal University of Sdo Carlos which is responsible for
the crosscutting framework reuse project. He also developed the crosscutting framework used as example and worked
on the study executions. OPL is a professor at Polytechnic University of Valencia that provided useful background
information regarding model-driven development and code generator tools. He is also part of the crosscutting
framework reuse project. All authors read and approved the final manuscript.

Acknowledgements

The authors would like to thank CNPq for funding (Processes 132996/2010-3 and 560241/2010-0) and for the Universal
Project (Process Number 483106/2009-7) in which this article was created. Thiago Gottardi would also like to thank
FAPESP (Process 2011/04064-8).

http://www.biomedcentral.com/content/supplementary/2195-1721-1-4-S1.CSV
http://www.biomedcentral.com/content/supplementary/2195-1721-1-4-S2.CSV

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4 Page 33 of 34
www.jserd.com/content/1/1/4

Author details

" Departmento de Computacéo, Universidade Federal de Sao Carlos, Caixa Postal 676, 13.565-905, Sao Carlos, Sao Paulo,
Brazil. 2Instituto de Ciéncias Matematicas e Computacéo, Universidade de Sao Paulo, Av. Trabalhador Sao Carlense, 400,
S&o Carlos, Sao Paulo, Brazil. 3Universidad Politecnica de Valencia, Camino de Vera s/n, Valencia, Spain.

Received: 7 February 2013 Accepted: 6 September 2013
Published: 29 October 2013

References

Antkiewicz M, Czarnecki K (2006) Framework-specific modeling languages with round-trip engineering. In: ACM/IEEE 9th
international conference on model driven engineering languages and systems (MoDELS). Springer-Verlag, Genova,
pp 692-706. http://www.springerlink.com/content/y081522127011160/fulltext.pdf

Apache Software Foundation (2012) Apache Derby. http://db.apache.org/derby/

Aspect) Team (2003) The Aspect)(TM) Programming Guide. http://www.eclipse.org/aspectj/doc/released/progguide/

Braga R, Masiero P (2003) Building a wizard for framework instantiation based on a pattern language. In: Konstantas D,
Léonard M, Pigneur Y, Patel S (eds) Object-oriented information systems, Volume 2817 of Lecture notes in computer
science. Springer, Berlin / Heidelberg, pp 95-106. http://dx.doi.org/10.1007/978-3-540-45242-3_10

Bynens M, Landuyt D, Truyen E, Joosen W (2010) Towards reusable aspects: the mismatch problem. In: Workshop on
Aspect, Components and Patterns for Infrastructure Software (ACP4IS'10). Rennes and Saint Malo, France. ACM,
New York, NY, USA, pp 17-20

Camargo VW, Masiero PC (2005) Frameworks Orientados A Aspectos. In: Anais Do 19° Simpdsio Brasileiro De Engenharia
De Software (SBES2005). Uberlandia-MG, Brasil, Outubro

Camargo VWV, Masiero PC (2004) An approach to design crosscutting framework families. In: Proc. of the 2008 AOSD
workshop on Aspects, components, and patterns for infrastructure software, ACP4IS '08. Brussels, Belgium. ACM,
New York, NY, USA. http://dl.acm.org/citation.cfm?id=1404891.1404894

Cechticky V, Chevalley P, Pasetti A, Schaufelberger W (2003) A generative approach to framework instantiation. In:
Proceedings of the 2nd international conference on Generative programming and component engineering, GPCE
'03. Springer-Verlag, New York, Inc.,, New York, pp 267-286. http://portal.acm.org/citation.cfm?id=954186.954203

Clark T, Evans A, Sammut P, Willans J (2004) Transformation Language Design: A Metamodelling Foundation, ICGT, Volume
3256 of Graph Transformations, Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, pp 13-21

Clements P, Northrop L (2002) Software product lines: practices and patterns, 3rd edn. The SEI series in software
engineering, 563 pages, first edition. Addison-Wesley Professional, Boston, United States of America. http://www.
pearsonhighered.com/educator/product/Software-Product-Lines-Practices-and-Patterns/9780201703320.page

Cunha C, Sobral J, Monteiro M (2006) Reusable aspect-oriented implementations of concurrency patterns and
mechanisms. In: Aspect-Oriented Software Development Conference (AOSD'06). Bonn, Germany. ACM, New York, NY,
USA

Eclipse Consortium (2011) Graphical Modeling Framework, version 1.5.0. Graphical Modeling Project. http://www.eclipse.
org/modeling/gmp/

Efftinge S (2006) openArchitectureWare 4.1 Xtend language reference. http://www.openarchitectureware.org/pub/
documentation/4.3.1/html/contents/core_reference.html

Fayad M, Schmidt DC (1997) Object-oriented application frameworks. Commun ACM 40: 32-38

Fowler M (2010) Domain specific languages, 1st edition. 640 pages, first edition. Addison-Wesley Professional, Boston,
United States of America. http://www.pearsonhighered.com/educator/product/DomainSpecific-Languages/
9780321712943.page

France R, Rumpe B (2007) Model-driven development of complex software: a research roadmap. In: 2007 Future of
Software Engineering, FOSE 07. IEEE Computer Society, Washington, pp 37-54

Free Software Foundation, Inc (2012) R. http://www.r-project.org/

Huang M, Wang C, Zhang L (2004) Towards a reusable and generic aspect library. In: Workshop of the Aspect Oriented
Software Development Conference at AOSDSEC'04, AOSD'04. Lancaster, United Kingdom. ACM, New York, NY, USA

Kiczales G, Lamping J, Mendhekar A, Maeda C, Lopes C, marc Loingtier J, Irwin J (1997) Aspect-oriented programming.
In: ECOOP. Springer-Verlag, Heidelberger, Berlin, Germany

Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J, Griswold WG (2001) An overview of aspect]. Springer-Verlag,
Heidelberger, Berlin, Germany, pp 327-353

Kulesza U, Alves E, Garcia R, Lucena CJPD, Borba P (2006) Improving Extensibility of object-oriented frameworks with
aspect-oriented programming. In: Proc. of the 9th Intl Conf. on software reuse (ICSR'06). Torino, Italy, June 12-15,
2006, Lecture Notes in Computer Science, Programming and Software Engineering, vol 4039. Springer-Verlag,
Heidelberger, Berlin, Germany, pp 231-245

Mortensen M, Ghosh S (2006) Creating pluggable and reusable non-functional aspects in AspectC++. In: Proceedings of
the fifth AOSD workshop on aspects, components, and patterns for infrastructure Software. Bonn, Germany.

ACM, New York, NY, USA

Oliveira TC, Alencar P, Cowan D (2011) ReuseTool-An extensible tool support for object-oriented framework reuse.
J Syst Softw 84(12): 2234-2252. http://dx.doi.org/10.1016/},j55.2011.06.030

Pastor O, Molina JC (2007) Model-driven architecture in practice: a software production environment based on
conceptual modeling. Springer-Verlag, New York, Secaucus

Sakenou D, Mehner K, Herrmann S, Sudhof H (2006) Patterns for re-usable aspects in object teams. In: Net Object Days.
Erfurt, Germany. Object Teams, Technische Universitat Berlin, Berlin, Germany

Santos AL, Koskimies K, Lopes A (2008) Automated domain-specific modeling languages for generating
framework-based applications. Softw Product Line Conf Int 0: 149-158

Schmidt DC (2006) Model-driven engineering. IEEE Computer 39(2). http://www.truststc.org/pubs/30.html

Shah V, Hill V (2004) An aspect-oriented security framework: lessons learned. In: Workshop of the Aspect Oriented
Software Development Conference at AOSDSEC'04, AOSD'04. Lancaster, United Kingdom. ACM, New York, NY, USA

http://www.springerlink.com/content/y08152212701l160/fulltext.pdf
http://db.apache.org/derby/
http://www.eclipse.org/aspectj/doc/released/progguide/
http://dx.doi.org/10.1007/978-3-540-45242-3_10
http://dl.acm.org/citation.cfm?id=1404891.1404894
http://portal.acm.org/citation.cfm?id=954186.954203
http://www.pearsonhighered.com/educator/product/Software-Product-Lines-Practices-and-Patterns/9780201703320.page
http://www.pearsonhighered.com/educator/product/Software-Product-Lines-Practices-and-Patterns/9780201703320.page
http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/modeling/gmp/
http://www.openarchitectureware.org/pub/documentation/4.3.1/html/contents/core_reference.html
http://www.openarchitectureware.org/pub/documentation/4.3.1/html/contents/core_reference.html
http://www.pearsonhighered.com/educator/product/DomainSpecific-Languages/9780321712943.page
http://www.pearsonhighered.com/educator/product/DomainSpecific-Languages/9780321712943.page
http://www.r-project.org/
http://dx.doi.org/10.1016/j.jss.2011.06.030
http://www.truststc.org/pubs/30.html

Gottardi et al. Journal of Software Engineering Research and Development 2013, 1:4 Page 34 of 34
www.jserd.com/content/1/1/4

Soares S, Laureano E, Borba P (2006) Distribution and persistence as aspects. Software: Practice and Experience 36(7):
711-759. John Wiley & Sons, Ltd. Hoboken, NJ, USA. http://onlinelibrary.wiley.com/doi/10.1002/spe.715/abstract

Soudarajan N, Khatchadourian R (2009) Specifying reusable aspects. In: Asian Workshop on Aspect-Oriented and Modular
Software Development (AOAsia'09). Auckland, New Zealand. AOAsia, Chinese University of Hong Kong, Hong Kong,
People’s Republic of China

Wohlin C, Runeson P, Host M, Ohlsson MC, Regnell B, Wesslén A (2000) Experimentation in software engineering: an
introduction. First edition. 204 pages. Kluwer Academic Publishers, Norwell, MA, USA

Zanon |, Camargo W, Penteado RAD (2010) Reestructuring an application framework with a persistence crosscutting
framework. INFOCOMP 1: 9-16

doi:10.1186/2195-1721-1-4
Cite this article as: Gottardi et al.: Model-based reuse for crosscutting frameworks: assessing reuse and maintenance
effort. Journal of Software Engineering Research and Development 2013 1:4.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

http://onlinelibrary.wiley.com/doi/10.1002/spe.715/abstract

	Abstract
	Background
	Method
	Results
	Conclusion

	1 Content
	2 Introduction
	3 Background
	3.1 Model-driven development
	3.2 Aspect-Oriented Programming
	3.3 Crosscutting frameworks

	4 Model-based reuse approach
	4.1 Reuse process
	4.2 Approach usage example
	4.3 Domain engineering
	4.4 Application engineering

	5 Methods
	5.1 Reuse study definition
	5.2 Reuse study planning
	5.2.1 Context selection
	5.2.2 Formulation of hypotheses
	5.2.3 Variable selection
	5.2.4 Participant selection criteria
	5.2.5 Design of the study
	5.2.6 Instrumentation for the reuse study

	5.3 Operation for reuse study
	5.3.1 Preparation
	5.3.2 Execution
	5.3.3 Data validation
	5.3.4 Data collection

	5.4 Data analysis and interpretation for reuse study
	5.5 Maintenance study definition
	5.6 Maintenance study planning
	5.6.1 Context selection
	5.6.2 Formulation of hypotheses
	5.6.3 Variable Selection
	5.6.4 Participant selection criteria
	5.6.5 Design of the Maintenance Study
	5.6.6 Instrumentation for the maintenance study

	5.7 Operation for maintenance study
	5.7.1 Preparation
	5.7.2 Operation Execution
	5.7.3 Data validation
	5.7.4 Data collection

	5.8 Data analysis and interpretation for maintenance study

	6 Results and discussion
	6.1 Hypotheses testing for reuse study
	6.2 Hypotheses testing for maintenance study
	6.3 Threats to validity
	6.3.1 Internal validity
	6.3.2 Validity by construction
	6.3.3 External validity
	6.3.4 Conclusion validity

	7 Related work
	8 Conclusions
	Additional files
	Additional file 1
	Additional file 2

	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

