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Abstract—Refactorings are a well known technique that assist
developers in reformulating the overall structure of applications
aiming to improve internal quality attributes while preserving
their original behavior. One of the most conventional uses of
refactorings are in reengineering processes, whose goal is to
change the structure of legacy systems aiming to solve previously
identified structural problems. Architecture-Driven Moderniza-
tion (ADM) is the new generation of reengineering processes;
relying just on models, rather than source code, as the main
artifacts along the process. However, although ADM provides the
general concepts for conducting model-driven modernizations,
it does not provide instructions on how to create or apply
refactorings in the Knowledge Discovery Metamodel (KDM)
metamodel. This leads developers to create their own refactoring
solutions, which are very hard to be reused in other contexts.
One of the most well known and useful refactoring catalogue
is the Fowler’s one, but it was primarily proposed for source-
code level. In order to fill this gap, in this paper we present a
model-oriented version of the Fowler’s Catalogue, so that it can
be applied to KDM metamodel. In this paper we have focused
on four categories of refactorings: (i) renaming, (ii) moving
features between objects, (iii) organizing data, and (iv) dealing
with generalization. We have also developed an environment
to support the application of our catalogue. To evaluate our
solution we conducted an experiment using eight open source
Java application. The results showed that our catalogue can be
used to improve the cohesion and coupling of the legacy system.

Index Terms—Refactoring, KDM, ADM, Empirical Study

I. INTRODUCTION

Empirical studies show that refactoring can improve main-

tainability and reusability of systems [1]. Not only existing

research which suggests that refactoring is useful, but it also

suggests that refactoring is a frequent practice [2].
In a parallel and related research line, Object Management

Group has employed a lot of effort to define standards in

the refactoring process, creating the concept of ADM. ADM

is the next generation of software reengineering, relying on

standard models to perform the whole process. ADM follows

the Model-Driven Development (MDD) [3] guidelines and

comprises two major steps. Firstly a reverse engineering is

performed starting from the source code and a model instance

is created. Next successive transformations are applied to this

model up to reach a good abstraction level in model called

KDM. Upon this model, several refactorings, and optimiza-

tions can be performed in order to solve problems found in

the legacy system. Secondly a forward engineering is carried

out and the source code of the modernized target system

is generated. According to the OMG the most important

artifact provided by ADM is the KDM metamodel, which is

a multipurpose standard metamodel that represents all aspects

of the existing information technology architectures. The idea

behind the standard KDM is that the community starts to create

parsers from different languages to KDM. As a result every-

thing that takes KDM as input can be considered platform and

language-independent. For example, a refactoring catalogue

for KDM can be used for refactoring systems implemented in

different languages. The current version of the KDM is 1.3

and it is being adopted by ISO as ISO/IEC 19506 [3].

In the area of object-oriented programming, refactorings are

the technique for improving the structure of legacy system

without changing its external behavior [2]. Nowadays it is

evident that refactorings are useful to improve the quality of

source code, and thus, to increase its maintainability. However,

although ADM, and mainly KDM, had been proposed to sup-

port the modernization of legacy systems, up to this moment

there are no proposals of refactoring catalogues for KDM.

Therefore, software modernizers/reengineers need to develop

your own solutions to transform source KDM instances in

target ones. Usually these solutions are proprietary and very

difficult to reuse. Besides, available object-oriented refactoring

catalogues can not be reusable as they are, because they

have been created to source-code refactoring. This forces the

software engineer to refactor a legacy system without any kind

of dedicated support as using the KDM model.

As refactoring a legacy system can be very complex, manual

modifications without any catalogue may lead to unwanted

side-effects and result in a tedious and error-prove refactoring

process. Therefore, we claim that working out a catalogue of

refactoring to the KDM specification is indispensable because

software engineers can reduce time and effort during the

refactoring of legacy systems once we are using techniques of

MDD [4]. Furthermore, we also argue that devising a catalogue

of refactoring by means of KDM specification makes this

catalogue be both language-independent and standardized [5].

We believe there are two main hurdles to be overcome so

that refactoring techniques can be used in the KDM model in

an effective and widespread way. The first hurdle is the lack

a catalogue of well known refactorings based on the KDM
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model. Also, software modernizers would greatly benefit from

the possibility to follow a catalogue of refactoring, in practice

they mostly rely on experience or intuition because of the

lack of approaches providing a catalogue for KDM. In order

to address this first hurdle we present a dedicated refactoring

catalogue for the KDM metamodel which is based on the

catalogue proposed by Fowler [2]. We chose this catalog once

it contains well known, basic and fine-grained refactorings.

This allows that larger refactorings can be applied when

combining a sequence of them, i.e., a chain of refactorings.

A second hurdle is the absence of an Integrated Develop-

ment Environments (IDEs) to lead engineers to automatically

apply refactorings using the KDM model as such exist in

others object-oriented languages. The catalogue presented by

Fowler et al. [2] provided a basis on which developers could

rely to build tool support for object-oriented refactoring:

similar catalogue for the KDM models are likely to bring

similar benefits to assist software modernizers during the mod-

ernization process. Therefore, to overcome the second hurdle

we devised a Eclipse plug-in named Modernization-Integrated

Environment (MIE), which is an environment that implements

all refactoring available in the catalogue herein. The novelty of

this environment is not the supporting technologies and tools,

but rather its catalogue of refactoring based on KDM.

Moreover, in order to provide some evidence of the our

dedicated refactoring catalogue for KDM we performed an

experiment using eight open source Java application. More

specifically, we conducted a reverse engineering in order to get

the KDM model of these eight open source Java application.

Then, we applied three different refactorings in their KDM

models. Experimental results show that the our dedicated

refactoring catalogue improved the legacy system’s cohesion.

Therefore, the main contributions of this paper are threefold:

(i) we show a dedicated refactoring catalogue for KDM; (ii) we

demonstrate the feasibility of our catalogue by implementing

it as an Eclipse plug-in; (iii) we show the results of an

experiment by applying some refactorings to eight open source

programs and their KDM models.

This paper is structured as follows: in Section II ADM

and KDM are explained; in Section III, the catalogue of

refactoring for KDM is shown; in Section IV, a Eclipse plug-

in to support the catalogue is described; Section V summarizes

the experimental results; in Section VI, there are related works

and Section VII suggests future work and makes concluding

remarks.

II. BACKGROUND

A. ADM and KDM

ADM is the concept of modernizing existing systems with a

focus on all aspects of the current systems architecture and the

ability to transform current architectures to target architectures

by using all principles of MDD [6, p. 60].

To perform a system modernization, ADM introduces sev-

eral modernization standards: Abstract Syntax Tree Meta-

model (ASTM), Knowledge Discovery Metamodel (KDM),

Structured Metrics Metamodel (SMM), System Assurance &

Evidence, Software Quality and Business Architecture Stan-

dards. These standards collectively provide or can provide the

universe of metadata that defines existing software environ-

ments. However, here we focus on KDM because it is the

key cornerstone of ADM and the main ideas of our research.

The goal of the KDM standard is to define a metamodel to

represent all the different legacy software artifacts involved in

a legacy information system (e.g. source code, user interfaces,

databases, etc.). The metamodel of the KDM standard provides

a comprehensive high-level view of the behavior, structure

and data of legacy information systems by means of a set of

facts. The main purpose of the KDM specification is not the

representation of models related strictly to the source code

nature such as Unified Modeling Language (UML). While

UML can be used to generate new code in a top-down manner,

an ADM-based process using KDM starts from the different

legacy software artifacts and builds higher-abstraction level

models in a bottom-up manner through reverse engineering

techniques.

KDM specification owns some KDM domain, each domain

defines an architectural viewpoint. In order to define the

catalogue of refactoring for the KDM we need to focus just on

the Program Element Layer - more specifically in the Code

Package, which represents the code elements of a program

(classes, fields and methods) and their associations. Therefore,

it is important to dig a little deeper in the Code Package.

The Code Package consists of 24 classes and contains all

the abstract elements for modeling the static structure of the

source code. In Table I is depicted some of them. This table

identifies KDM metaclasses possessing similar characteristics

to the static structure of the source code. Some metaclasses can

be direct mapped, such as Class from object-oriented language,

which can be easily mapped to the ClassUnit metaclass from

KDM.

Table I
METACLASSES FOR MODELING THE STATIC STRUCTURE OF THE

SOURCE-CODE

Source-Code Element KDM Element

Class ClassUnit
Interface InterfaceUnit
Method MethodUnit

Field StorableUnit
Local Variable Member

Parameter ParameterUnit
Association KDM RelationShip

III. REFACTORING CATALOGUE FOR KNOWLEDGE

DISCOVERY METAMODEL

In this section we describe the catalogue of refactoring for

the KDM herein proposed. To create this catalogue we adapted

some fine-grained refactorings proposed by Fowler [2]. As

stated before we chose the Fowler’s refactorings once them

are well known, basic and fine-grained refactorings. It is worth

highlighting that for drafting the catalogue of refactorings in

this paper, we also used a format similar to Fowler [2].

The catalogue is structured in four groups as can be seen

in the Table II, which contains 17 refactorings followed by
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Table II
REFACTORING CATALOGUE FOR KNOWLEDGE DISCOVERY METAMODEL

N Name of the Refactoring Description
Rename Feature

1 Rename ClassUnit, StorableUnit and MethodUnit A ClassUnit, a StorableUnit or a MethodUnit does not reveal its purpose
Moving Features Between Objects

2 Move MethodUnit A MethodUnit is being using by another ClassUnit than the ClassUnit on which it is defined.
3 Move StorableUnit A StorableUnit is used by another ClassUnit more than the ClassUnit on which it is defined.
4 Extract ClassUnit You have one ClassUnit doing work that should be done by two ClassUnit.
5 Inline ClassUnit A ClassUnit is not doing very much.

Organing Data
6 Replace data value with Object You have a data item that needs additional data or behavior.
7 Encapsulate StorableUnit There is a public StorableUnit.
8 Replace Type Code with ClassUnit A ClassUnit has a numeric type code that does not affect its behavior.
9 Replace Type Code with SubClass You have an immutable type code that affects the behavior of a ClassUnit.
10 Replace Type Code with State/Strategy You have a type code that affects the behavior of a ClassUnit, but you cannot use subclassing.

Dealing with Generalization
11 Push Down MethodUnit Behavior on a superclass is relevant only for some of its subclasses.
12 Push Down StorableUnit A StorableUnit is used only by some subclasses.
13 Pull Up StorableUnit Two subclasses have the same StorableUnit.
14 Pull Up MethodUnit You have MethodUnits with identical results on subclasses.
15 Extract SubClass A ClassUnit has features that are used only in some instances.
16 Extract SuperClass You have two ClassUnits with similar features.
17 Collapse Hierarchy A superclass and subclass are not very different.

a short description. Due to space limitations in the follow-

ings subsections is described only three refactorings: Extract
ClassUnit, Replace data value with Object and Pull Up
MethodUnit. In order to highlight how these refactorings can

be applied into KDM we also show two algorithms. These

algorithms can assist other software modernizers to create

news refactorings once these refactorings show explicitly how

to handle the KDM metamodel. In the followings subsections

a description of these refactorings are provided.

A. Extract ClassUnit

Input: A source ClassUnit to extract responsibilities, a name

of the new class, instances of the meta-class that represent

StorableUnit to be moved and instances of the meta-class that

represent MethodUnits to be moved.

Summary: You have one ClassUnit doing work that should

be done by two.

Solution: Create a new ClassUnit and move the relevant

StorableUnit and MethodUnits from the old ClassUnit into

the new ClassUnit.

Parameters:
• A source ClassUnit to extract responsibilities.

• The name of the new ClassUnit.

• Instances of the meta-class that represent StorableUnits

to be moved.

• Instances of the meta-class that represent MethodUnits to

be moved.

Refactoring Guidelines:
• Split the responsibilities of the class.:

– Identify the StorableUnits that should not be in

source ClassUnit.

– Identify the MethodUnits that should not be in source

ClassUnit.

• Create a new instance of ClassUnit to express the split-off

responsibilities.

• Use Move StorableUnit on each StorableUnit you wish

to move.

• Use Move MethodUnit on each MethodUnit you wish

to move.

Algorithm 1: Extract ClassUnit

Input: String newName, ClassUnit class, Package p,
StorableUnit[] fields, MethodUnit[] methods

1 begin
2 ClassUnit extracted =

CodeFactory.eINSTANCE.createClassUnit() �;
3 if extracted != null then
4 extracted.setName(newName);
5 extracted.getSource.add(SourceFactory.

eINSTANCE.createSourceRef());
6 p.getCodeElement().add(extracted);
7 else
8 else return null
9 end

10 StorableUnit link =
CodeFactory.eINSTANCE.createStorableUnit() �;

11 if link != null then
12 link.setName(extracted.getName().toLowerCase());

13 link.getAttribute().add(KdmFactory.eINSTANCE.
createAttribute());

14 link.getSource().add(SourceFactory.eINSTANCE.
createSourceRef());

15 extracted.getCodeElement().add(link);
16 else
17 else return null
18 end
19 foreach f in fields do
20 extracted.getCodeElement().add(f) �;
21 end
22 foreach m in methods do
23 extracted.getCodeElement().add(m) �;
24 end
25 return extracted
26 end

To illustrate how the refactoring Extract ClassUnit can

be implemented in the KDM model, consider the chunk of
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pseudo code depicted in Algorithm 1. Before the line 2 be

executed one must give the following inputs: (i) a name to

set the new ClassUnit, (ii) a source ClassUnit to extract either

StorableUnit or MethodUnit, (iii) a Package to put the new

ClassUnit, and (iv) a set of StorableUnit and MethodUnit. In

line 2 an instance of ClassUnit is created. This ClassUnit is

created by means of the Abstract Factory Pattern �. If the

condition in line 3 evaluates to true, the statements in lines

4, 5 and 6 are executed. During their execution the name of

the new ClassUnit is set and in line 6 the new ClassUnit is

added to the instance of Package. In line 10 a StorableUnit

is created � - it represents a link from the old ClassUnit to

the new ClassUnit. If the condition in line 11 evaluates to

true, the statements in lines 12, 13, 14 and 15 are executed.

In line 12 is set the name of the StorableUnit. Line 15 add

the created StorableUnit to the created ClassUnit. Lines 19, 20

and 21 illustrate a loop to move all StorableUnit to the new

ClassUnit �. Similarly, lines 22, 23 and 24 depict another loop

to move all MethodUnit to the new ClassUnit �.

B. Replace Data Value With Object
Input: Instance of the meta-class that represent the Storable-

Unit that needs additional data or behavior.

Summary: You have a StorableUnit that needs additional

data or behavior.

Solution: Turn the StorableUnit into a ClassUnit.

Parameters:
• Instance of the meta-class that represent the StorableUnit

that needs additional data or behavior.

Refactoring Guidelines:
• Create a ClassUnit for the StorableUnit.

• Create a StorableUnit of the same type as the value in

the new ClassUnit.

• Create an instance of MethodUnit to represent the oper-

ation get that takes the StorableUnit as an argument.

• Change the type of the StorableUnit in the source Clas-

sUnit to the new ClassUnit.

• Change the getter in the source ClassUnit to call the getter

in the new ClassUnit.

C. Pull Up MethodUnit
Input: Instances of subclasses that own in common the

superclass.

Summary: A set of subclasses that have at least one Metho-

dUnit in common.

Solution: Move the commons MethodUnits to the super-

class.

Precondition: Identify the commons MethodUnits.

Parameters:
• Instances of subclasses that own in common the super-

class.

Refactoring Steps:
• For each instance that represent the subclasses identify

if there is some MethodUnit in common between these

subclasses.

• For each identified MethodUnit applies the refactoring

Move Method. As parameter to this refactoring it is

necessary the identified MethodUnit and the an instance

of the ClassUnit that represents the superclass to move

it.

In Algorithm 2 is illustrated how the refactoring Pull Up
MethodUnit can be implemented in the KDM model. Before

to start the refactoring Pull Up MethodUnit the line 2

must be executed �. The statement in this line inspects all

MethodUnits in a set of subclasses to ensure they are identical.

If the condition in line 3 evaluates to true, the loop in lines 4,

5 and 6 are executed. In this loop all identical MethodUnit are

moved to an instance of ClassUnit that represent the superclass

�. In line 10 all elements of the superclass are obtained �.

Then two loop are execute in lines 11 and 12, respectively. The

inner loop (line 12) verify if two MethodUnits are equals. If

the condition in line 13 evaluates to true, then a cast is made

in line 14 and the contained MethodUnit is removed in line

15.

Algorithm 2: Pull Up MethodUnit

Input: ClassUnit[] subClasses, ClassUnit superC
1 begin
2 MethodUnit[] commonMethods =

identifyCommonMethodUnit(subClasses) �;
3 if commonMethods != null then
4 foreach mU in commonMethods do
5 superC.getCodeElement().add(mU) � ;
6 end
7 else
8 else return null
9 end

10 EList[] elements = superC.getCodeElement() � ;
11 foreach c in elements do
12 foreach c2 in elements do
13 if (c instanceof MethodUnit) &&

(c.getName().equals(c2.getName())) then
14 MethodUnit mRve = (MethodUnit) c2;
15 superC.getCodeElement().remove(mRve);
16 end
17 end
18 end
19 end

IV. PROOF-OF-CONCEPT IMPLEMENTATION

We devised a Eclipse plug-in named Modernization-

Integrated Environment (MIE) which is split in three layers, as

follows: (i) Core Framework, (ii) Tool Core, and (iii) Graphical

User Interface (GUI). This plugin was devised on the top

of the Eclipse Platform; The first layer we used both Java

and Groovy as programming language. Moreover, the Core

Framework layer contains a set of Eclipse plug-ins on which

our environment is based on, such as MoDisco and Eclipse

Modeling Framework (EMF)1. We used MoDisco2 once it is

1http://www.eclipse.org/modeling/emf/
2http://www.eclipse.org/MoDisco/
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an extensible framework to develop model-driven tools to sup-

port use-cases of existing software modernization and provides

an Application Programming Interface - (API) to easily access

the KDM model. Also, EMF was used to load and navigate

KDM models that were generated with MoDisco. The second

layer, the Tool Core, is where all refactorings provided by

our environment were implemented. It works intensively with

KDM models, which are XML files. Therefore, we use Groovy

to handle those types of files because of the simplicity of its

syntax and fully integrated with Java. Finally, the third layer

is the Graphical User Interface (GUI) that consists of a set of

SWT windows with several options to perform the refactorings

based on the KDM model.

V. EXPERIMENTAL STUDY

This section describes the experiment used to gauge the

catalogue of refactoring for KDM. Moreover, this experiment

also evaluate the devised Eclipse plug-in, which was earlier

described. Specifically, we investigate the following research

question:

RQ1: How much of the program’s maintainability and

understandability (high cohesion) can be affected by applying

a set of refactorings in the KDM model?

A. Goal Definition

We use the organization proposed by the Goal/Question/-

Metric (GQM) paradigm, it describes experimental goals in

five parts, as follows: (i) object of study: the object of

study is our catalogue of refactoring adapted for KDM; (ii)
purpose: the purpose of this experiment is to evaluate the

catalogue of refactoring adapted for KDM; (iii)perspective:
this experiment is run from the standpoint of a researcher; (iv)

quality focus: the primary effect under investigation is the im-

provement in program’s maintainability and understandability

(high cohesion) after applying the refactorings; (v) context:
this experiment was carried out using Eclipse 4.3.2 on a 2.5

GHz Intel Core i5 with 8GB of physical memory running Mac

OS X 10.9.2. Our experiment can be defined as: Analyze
the catalogue of refactoring adapted for KDM model, for
the purpose of evaluation, with respect to improvement in

program cohesion, from the point of view of the researcher,

in the context of heterogeneous subject programs.

B. Hypothesis Formulation

Our research question (RQ1) was formalized into hypothe-

ses so that statistical tests can be performed.

Null hypothesis, H0: there is no difference in cohesion

before and after to apply a set of refactoring into the KDM

model (measured in terms of the metric CAMC and SCC)

which can be formalized as:

H0: μCAMCBf
= μCAMCAf

and μSCCBf
= μSCCAf

Alternative hypothesis, H1: there is a significant difference

in cohesion before and after to apply a set of refactoring into

the KDM model (measured in terms of the metric CAMC and

SCC) which can be formalized as:

H1: μCAMCBf
�= μCAMCAf

and μSCCBf
�= μSCCAf

C. Experimental Design

For our evaluation, we need a set of sample KDM models

to apply the catalogue of refactoring. However, due to the

scarcity of complete KDM models in the public domain,

we adopted a reverse engineering approach and generated

KDM models from eight open source Java projects by using

MoDisco. During the selection of these programs we focused

on covering a broad class of applications. In addition, several

of the subject programs have been studied elsewhere, making

this study comparable with earlier studies. Table III shows

the subject KDM models along with some measures of their

size. Notice that these measures were obtained automatically

by MoDisco and Eclipse Metrics 1.3.6 3.

Table III
KDM MODELS USED IN THE EVALUATION

ID Program KDM Model
ClassUnit StorableUnit MethodUnit

1 org.gadberry.jexel 75 199 240
2 Jester 14 10 59
3 apache.commons.cli 99 707 621
4 apache.commons.io 357 643 2453
5 JUnit 1041 712 2552
6 org.jaxen 353 440 2063
7 org.snmp4j 329 1146 2340
8 org.dom4j 469 653 3032

Total 2737 4510 13360

We selected three refactorings for our evaluation: Extract
ClassUnit, Push Down MethodUnit, and Pull up Metho-
dUnit. We applied each of the three refactorings to every

possible location in each KDM model. It is worth to notice

that all refactorings were applied completely automatically

by means of our devised proof-of-concept tool. To deal with

refactorings that go into infinite loops, we set three minutes

timeout interval. More specifically, we applied the Extract
ClassUnit to every class that had more than 300 LOC (Line

of Code); we applied the Push Down MethodUnit to every

method of a class that had a subclass that was not from a

library using every such subclass as the target of the push-
down; and we applied the refactoring Pull up MethodUnit
to every method of a class that had a superclass that was not

from a library, using every such superclass as the target of the

pull-up. Then after applied all refactorings we counted whether

them were successful, i.e., if the intended refactoring could be

performed, and how many constraints were generated on the

model and on the code side after to apply the refactorings.

We also measured both software quality metrics Cohesion

Amongst the Methods of a Class (CAMC) and Similarity-

based Class Cohesion (SCC)4 before applying the refactoring

on the KDM models and after applying the refactoring on the

KDM models. Notice that in this case we actually measured

these metrics in the code instead of the KDM model. This

was possible as our proof-of-concept tool provides support

for the generating of the code after one finishes to apply the

refactorings.

3http://metrics.sourceforge.net/
4CAMC and SCC both are defined as high-level design quality metrics,

and an increase in their value means an improvement in program cohesion.
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Table IV
RESULTS OF APPLICATION PER PROJECT AND PER REFACTORING

ID Extract ClassUnit Push Down MethodUnit Pull Up MethodUnit 
Exec. Succ. Cons. CAMC SCC Exec Succ. Cons. CAMC SCC Exec Succ. Cons. CAMC SCC 

Bf Af Bf Af Bf Af Bf Af Bf Af Bf Af 
1 75 43 32 0.133 0.189 0.078 0.092 350 245 105 0.133 0.164 0.078 0.094 350 311 39 0.133 0.177 0.078 0.098 
2 14 7 7 0.168 0.196 0.084 0.096 267 213 54 0.168 0.171 0.084 0.087 267 213 54 0.168 0.178 0.084 0.097 
3 99 48 51 0.163 0.176 0.067 0.081 159 130 29 0.163 0.152 0.067 0.073 159 130 29 0.163 0.187 0.067 0.085 
4 357 267 90 0.175 0.185 0.088 0.094 444 124 320 0.175 0.159 0.088 0.098 444 124 320 0.175 0.187 0.088 0.089 
5 1041 705 336 0.183 0.199 0.063 0.089 468 284 184 0.183 0.1773 0.063 0.076 468 284 184 0.183 0.194 0.063 0.079 
6 353 156 197 0.193 0.167 0.087 0.073 1411 841 570 0.193 0.168 0.087 0.079 1411 851 570 0.193 0.198 0.087 0.087 
7 329 298 31 0.128 0.198 0.092 0.099 678 489 189 0.128 0.158 0.092 0.095 678 489 189 0.128 0.165 0.092 0.099 
8 469 389 80 0.17 0.159 0.085 0.097 398 368 30 0.17 0.15 0.085 0.091 398 368 30 0.17 0.25 0.085 0.097 

 

D. Results and Empirical Analysis for the Cohesion Values

This section presents the experimental results after to apply

the refactorings Extract ClassUnit, Push Down MethodUnit,
and Pull up MethodUnit. The results are depicted in Table IV.

The columns Exec., Succ., and Cons. stand for Executed, Suc-

cessful and Constraints, respectively. Columns Exec. shows the

number of refactorings applied to the original KDM model.

Columns Succ. presents the rate of successful refactoring

really applied in the KDM model, otherwise Columns Cons.

shows the rate of unsuccessful refactoring applied in the KDM

model. As can be seen, success rates, constraints generated

and changes induced vary widely for every refactoring. As

stated before, we also measured some software quality metrics

(CAMC and SCC) before and after applying all refactorings.

Therefore, Columns CAMC and SCC are split into two cell,

i.e., Bf and Af as Bf stand for Before and Af stand for After.

As shown, the quality in terms of cohesion is in some case

was gradually degraded. However, it is fairly evident that in

some case the applied refactorings improved the cohesion, i.e.,

in some points we had positive impact on the design quality

as shown in Table IV.

In Figure 1 is summarized the sampled data of the metrics

CAMC and SCC before and after to apply the refactorings.

These figure also provide an overview of the significant

gain in cohesion that could be achieved by our catalogue

of refactoring. Besides achieving gain in cohesion, in this

figure it is fairly evident that for almost every refactoring the

median after applying the refactorings of both metrics (CAMC

and SCC) is greater than before to apply the refactorings.

In addition, in these figures also can be observed that the

interquartile ranges are reasonably similar (as shown by the

lengths of the boxes), though the overall range of the data

set is greater before to apply the refactorings (as shown by

the distances between the ends of the two whiskers for each

boxplot). Just the data set related to the metric CAMC for Pull
Up Method shows one suspiciously far out values (outliers)

which required a closer look.

In Table IV it is possible to point out by looking at columns

Succ. that the rate of successful applied refactoring are better

than the the rate of unsuccessful. In order to be aware of

some unsuccessful refactorings, we manually inspected some

refactorings to find the reason why some refactorings could not
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Figure 1. Comparative boxplots for the refactorings.

be applied to the KDM model during the refactoring process.

Then we found out that the problem mostly happened when a

hierarchy structure of the KDM file was changed radically.

Since some statistical tests only apply if the population

follows a normal distribution, before choosing a statistical test

we examined whether our sample data departs from linearity.

We use Q-Q plots as shown in Figure 2. In these figure one

can see that most of the data depart from linearity, indicating

normality of the samples. Therefore, we could apply the t-
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Figure 2. Normal probability plots.

test. In our context, to apply the t-test for CAMC and SCC:

(1) the difference between the cohesion values before and after

the change has to be calculated, (2) the means and standard

deviation values of these differences have to be obtained, and

(3) the t-value has to be calculated. We applied the typical

significance threshold (α = 0.05) to decide whether the

differences between the cohesion values were significant.

The results in Tables IV and V lead us to the following

observations about the refactoring ExtractClassUnit.
The results before and after applying the refactoring Ex-

tractClassUnit demonstrate that the cohesion values for the

metric CAMC were significantly different. As can be seen in

Table V the means before and after applying the refactoring

ExtractClassUnit were 0.164125 and 0.183625, respectively.

The corresponding critical T value was −2.6139, the standard

deviation for this refactoring was 0.0211, DOF = 7, two-tailed

p-value => 0.0347, with 95% confidence intervals (upper

= 0.1817 and lower= 0.1465). Interpreting these data we can

remark that the difference in regarding to the metric CAMC for

the refactoring ExtractClassUnit are significantly different.

Therefore, we can conclude with 95% confidence (or a chance

of error of 5%) that the refactoring ExtractClassUnit helped

to increase the cohesion amongst the methods of a class of the

evaluated systems. Regarding the results of the metric SCC

after applying the refactoring ExtractClassUnit we could

validate that the evaluated systems had significant change.

As can be seen in Table V the T value was −2.5616, the

standard deviation for this refactoring was 0.0106, DOF = 7,

two-tailed p-value = 0.0375, with 95% confidence intervals

(upper = 0.0894 and lower= 0.0716). Interpreting these data

we can observe that the difference in regarding to the metric

SCC for the refactoring ExtractClassUnit are significantly

different. Thus, we can conclude with 95% confidence (or a

chance of error of 5%) that the refactoring ExtractClassUnit
improved in some way the similarity-based class cohesion of

the evaluated systems.

Similarly, the results in Tables IV and V lead us to the fol-

lowing observations about the refactoring PushDownMetho-
dUnit. The results before and after applying the refactoring

PushDownMethodUnit demonstrate that the cohesion values

for the metric CAMC were not significantly different. As

can be seen in Table V the means before and after applying

the refactoring PushDownMethodUnit were 0.164125 and

0.1624125, respectively. The corresponding critical T value

was 0.2862, the standard deviation for this refactoring was

0.0168, DOF = 7, two-tailed p-value = 0.783, with 95%

confidence intervals (upper = 0.1781 and lower= 0.1501).

Interpreting these data according to the t-test we can remark

that metric CAMC for the refactoring PushDownMethodUnit
are not significantly different. Therefore, it was possible to

conclude with 95% confidence (or a chance of error of 5%)

that the refactoring PushDownMethodUnit did not improve

the cohesion amongst the methods of a class of the evaluated

systems. As for the metric SCC the refactoring PushDown-
MethodUnit demonstrate that the cohesion values are also not

significantly different. Although, in Table IV one can point that

after applying the refactoring PushDownMethodUnit all the

evaluated system had been improved in regarding the metric

SCC (see column SCC cell Af) - after perform the t-test we

could conclude with 95% confidence (or a chance of error of

5%) that the refactoring PushDownMethodUnit did not raise

the similarity-based class cohesion of the evaluated systems.

Finally, the results in Tables IV and V lead us to the

following observations about the refactoring PullUpMethod-
Unit. Similarly as the refactoring PushDownMethodUnit the

refactoring PullUpMethodUnit demonstrate that the cohesion

values for the metric CAMC were not significantly different.

As can be seen in Table V the means before and after applying

the refactoring PullUpMethodUnit were 0.164125 and 0.192,

respectively. The corresponding critical T value was −0.1945,

the standard deviation for this refactoring was 0.4057, DOF

= 7, two-tailed p-value = 0.8513, with 95% confidence

intervals (upper = 0.5033 and lower= −0.1751). Although

it is fairly evident that the refactoring PullUpMethodUnit
improved in some way the evaluated systems (see columns

CAMC cell Af) we cannot prove statistically that it really

improved the evaluated systems. Thus, statistically we can

remark with 95% confidence (or a chance of error of 5%)

that the refactoring PullUpMethodUnit did not improve the

cohesion amongst the methods of a class of the evaluated

systems. Regarding the metric SCC it was not possible to

find a significant difference between the cohesion before to

apply the refactoring PullUpMethodUnit versus the cohesion

after to apply the refactoring PullUpMethodUnit. In Table V
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Table V
T-TEST RESULTS.

T
-T

E
ST

 

Extract ClassUnit Push Down MethodUnit Pull Up MethodUnit 
CAMC SCC CAMC SCC CAMC SCC 

MEAN MEAN MEAN 
0.164125 0.183625 0.0805 0.090125 0.164125 0.1624125 0.0805 0.086625 0.164125 0.192 0.0805 0.091375 

t-value = -2.6139 t-value = -2.5616 t-value = 0.2862 t-value = -1.7083 t-value = -0.1945 t-value = -0.1949 
SD = 0.0211 SD = 0.0106 SD = 0.0168 SD = 0.0101 SD = 0.4057 SD = 0.1567 

the means before and after applying applying the refactoring

PullUpMethodUnit were 0.0805 and 0.091375, respectively.

The corresponding critical T value was −0.1949, the standard

deviation for this refactoring was 0.1567, DOF = 7, two-

tailed p-value = 0.851, with 95% confidence intervals (upper

= 0.2115 and lower= −0.0505). Therefore, by interpreting

these data we can draw the conclusion with 95% confidence

(or a chance of error of 5%) that the refactoring PullUpMetho-
dUnit did not improve the similarity-based class cohesion of

the evaluated systems.

E. Threats to Validity

The lack of representativeness of the subject programs

may pose a threat to external validity. We argue that this is

a problem that all software engineering research, since we

have theory to tell us how to form a representative sample

of software. Apart from not being of industrial significance,

another potential threat to the external validity is that the

investigated programs do not differ considerably in size and

complexity. To partially ameliorate that potential threat, the

subjects were chosen to cover a broad class of applications.

Also, this experiment is intended to give some evidence of

the efficiency and applicability of our implementation solely

in academic settings. A threat to construct validity stems from

possible faults in the implementations of the techniques. With

regard to our catalogue of refactoring, we mitigated this threat

by running a carefully designed test set against several small

example programs. Similarly, all the eight open source Java

projects used in this experiment have been extensively used

within academic circles, so we conjecture that this threat can

be ruled out.

VI. RELATED WORK

In [7] an approach to specify generic refactorings is pre-

sented. Here, Moha et al. introduce a meta-metamodel (Gener-

icMT), which enables the definition of generic refactorings on

the Meta Object Facility (MOF) layer. This meta-metamodel

contains structural commonalities of object-oriented models

(e.g., classes, methods, attributes and parameters). Generic

refactorings are then specified on top of the GenericMT.

Borger et al. [8] developed a plug-in for the CASE tool

ArgoUML that support UML model-based refactorings. The

refactoring of class, states and activities is possible, allowing

the user to apply refactorings that are not simple to apply at

source-code level.

VII. CONCLUSIONS

We adapted the traditional notion of fine-grained refactoring

to the KDM specification. As far as we know, this paper is

the first one to define one catalogue of refactoring for KDM.

We argue that devising a catalogue of refactoring for KDM

makes it be both language-independent and standardized.

To provide some evidence of our catalogue of refactoring,

we conducted an experiment using eight open source Java

application. More specifically, for these eight application we

applied three different refactorings - Extract ClassUnit, Push
Down MethodUnit, and Pull up MethodUnit. Experimental

results show that the our catalogue of refactoring improved

the legacy system.

As a future work, we aim at applying our catalogue in

more case studies.From these case studies we can propose

more fine-refactorings for KDM. We also aim to create macro-

refactorings for the KDM in order to explore the role of

configuration knowledge for achieving model-driven refac-

toring for KDM. Previously, we devised an approach for

identifying concerns in KDM models [9]. Therefore, the next

step is to create refactorings that take into account Crosscutting

Frameworks [10].
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