
An Approach to Develop Frameworks from Feature
Models

Matheus Viana, Rosângela Penteado, Antônio do Prado
Department of Computing

Federal University of São Carlos

13565-905, São Carlos, SP, Brazil

Email: {matheus viana, rosangela, prado}@dc.ufscar.br

Rafael Durelli
Institute of Mathematical and Computer Sciences

University of São Paulo

13566-590, São Carlos, SP, Brazil

rdurelli@icmc.usp.br

Abstract—Frameworks are reusable software composed of
concrete and abstract classes that implement the functionality
of a domain. Applications can reuse framework design and
code in order to improve their quality and be developed more
efficiently. However, to develop software for reuse, such as a
framework, is harder than to develop an application. Hence,
in this paper we present an approach, named From Features
to Framework (F3), to facilitate the development of white box
frameworks. This approach is divided in two steps: Domain
Modeling, in which the features of the framework are defined; and
Framework Construction, in which the framework is designed
and implemented according to its features and their relationships.
We also present an experiment that evaluated the F3 approach
showing that it makes framework development easier and more
efficient.

I. INTRODUCTION

Reuse is a practice that aims to reduce time spent in
development process and to increase software quality. These
advantages can be achieved because the software is not devel-
oped from scratch and the reusable artifacts were previously
tested [1]. There are different levels of reuse. Copy/paste is
the simplest one. Programming languages contain mechanisms,
such as class inheritance, that provide reuse of code. Yet
there are other more sophisticated forms of reuse, such as
frameworks, that provide not only reuse of code, but also
design and experience [2].

Frameworks are reusable software composed of concrete
and abstract classes that implement the functionality of a do-
main [3]. Applications reuse the design and the implementation
of a framework, adding their specific characteristics to its
functionality [4], [5].

Despite the advantages frameworks offer, they are more
complex to develop than applications [6]. Frameworks de-
mand an adaptable design. Their classes will be reused by
applications that are unknown during framework development,
thereby frameworks need mechanisms to identify and to ac-
cess application-specific classes. Thus, design patterns and
advanced resources of programing languages, such as abstract
classes, interfaces, polymorphism, generics and reflection, are
often used in framework development. In addition to design
and implementation complexities, it is also necessary to deter-
mine the domain of applications of the framework, the features
that compose this domain and the rules that constraint these
features [7].

In a previous paper we presented an approach for building
Domain-Specific Modeling Languages (DSML) to facilitate
framework reuse [8]. In that approach a DSML could be
built by identifying the features of the framework domain and
the information required to instantiate them. Then application
models created with the DSML could be used as input for an
application generator to transform them into application code.
The experiment presented in this previous paper showed that,
besides the gain of efficiency obtained from code generation,
the use of DSML protects developers from framework com-
plexities.

In order to promote reuse in application development, in
this paper we propose an approach, named From Features to
Framework (F3), that aims to facilitate the development of
white box frameworks. In this approach framework develop-
ment starts from defining its domain in a F3 model, which is an
extended version of the feature model. Then a set of patterns,
called F3 patterns, assist the design and the implementation
of the framework according to the features defined in its F3
model.

We also have carried out an experiment in order to ver-
ify whether the F3 approach leads the developer to devise
frameworks better than the adhoc one. The experiment showed
that the F3 approach reduced the problems of incoherence,
structure, bad smells and interface found in the outcome frame-
works and, consequently, reduced the time spent to develop
these frameworks.

The remainder of this paper is organized as follows: the
background concepts applied in this research are discussed in
Section II; the F3 approach is presented in Section III; an
experiment to evaluate the F3 approach is show in Section
IV; some related works are discussed in Section V; and
conclusions and further works are presented in Section VI.

II. BACKGROUND

The basic concepts applied in the F3 approach are about
patterns, frameworks and domain engineering.

Patterns are successful solutions that can be reapplied to
different contexts. They provide reuse of experience to help
developers to solve common problems [3]. The documentation
of a pattern usually contains its name, the context it can be
applied, the problem it is intended to solve, the solution it
proposes, illustrative class models and examples of use [9].

594IEEE IRI 2013, August 14-16, 2013, San Francisco, California, USA 
978-1-4799-1050-2/13/$31.00 ©2013 IEEE



Frameworks act like skeletons that can be instantiated to
implement applications [3]. Their classes embody an abstract
design to provide solutions for domains of applications [5]. Ap-
plications are connected to a framework by reusing its classes.
Unlike library classes, whose execution flux is controlled by
applications, frameworks control the execution flux accessing
the application-specific code [4].

The fixed parts of the frameworks, known as frozen spots,
implement common functionality of the domain that is reused
by all applications. The variable parts, known as hot spots,
can change according to the specifications of the desired
application [5].

According to the way they are reused, frameworks can be
classified as: white box, which are reused by class specializa-
tion; black box, which work like a set of components; and gray
box, which are reused by the two previous ways [3].

Domain engineering represents software development re-
lated not to a specific application, but to a domain of appli-
cations that share common features [10], [11]. A feature is a
distinguishing characteristic that aggregates value to applica-
tions. Thus, feature models are often used to model domains,
illustrating the features that mandatory or optional, variations
and require or exclude other features [12].

Different domain engineering approaches can be found in
the literature [11], [13], [14]. Although there are differences
between them, the basic idea of these approaches is to identify
the features of a domain and to develop the artifacts that imple-
ment these features and are reused in application engineering.

Domains can also be modeled with metamodel languages,
which are used to create Domain-Specific Languages (DSL)
[15]. Metamodels are similar to class models, which makes
them more appropriate to developers accustomed to the UML.
While in feature models, only features and their constraints are
defined, metaclasses in the metamodels can contain attributes
and operations. On the other hand, feature models can define
dependencies between features, while metamodels depend on
declarative languages to do it [15].

III. PROPOSED APPROACH

The F3 approach provide mechanisms to define a domain
at a high level of abstraction and to systematically construct a
framework which implements this domain. Thereby, frame-
work development is divided into two steps: A) Domain
Modeling, in which a domain is defined and modeled; and B)
Framework Construction, in which the framework is designed
and implemented according to its domain. These two steps are
illustrated in Figure 1.

Fig. 1: Steps of the F3 approach.

A. Domain Modeling

The domain of applications that can be developed with
the framework is defined and modeled in this step. Usually, a
domain is defined by analyzing applications that belong to the
desired domain or consulting an specialist in this domain [12]–
[14]. The first features to be identified are the mandatory ones,
because they represent the code asset of the domain and the
minimum necessary to develop an application. Then optional
features and variants can be added and the dependencies
between them can be specified. It is possible to develop a
framework with a small domain at first and keep increasing it
as soon as more features become required.

In the F3 approach, domains are modeled in F3 models,
which are feature models that includes some elements of
metamodels, such as attributes, operations and multiplicity,
so that frameworks can be developed from these models. As
in conventional feature models, features in F3 models must
be arranged in a tree-view, in which the main feature is
decomposed in others. However, F3 models do not necessarily
form a tree, since a feature can have a relationship targeting
a sibling or even itself. Moreover, the graphical notation of
F3 models is similar to the one of UML class models. This
notation has been adopted because it allows that F3 models
can be created by using any UML tool. The elements and
relationships in F3 models are:

• Feature: graphically represented by a rounded square,
it must have a name and it can contain any number of
attributes and operations;

• Decomposition: relationship that indicates that a fea-
ture is composed of another feature. Its minimum
multiplicity indicates whether the target feature is op-
tional (0) or mandatory (1). Its maximum multiplicity
indicates how many instances of the target feature can
be associated to each instance of the source feature.
In white box frameworks an instance of a feature is
an application class that extends the framework class
of this feature. The maximum multiplicity can assume
the following values: 1 (simple), for a single feature
instance; * (multiple), for a list of a single feature
instance; and ** (variant), for a list of different feature
instances.

• Generalization: relationship that indicates that a fea-
ture is a variation and it can be generalized by another
feature.

• Dependency: relationship that define constraints for
feature instantiation. There are two types of depen-
dency: requires, when the A feature requires the B
feature, an application that contains the A feature has
to include the B feature as well; and excludes, when
the A feature excludes the B feature, no application
can include both features at the same time.

A simplified F3 model for the domain of automated ve-
hicles is shown in Figure 2. This domain is based on Lego
Mindstorms NXT 2.01, whose hardware can be controlled by
Lejos Java API2. The requirements of this domain are:

1http://mindstorms.lego.com/en-us/products/default.aspx#t
2http://lejos.sourceforge.net/#t

595



Fig. 2: F3 model for the domain of automated vehicles.

1) An automated vehicle is composed of one engine,
one locomotion device, zero or more arms and one
or more sensors.

2) Engine provides power for the vehicle. It can
be turned on and off and movement sense (for-
ward/reverse) is controlled by its gear.

3) Locomotion device uses the power generated by
the engine to move the vehicle and to change its
direction. There are two types: wheels or caterpillar.

4) Sensors collect information from environment and
return a signal. How the vehicle interprets this signal
depends on the purpose of the vehicle. There are three
types of sensor: infra-red, light and touch.

5) Arms can be used to grab objects. They can only
move up and down and require a touch sensor.

As there are different types of sensor, the relationship
between Vehicle and Sensor is a variant decomposition. A
vehicle must have at least one sensor of any type. However,
when it has arms, touch sensor becomes necessary, hence the
requires dependency between Arm and TouchSensor.

B. Framework Construction

The F3 approach define a set of patterns to assist developers
to design and implement a framework from the domain model.
These patterns solves problems that go from the creation of
classes for the features to the definition of the framework
interface. Some of the F3 patterns are presented in Table I.

The documentation of the F3 patterns is organized into
topics to help developers to identify when a certain pattern
should be used. This documentation is described as follows:

• Name: identifies each pattern and summarizes its
purpose;

• Context: describes a desired behavior for the frame-
work/domain;

• Scenario/Problem: describes the arrangement of fea-
tures and relationships in F3 models that can imply
the use of the pattern;

• Solution: indicates the code units that should be
created to implement the scenario identified by the
pattern;

• Model: shows a generic graphical representation of
the scenario/problem and the solution;

• Implementation: displays a fragment of code, in a
programming language, that illustrates how the solu-
tion can be implemented.

For example, the third pattern listed in Table I, Optional
Decomposition, suggests the creation of an operation that
must be overridden in the instances of the source feature to
specify which class is an instance of the target feature. The
documentation of this pattern is:

Name: Optional Decomposition.

Context: when a target feature is optional to a source feature,
every instance of the source feature may be associated with a
instance of the target feature.

Scenario/Problem: a feature has a decomposition relationship
with minimum multiplicity equals 0.

TABLE I: The F3 patterns that are most commonly applied.

Pattern Purpose
Domain Feature Indicates the structures that should be created for a feature.

Mandatory Decomposition Indicates the code units that should be created when there is a mandatory decomposition linking two features.

Optional Decomposition Indicates the code units that should be created when there is an optional decomposition linking two features.

Simple Decomposition Indicates the code units that should be created when there is a simple decomposition linking two features.

Multiple Decomposition Indicates the code units that should be created when there is a multiple decomposition linking two features.

Variant Decomposition Indicates the code units that should be created when there is a variant decomposition linking two features.

Variant Feature Defines a hierarchy of classes for features with variants.

Modular Hierarchy Defines a hierarchy of classes for features with common attributes and operations.

Requiring Dependency Indicates the code units that should be created when a feature requires another one.

Excluding Dependency Indicates the code units that should be created when a feature excludes another one.

596



Fig. 3: The (a) pattern scenario and (b) its design solution.

Solution: the class that implements the source feature must
have an operation that indicates what class implements the
target feature in the applications. By default, this operations
returns null indicating that the target feature is not being used.

Model: the (a) scenario and the (b) design solution of this
pattern are shown in Figure 3.

Implementation:

public abstract class Source {
public Class<? extends Target> getTargetClass() {

return null;
}

}

Considering the F3 model in Figure 2, the Optional De-
composition pattern should be applied for the decomposition
relationship between Vehicle (source) and Arm (target). The
solution created based on the pattern is shown in Figure 4.

Fig. 4: Solution applied to the relationship between Vehicle and Arm.

IV. EVALUATION

In this section we present an experiment in which the F3
approach has been compared with an adhoc approach. This
experiment followed all steps described by Wohlin et al. (2000)
and it can be defined as: (i) Analyse the F3 approach, described
in Section III, (ii) for the purpose of evaluation, (iii) with
respect to efficiency (time) and easiness (problems), (iv) from
the point of view of the developer, and (v) in the context of
MSc and PhD students of Computer Science.

The context of the experiment corresponds to multi-test
within object study [16], since the experiment consisted of
experimental tests executed by a group of subjects to study a
single approach, which is the F3 approach.

A. Planning

The planning phase was divided into the six steps described
in the following subsections:

1. Context Selection

The experiment has been performed in laboratory of Com-
puter Science at an university environment. It involved the
participation of MSc and PhD students of Computer Science
with prior experience in software development using Java
language, design patterns and frameworks.

2. Formulation of Hypotheses

The first question the experiment had to answer was: RQ1:
“Which approach takes to a more efficient framework
development in terms of time?”. In order to answer this
question, the subjects had to measure the time spent (τ) to
develop each framework. According to this, the following
hypotheses were elaborated:

RQ1, Null hypothesis, H0: The F3 approach is not more
efficient than the adhoc one in terms of time spent to develop
a framework. It can be formalized as:

RQ1H0: τF3 ≥ τadhoc

RQ1, Alternative hypothesis, H1: The F3 approach is
more efficient than the adhoc one in terms of time spent to
develop a framework. It can be formalized as:

RQ1H1: τF3 < τadhoc

The second question the experiment had to answer was:
RQ2: “Which approach facilitates framework development
reducing the number of problems in the frameworks
during their development?”. In order to answer this question,
we analyzed the reports of the subjects, in which they docu-
mented the problems found (ρ) in their frameworks during
development, as well as the source-code of the outcome
frameworks. By problems we mean defects and bad smells
in the source-code of the frameworks. According to this, the
following hypotheses were elaborated:

RQ2, Null hypothesis, H0: The F3 approach does not
facilitate framework development, as the number of problems
in the frameworks during their development is not reduced. It
can be formalized as:

RQ2H0: ρF3 ≥ ρadhoc

RQ2, Alternative hypothesis, H1: The F3 approach facil-
itates framework development, reducing the number of prob-
lems in the frameworks during their development. It can be
formalized as:

RQ2H1: ρF3 < ρadhoc

3. Variables Selection

The dependent variables of this experiment were “time
spent to develop a framework” and “number of problems
found in the frameworks”. The independent variables were:

• Application: Each subject had to develop two frame-
works: one (Fw1) for the domain of trade and rental
transactions and the other (Fw2) for the domain of au-
tomated vehicles. Both Fw1 and Fw2 were composed
of 10 features.

• Development Environment: Eclipse 4.2.1, Astah
Community 6.4.

• Technologies: Java version 6.

597



4. Selection of Subjects

Subjects were selected according to convenience sampling
[16]. In this non-probabilistic technique, the selected partic-
ipants were the closest and most convenient to conduct the
experiment. Altogether, 26 Msc and PhD students voluntarily
participated in the experiment.

5. Experiment Design

The experiment followed the design of grouping the sub-
jects in homogeneous blocks [16], avoiding that their expe-
rience level could directly impact in the results. We used a
Participant Characterization Form to determine the experience
level of each subject. In this form the subjects had to answer
multiple-choice questions about their knowledge regarding
Java programming, design patterns and frameworks.

The design type of the experiment was one factor with two
treatments paired [16]. The factor is the approach used to
develop a framework and the treatments are the adhoc and the
F3 approaches. Each subject had to develop two frameworks,
one applying the adhoc approach and the other applying the
F3 approach. The order in which the subjects applied the
treatments had no effect in the result. Therefore, the subjects
were divided into two blocks of 13 participants with two tasks,
as follows:

• Block 1: Task 1, development of Fw1 applying the
adhoc approach; and Task 2, development of Fw2
applying the F3 approach;

• Block 2: Task 1, development of Fw2 applying the
adhoc approach; and Task 2, development of Fw1
applying the F3 approach;

6. Instrumentation

The subjects received all necessary materials to assist them
during the execution of the experiment. These documents
consist of: textual description and models of the framework
domains; manual for creating F3 models; documentation of
the F3 patterns; Data Collection Form, in which the subjects
had to report the time spent to develop the frameworks
and the problems found during their development; one Test
Application for each framework, which should be used by
the subjects to verify the correctness and the completeness
of the outcome frameworks; and Feedback Form, in which
the subjects should describe their difficulties and write their
opinion after the experiment.

B. Operation

After defining and planning the experiment, its operation
was carried out in two steps: (1) Preparation and (2) Execution.

1. Preparation

At first, the subjects signed a Consent Form, stating the
objectives and confidentiality of the experiment, and filled
the Participant Characterization Form in, reporting their ex-
perience in the concepts and technologies utilized in the
experiment. After this, the subjects had a training in: adhoc
framework development, in which they learned design patterns
and code structures commonly used in frameworks to identify
application-specific elements; and the F3 approach. After train-
ing, the subjects were able to carry out the experiment tasks.

2. Execution

Before starting the execution of the experiment, the sub-
jects were positioned in the blocks and received the materials
referent to their respective Task 1. Each subjects had access
to an individual computer equipped with the tools required for
framework development and the Test Applications.

When all subjects were commanded to execute Task 1
(applying the adhoc approach), they started to measure the
time. They used the Astah Community to create a class model
of the framework and then use the Eclipse IDE to implement its
source-code. When they finished framework implementation,
they executed its Test Application to verify whether or not it
was developed as expected. If the Test Application showed a
message of a problem, the subjects had to report it in the
Data Collection Form and fix the problem(s) found. Only
when the Test Application returned a successful message, the
subject could stop measuring the time. Task 2 (applying the
F3 approach) was performed in a similar way to Task 1. In
the end, the subjects received the Feedback Form to comment
the difficulties and advantages in applying each approach.

C. Analysis of Data

The experiment data is presented in Table II. In general,
the groups developed the tasks satisfactorily and the collected
data was within the expected limits. This means that the
treatments were executed correctly and in accordance with the
planning. The analysis of data is divided into two subsections:
(1) Descriptive Statistics and (2) Hypotheses Testing.

1. Descriptive Statistics

In Table II, it can be seen that the F3 approach spent
less time to develop a framework than the adhoc approach,
i.e., approximately 38.7% against 61.3%. According to the
feedback provided by the subjects in a form, this result is due
to the fact that, in the F3 approach, although the subjects have
spent part of the time trying to identify the F3 patterns that
should be used, they saved some time because these patterns
assisted them indicating the classes, attributes and operations
that should be created. On the other side, when the subjects
were developing the frameworks applying the adhoc approach,
they spent part of the time trying to find out the code units they
should implement. Moreover, most of the subjects reported that
they spent a long time maintaining their frameworks, because
the Test application returned lots of problem messages. The
dispersion of time spent by the subjects are also represented
graphically in a boxplot on left side of Figure 5.

In Table II it is also possible to visualize four types
of problems that we analyzed in the outcome frameworks:
incoherence, structure, bad smells and interface.

The problem of incoherence indicates that the subjects
did not develop the frameworks with the correct features
and constraints (mandatory, optional and alternative features)
of the domain. In other words, they did not designed and
implemented the classes, attributes and operations that could
make the framework to behave as expected by its domain.
In Table II it can be seen that the F3 approach helped
the subjects to develop frameworks with less incoherence
problems, approximately, 26% in opposition to 74% for the
adhoc approach.

598



TABLE II: Results of the frameworks developed by the subjects.

� �
�� �

�
�

� �
� �

� �
� �

�
�
� �

�

Adhoc F3

80

100

120

140

Adhoc F3

0

5

10

15

20

25

30

35

M
in

u
te

s

P
ro

b
le

m
s

Fig. 5: Dispersion of the total time and number of problems.

The problem of structure indicates that the subjects did not
implement the frameworks properly, for example, implement-
ing classes with no constructor, non-abstract when they should
be or incorrect relationships. In Table II it can be seen that the
F3 approach helped the subjects to develop frameworks with
less structure problems, i.e., 22% in opposition to 78%.

The problem of bad smells indicates design weaknesses
that do not affect functionality, but make the frameworks
harder to maintain. This problem is not a defect, so the
Test Applications could not detect it and the subjects did not
fixed it. We identified it by analyzing the source-code of the
frameworks. In Table II we can remark that the use of the F3
approach resulted in a design with higher quality than the use
of the adhoc approach, respectively, 33% against 67%.

The problem of interface indicates absence of getter/setter
operations and the lack of operations that allows the applica-

tions to reuse the framework and so on. Usually, this kind of
problem is a consequence of problems of structure, hence the
number of problems of these two types are quite similar. As
it can be observed in Table II that the F3 approach helped
the subjects to design a better framework interface than when
they developed the framework through the adhoc approach,
respectively, 21% against 79%.

In the last two columns of Table II it can be seen that
the F3T reduced the total number of problems found in the
frameworks developed by the subjects. It is also graphically
represented in the boxplot on right side of Figure 5.

2. Hypotheses Testing

The objective of this section is to verify with any degree of
significance, whether it is possible to reject the nulls hypothe-
ses (see Section IV-A) in favor of the alternative hypothesis
based on the data set obtained. As we defined two nulls
hypotheses this section is divided into two: (1) Hypotheses
Testing - Time and (2) Hypotheses Testing - Problems.

1) Hypotheses Testing - Time: Since some statistical
tests are applicable only if the population follows
a normal distribution, we applied the Shapiro-Wilk
test and created a Q-Q chart to verify whether or
not the experiment data departs from linearity before
choosing a proper statistical test. As it can be seen in
the upper Q-Q charts in Figure 6, the experiment data
related to the time spent in framework development
is normally distributed. Thus, we decided to apply
the Paired T-Test to the experiment data. According
to StatSoft3, we carried out this test by calculating:
the difference of time between both approaches,
d = {36, 39, 56, 46, 34, 52, 52, 43, 30, 37, 48,
65, 36, 35, 41, 29, 57, 46, 42, 53, 58, 35, 46, 44,

3http://www.statsoft.com/textbook/distribution-tables/#t

599



50, 53}; the standard deviation of this difference,
Sd = 9.357597; the number of degrees of freedom,
F = N −1 = 26−1 = 25, where N is the number of
subjects; t0 = 24.3741; and t0.05,25 = 1.708141. Since
t0 > t0.05,25 it is possible to reject the null hypothesis
with a two sided test at the 0.05 level. Therefore,
statistically, we can assume that the F3 approach
reduces the time spent in framework development
when compared with the adhoc approach.

2) Hypotheses Testing - Problems: Similarly, we used
the Shapiro-Wilk test and Q-Q chart on the data
shown in the last two columns of Table II, which
represent the total number of problems found in the
outcome frameworks by using the F3 approach and
the adhoc one, respectively. As it can be seen in
the lower Q-Q charts in Figure 6, the data depart
from linearity, indicating a normal distribution of
data. Thus, we also used a Paired T-Test in this case.
Again according to StatSoft4, we carried out this test
by calculating: the difference of number of problems
between both approaches, d = { 13, 14, 28, 15, 11,
14, 9, 17, 14, 8, 15, 17, 11, 12, 8, 8, 15, 7, 12,
16, 16, 8, 17, 14, 8, 11 }; the standard deviation
of this difference, Sd = 4.463183; the number of
degrees of freedom, F = N −1 = 26−1 = 25, where
N is the number of subjects; t0 = 4.463183; and
t0.05,25 = 1.708141. Since t0 > t0.05,25, it is possible to
reject the null hypothesis with a two sided test at the
0.05 level. Therefore, statistically, we can conclude
that the F3 approach reduces the number of problems
found in the outcome frameworks when compared
with the adhoc approach.

-2 -1 0 1 2

100

120

140

S
am

pl
e 

Q
ua

nt
ile

s

Theoretical Quantiles
-2 -1 0 1 2

70

75

80

85

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

(a) Adhoc (b) F3

-2 -1 0 1 2

10

20

30

S
am

pl
e 

Q
ua

nt
ile

s

Theoretical Quantiles

(a) Adhoc

-2 -1 0 1 2

0

5

10

15

S
am

pl
e 

Q
ua

nt
ile

s

Theoretical Quantiles

(b) F3

Fig. 6: Q-Q charts of time (upper) and problems found (lower).

4http://www.statsoft.com/textbook/distribution-tables/#t

D. Threats to Validity

Internal Validity:

• Experience level of participants: different levels of
knowledge of the subjects could affect the collected
data. To mitigate this threat, we divided the subjects
into two balanced blocks based on their answers in
the Participant Characterization Form. All subjects had
prior experience in application development reusing
frameworks and they were trained in the F3 approach.

• Productivity under evaluation: it might influence the
experiment results because subjects often tend to think
they are being evaluated. To mitigate this, we ex-
plained to the subjects that no one was being evaluated
and their participation was considered anonymous.

• Facilities used during the study: different computers
and installations could affect the recorded timings.
However, the subjects used the same hardware con-
figuration and operating system.

Validity by Construction:

• Hypothesis expectations: the subjects knew the re-
searchers and knew that the F3 approach was supposed
to ease framework development before the experiment.
These issues could affect the collected data and cause
the experiment to be less impartial. In order to keep
impartiality, we enforced that the subjects had to keep
a steady pace during the whole study.

External Validity:

• Interaction between configuration and treatment: it is
possible that the exercises performed in the experiment
are not accurate for every framework development in
real world applications. Only two frameworks were
developed and both had similar complexity. To miti-
gate this threat, the tasks were designed considering
framework domains based on the real world.

Conclusion Validity:

• Measure reliability: it refers to metrics used for mea-
suring development effort. To mitigate this threat we
have used only the time spent which was captured in
forms fulfilled by the subjects;

• Low statistic power: the ability of a statistic test
in reveal reliable data. To mitigate we applied two
tests: T-Tests to statistically analyze the time spent
to develop the frameworks and Wilcoxon signed-rank
test to statistically analyze the number of problems
found in the outcome frameworks.

V. RELATED WORKS

Xu and Butler [17] proposed an cascaded refactoring
method to develop frameworks. In this method, a framework is
specified by different models, sorted by abstraction level (from
feature model to source-code). Refactorings are performed on
these models following their sequence until the framework
is completely developed. In the F3 approach the domain is
also defined in feature models and framework design and

600



implementation are assisted by patterns, which provide more
information to help developers than refactorings.

Zhang et al. [18] proposed a Feature-Oriented Framework
Model Language (FOFML) to develop frameworks following
the MDA approach. When this language is used, domain
features are defined in a graphical metamodel and domain con-
straints are specified in a textual role model. Then, framework
classes are implemented according to the features and roles
defined in these models. In comparison, our approach define
domain features and constraints in a single model.

Antkiewicz et al. [19] presented a framework-specific mod-
eling language approach to modeling and instantiation frame-
work. They used feature model to describe functional require-
ments of frameworks. However, they focused on framework
instantiation level concepts and ignored framework design
level concepts.

Amatriain and Arumi [20] also proposed a method to
develop frameworks through iterative and incremental activ-
ities. In their method, the domain of the framework could be
defined from existing applications and the framework could
be implemented through a series of refactorings over these
applications. The advantage of this method is a small initial
investment and the reuse of the applications. Although it is not
mandatory, the F3 approach can also be applied in iterative
and incremental activities, starting from a small domain and
then adding features. Applications can also be used to facilitate
the identification of the features of the domain. However, the
advantage of the F3 approach is the fact that the design and
the implementation of the frameworks are performed with the
support of patterns specific for framework development.

VI. CONCLUDING REMARKS AND FUTURE WORK

In this paper we proposed the F3 approach to facilitate the
development of white box frameworks. In this approach the
framework domain is defined in F3 models, which include
elements from feature models and metamodels. Then, the
framework is designed and implemented with the support of
F3 patterns, structuring code units according to the elements
and relationships defined in F3 models.

Our approach promotes reuse in different levels. F3 models
represent domains that can be reused and improved in different
frameworks. The F3 patterns represent reuse of experience on
framework development. Moreover, the outcome frameworks
can be reused in the development of several applications, acting
as a core asset for a software product line.

The experiment presented in this paper indicated that
F3 approach facilitates framework development, because it
shows developers how to proceed, making them less prone
to insert defects and bad smells in the outcome frameworks.
Our approach allowed that even subjects with no experience in
framework development could execute this task correctly and
spending less time.

In future works we intend to create more F3 patterns to
deal with other scenarios in F3 models. Moreover, a tool with
a F3 model editor and a code generator based in the F3 patterns
is being developed to automatize the use of the F3 approach.

ACKNOWLEDGMENT

The authors would like to thank CAPES and FAPESP for
sponsoring our research.

REFERENCES

[1] S. G. Shiva and L. A. Shala. Software reuse: Research and practice. In
Information Technology, 2007. ITNG ’07. Fourth International Confer-
ence on, pages 603–609, april 2007.

[2] W. Frakes and K. Kang. Software Reuse Research: Status and Future.
IEEE Transactions on Software Engineering, 31(7):529–536, july 2005.

[3] R. E. Johnson. Frameworks = (Components + Patterns). Communica-
tions of ACM, 40(10):39–42, Oct 1997.

[4] M. Abi-Antoun. Making Frameworks Work: a Project Retrospective. In
Companion to the 22nd ACM SIGPLAN conference on Object-Oriented
Programming Systems and Applications, OOPSLA ’07, pages 1004–
1018, New York, NY, USA, 2007. ACM.

[5] S. Srinivasan. Design Patterns in Object-Oriented Frameworks. Com-
puter, 32(2):24 –32, feb 1999.

[6] D. Kirk, M. Roper, and M. Wood. Identifying and Addressing Problems
in Object-Oriented Framework Reuse. Empirical Software Engineering,
12(3):243–274, Jun 2007.

[7] V. Stanojevic, S. Vlajic, M. Milic, and M. Ognjanovic. Guidelines for
Framework Development Process. In Software Engineering Conference
in Russia (CEE-SECR), 7th Central and Eastern European, pages 1–9,
Nov 2011.

[8] M. Viana, R. Penteado, and A. do Prado. Generating Applications:
Framework Reuse Supported by Domain-Specific Modeling Languages.
In 14th International Conference on Enterprise Information Systems
(ICEIS’14), Jun 2012.

[9] M. Fowler. Patterns. IEEE Software, 20(2):56–57, 2003.

[10] K. Lee, K. C. Kang, and J. Lee. Concepts and Guidelines of Feature
Modeling for Product Line Software Engineering. In 7th International
Conference on Software Reuse: Methods, Techniques and Tools, pages
62–77, London, UK, 2002. Springer-Verlag.

[11] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-Oriented Domain Analysis (FODA): Feasibility Study. Techni-
cal report, Carnegie-Mellon University Software Engineering Institute,
November 1990.

[12] J. M. Jezequel. Model-Driven Engineering for Software Product Lines.
ISRN Software Engineering, 2012, 2012.

[13] H. Gomaa. Designing Software Product Lines with UML: From Use
Cases to Pattern-Based Software Architectures. Addison-Wesley, 2004.

[14] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid,
T. Widen, and J. DeBaud. PuLSE: a Methodology to Develop Ssoft-
ware Product Lines. In Proceedings of the Symposium on Software
Reusability, pages 122–131. ACM, 1999.

[15] R. C. Gronback. Eclipse Modeling Project: A Domain-Specific Lan-
guage (DSL) Toolkit. Addison-Wesley, 2009.

[16] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén. Experimentation in Software Engineering: an Introduction.
Kluwer Academic Publishers, Norwell, MA, USA, 2000.

[17] L. Xu and G. Butler. Cascaded refactoring for framework development
and evolution. Software Engineering Conference, Australian, pages
319–330, 2006.

[18] T. Zhang, X. Xiao, H. Wang, and L. Qian. A Feature-Oriented Frame-
work Model for Object-Oriented Framework: An MDA Approach.
In 9th IEEE International Conference on Computer and Information
Technology, volume 2, pages 199–204, 2009.

[19] M. Antkiewicz, K. Czarnecki, and M. Stephan. Engineering of
Framework-Specific Modeling Languages. Software Engineering, IEEE
Transactions on, 35(6):795–824, Nov-Dec 2009.

[20] X. Amatriain and P. Arumi. Frameworks Generate Domain-Specific
Languages: a Case Study in the Multimedia Domain. IEEE Transactions
on Software Engineering, 37(4):544–558, Jul-Aug 2011.

601


