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Abstract—Architecture-Driven Modernization (ADM) intends
to standardize software reengineering by relying on a fam-
ily of standard metamodels. Knowledge-Discovery Metamodel
(KDM) is the main ADM ISO metamodel aiming at rep-
resenting all aspects of existing legacy systems. One of the
internal KDM metamodels is called Structure, responsible for
representing architectural abstractions (Layers, Components
and Subsystems) and their relationships. Planned Architecture
(PA) is an artifact that involves not only the architectural
abstractions of the system but also the access rules that must
exist between them and be maintained over time. Although PAs
are frequently used in Architecture-Conformance Checking
processes, up to this moment, there is no contribution showing
how to specify and serialize PAs in ADM-based modernization
projects. Therefore, in this paper we present an approach that
i) involves a DSL (Domain-Specific Language) for the specifi-
cation of PAs using the Structure metamodel concepts; and ii)
proposes a strategy for the serialization of PAs as a Structure
metamodel instance without modifying it. We have conducted
a comparison between DCL-KDM and other techniques for
specifying and generating PAs. The results showed that DCL-
KDM is an efficient alternative to to generate instances of the
Structure metamodel as a PA and to serialize it.

1. Introduction

Architecture-Driven Modernization (ADM) combines
Model-Driven Architecture (MDA), standard metamodels
and the traditional reengineering phases in an unique con-
ceptual framework. The main idea resides in creating and
delivering a set of metamodels that become standards and
are adopted into modernization tools. The goal is that mod-
ernization projects can be conducted employing just ADM
metamodels, resulting in an ecosystem of solutions (mining
algorithms, transformation rules, etc) that recognize these
metamodels. If this happens, these solutions that manipu-
late these metamodels instances can be interchanged/reused
among these tools, promoting reusability [1], [2].

Knowledge Discovery Metamodel (KDM) is the central
metamodel of the proposal aiming at representing all aspects
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of the legacy system to be modernized. It is able of repre-
senting a wide set of aspects, ranging from low level details
(such as source code) to higher level abstractions (such as
architectural concepts). Because of its broadness, KDM is
organized in packages that represents different abstractions
of the system. In fact, each package is an internal KDM
metamodel responsible for one specific aspect of the system.
The Structure package is the most important KDM package
in the context of this work. It contains metaclasses for
representing the logical architecture of the software (layers,
components, etc) and the existing relationships between the
architectural elements/abstractions [3].

A recurrent problem in legacy systems is the architec-
tural erosion, which is gradual degradation of the system
architecture. An existing technique to cope with this prob-
lem, which is recurrent in modernization projects, is the
Architecture-Conformance Checking (ACC) whose goal is
to detect the architectural drifts of the Current Architecture
(CA) of the system when compared to the architecture the
system should have (PA - Planned Architecture) [4], [5].
PA is an artifact different from a conventional architecture
specification; a planned architecture specifies not only the
architectural abstractions (Layers, Components, etc.) the
system should have, but also the access rules that must be
maintained among those elements. For example: Layer A
cannot access Layer B.

In order to automate ACC processes, PAs and CAs must
be serialized in physical files and organized according to a
specific format/structure. Having these both representations,
an algorithm performs the checking process, comparing
them. A diverse set of strategies have been used in ACC
approaches for specifying and serializing PAs and CAs. The
majority employ Domain-Specific Languages (DSLs) for the
specification and proprietary metamodels for the serializa-
tion [6], [7], [8], [9], [10], [11], [12], [13], [14], [15]. To
the best of our knowledge, there is no proposal in literature
addressing PAs in ADM-based modernization projects. The
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only existing alternative that gets closer is KDM-SDK, a
general-purpose API. However, the specification becomes
too verbose compromising the productivity. Besides, there
is no support for specifying access rules.

According to Object Management Group (OMG), the
exclusive usage of ADM metamodels in modernization
projects can promote a better level of reusability and stan-
dardization [1], [2]. This happens because all the solutions
that act over ADM’s metamodel instances recognize the
structure of these metamodels and can be more easily in-
terchanged among modernization tools that recognize such
metamodels. Besides, representing PAs as KDM instance
makes the algorithm that compare the PA with the CA much
clearer, as both follow the same structure/terminology. So,
whenever possible, it must be avoided the employing of non-
ADM metamodels [1], [2].

Therefore, we present an approach for supporting the
specification and serialization of PAs to be used along an
ACC process in ADM-based projects. The specification is
supported by a Domain-Specific Language (DSL) called
DCL-KDM, which allows the architects employing the
Structure Package terminology when creating the specifica-
tion. The serialization is supported by a module that serialize
the specified PA as a KDM instance, without employing
non-ADM metamodels.

One important feature of our approach is the automatic
generation of access rules for strict layering and composi-
tions. Therefore, architects do not need to write these rules
when specifying PAs that involve these kind of architectural
styles [16], [17]. Besides, we employ the original versions
of KDM and Structure Package, without extending them.

Section 2 describes Structure Package of KDM; Sec-
tion 3 presents our tool-supported approach; Section 4 out-
lines the evaluation; Section 5 presents related works and
Section 6 presents the conclusion.

2. The KDM Strucure Package

KDM is the central metamodel of ADM because it
allows the representation of the system to be modernized.
Structure Package is an internal KDM metamodel that al-
lows the specification of software architectures along with
the relationships among their elements [1], [2], [3]. It is
important to note that the KDM metamodel currently has
no easy way to instantiate it. The only alternative to doing
this is an API called KDM-SDK that allows the use of Java
Classes to create instances of the metaclasses and serialize
it. Figure 1 shows some of these metaclasses.
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Figure 1. StructureModel class diagram. Adapted from [3]
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The Structure Package contains the following five
metaclasses for specifying architectural elements:
Layer, Component, Subsystem, SoftwareSystem
and ArchitectureView. By means of the self-relationship
of the AbstractStructureElement metaclass, it is
possible to create a composition among these elements.
For example, it is possible to specify an architecture model
composed of x subsystems, each subsystem including y
layers and each layer including z components. Unlikely
existing Architectural-Description Languages (ADLs), this
package provides more specific architectural concepts, i.e.,
while the existing ADLs provide just modules, ports and
connectors [18], this package provides terms that belong to
architectural styles, like layers and components [16], [17].

This has an important impact, because architectural
styles have access rules predetermined and well known. For
example, it is well known that in strict layered systems, the
above layer can just consume services provided by the layer
below, and the layer below just can provide services to the
layer immediately above [16]. Sarkar, Rama e Shubha [19]
elaborate on two important constraints in the strict layering
architectural style: the skip-calls and the back-calls. The
skip-call happens when a layer has dependencies to other
that is not the immediately below and the back-calls happens
when a layer uses services from the layer above it.

In Figure 1 it is also possible to see the
AggregatedRelationship (AR) metaclass. The goal
of this metaclass is to represent relationships between
architectural elements, like, between layers and components
or between layers and subsystems.

Figure 2 graphically depicts an example of an AR
instance between two layers. There are two elements (12
and 11), that are instances of the Layer metaclass. The
relationship between these layers represents an instance of
the AggregatedRelationship metaclass, where the source
(from) of the relationship is the initial point of the arrows
(12) and the target (to) is the end point of the arrows (11).

(from) (to)

— AggregatedRelationship —>]
— /QEE

Cals | ———
Creates

Extends

Imports | Density = 4

Figure 2. Example of a AggregatedRelationship instance

Layer: 12 Layer: I1

The AR act as a container, encapsulating primitive rela-
tionships. In KDM, primitive relationships are actions or
structural dependencies, each one having its own meta-
class. There are 34 metaclasses that represent these prim-
itive relationships, like method calls (Calls metaclass),
object creation (Creates metaclass), initialization value
(HasValue metaclass), inheritance (Extends metaclass),
macros (Expands metaclass) and data reading (Reads meta-
class). Every AggregatedRelationship instance has a
meta-attribute density, which represents the number of prim-
itive relationships inside it. In Figure 2, the AR groups four
primitive relationships.



3. The Approach

Our tool-supported approach is composed of two main
parts: i) A DSL called DCL-KDM for specifying PAs in
the ADM context; and ii) a Serializer for serializing PAs as
KDM instance. DCL-KDM was built on top of an existing
DSL called DCL [5]. We have evolved the original DCL in
four main points.

The first one is the inclusion of keywords for specify-
ing the architectural elements presented in Structure Pack-
age. We have included the following keywords: layer,
component, subSystem and softwareSystem. The origi-
nal version of DCL employs only the keyword module.

The second one was the possibility of specifying the
level of the layers with the keyword level. Doing that, we
were able to generate the access rules between the layers.
Letting a software architect specifying a layered system,
it is possible to predict and automatically generates the
relationships between the layers, since strict layering is a
well known architectural style [16], [17]. Therefore, the
engineer does not need to write the access rules for that.
This would not be possible just using modules.

The third one was the inclusion of the keyword in for
describing composition of architectural elements. When an
architectural element is said to be into another one, the
element that is in the higher level can access everything
of the internal one, but the opposite is not true. This feature
also improves the productivity because it is also possible to
automatically generate the access rules.

At last, the forth point is the serialization of the PA as a
KDM instance. The original version employed a proprietary
metamodel. This extensions consisted in the creation of a
Serializer Module dedicated to generate a Structure Package
instance representing the Planned Architecture. Our strategy
for serializing the PA using the Structure Package is detailed
in Section 3.3

3.1. Example of a PA

Figure 3 shows an hypothetical PA that is used along
this paper. We are using this PA to represent architectural
elements and also access rules among them. Every element
is an instance of a KDM metaclass (format [Metaclass :
name]). In this PA, there is a system s1 represented by the
larger rectangle. The s1 is composed of two subsystems,
ss1 and ss2, represented by the smaller rectangles. Each
subsystem is composed of components and layers. Inside
some components there are layers and vice-versa.

Regarding the access rules, we are making them evident
by using three graphical strategies. When we use the term
“access”, we mean any kind of primitive relationship. Table
1 (Section 3.2.2) shows some examples of these access in
DCL-KDM. Our intention with these three graphical strate-
gies is to represent: i) the access rules among layers (—); ii)
the access rules among grouping of objects (=); and iii)
accesses rules among all the other architectural elements
(=). At this point, it is important to note that there are
only one-way arrows to represent dependencies. Thus, to
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Figure 3. A Planned Architecture

represent interdependence of two elements it is necessary
to use two simple arrows, one to represent in dependencies
and another to represent out dependencies. We are adopting
this notation to be more aligned with DCL-KDM concepts
and to make the explanation easier along the paper.

The single arrow (—») is called Hierarchy Definition
and it must only be used between layers. The goal is to
make evident the hierarchy level between them and, as a
consequence, their access rules [16], [17]. The source layer
is in a higher level than the target layer. Therefore, the arrow
can be read as “source Layer is higher than the target Layer”,
or “the source Layer uses the target Layer”. For example,
13 is in a higher hierarchy level than 12. So, it is possible to
read “13 uses services provided by 12, but not the opposite”.

The second strategy has the intention of representing
composition (). The graphical representation is by group-
ing elements, i.e., one inside another one. In this notation
the bigger element can access everything of the immediately
internal one, but not the opposite.

The third strategy is the double arrow (=»), which
represents direct accesses among all the other architectural
elements. As an example, we can read “component c4 can
access everything of component c¢3”. The direction of the
arrow is also important; sometimes an element may access
another one but the opposite is not true.

In this notation the presence of arrows represent allowed
accesses and the absence of them represent prohibited ac-
cesses. For example, there are no arrows between layers 11
and 13, meaning the elements inside 11 cannot access the
elements of 13 and vice-versa. The same applies to all the
other elements that do not have arrows, for example, there
is no arrow between the component c4 and the layer 11.

Regarding the direction, an example is the relationship
between layer 16 and 17. There is a relationship between
them, but it is unidirectional, so all code elements of 16
can access the code elements of 17, but not the opposite.
Regarding composition of elements, the component c1 is
a inner element of the layer 12, so the 12 can access all
elements inside the c1, but not the opposite.

Listing 1 depicts a DCL-KDM specification for the PA
in Figure 3. The complete specification involves two blocks.

The first block is called “architeturalElements” and
second block is called “restrictions”. In the first block
the architect must specify the architectural elements, such
as layers, components and subsystems and also their hier-
archies and composition relations, which must be specified



with the keywords “level” and “in...”. For example, in
line 4 there is a declaration of a layer called 13, informing
that its level is 3 and it is inside the subsystem ss1. It is
important to mention that the bigger is the number of the
level, the higher is the level of the layer.

1 architeturalElements {

2 (a) subSystem ssI;

3 subSystem ss2;

4 (a) layer 13, level 3, inSubSystem: ssi;
5 (a) layer 12, level 2, inSubSystem: ssI;
6 (a) layer 11, level 1, inSubSystem: ssI;
7 layer 14, level 2, inLayer: 13;

8 layer 15, level 1, inLayer: 13;

9 layer 16, level 2, inComponent: c5;
10 layer 17, level 1, inComponent: c5;
11 component cIl, inLayer: 12;

12 component c2, inLayer: 12;

13 component c¢3, inSubSystem: ss2;

14 component c4, inSubSystem: ss2;

15 component c5, inSubSystem: ss2;

16 }restrictions ({

17 c2 can-depend-only cI;

18 c4 can-depend-only c3;

19 c5 can-depend c4;

20 c5 can-depend c3;

21 ssl can-depend ss2;

2 }

Listing 1. The PA Specification in DCL-KDM

In the second block (“restrictions”) the architect
must specify the access rules of the architectural elements
specified in the previous block. In this block the architect
must specify more specific access rules. For instance, be-
tween lines 17-21 it is possible to see that there is one
access rule between both subsystems (line 21). This access
rule describes that the ss1 can access the ss2. That is, the
elements in subsystem ss1 can have all kinds of access to
the elements in subsystem ss2. Although some access rules
can be automatically generated the architect can still decide
to write some of them.

3.2. DCL-KDM Syntax

In this section we present the general syntax of the DSL.
In Subsection 3.2.1 we explain three of the DCL-KDM
keywords and in Subsection 3.2.2 we explain the keywords
devoted for specifying access rules.

3.2.1. Architectural Elements Specification. In this sec-
tion we present three of the main keywords to describe
architectural elements in DCL-KDM, witch are layer,
component and subSystem.

Layers. The layers are represented through the keyword
layer. In Listing 1 on lines 4-10 there are examples of the
layer specification in DCL-KDM.

The expression for specifying a layer is divided into two
mandatory parts and one optional. The first mandatory part
is the use of the keyword layer, followed by its name and
a comma, like “layer 13,” (line 4). The second one is the
level of the layer by using the keyword level, followed by
its value and a comma/semicolon, like “level 3,” (line 4).

The optional part is used when a layer is within other
element, i.e., the architect should specify in which element
the layer belongs to. The keyword used to this part depends
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on the contained element, in this case the container is a
subsystem, so (s)he should use inSubSystem (line 4).

Component. The components are represented through
the keyword component. In Listing 1 (lines 11-15) there
are examples of the component specification.

The expression for specifying components is divided into
one mandatory part and one optional. The mandatory part
is the specification of the component through the keyword
component, followed by its name and a comma/semicolon,
like “component c1,” (line 11). The optional part is used
when a component is within other architectural element, i.e.,
the architect should specify in which element the component
belongs to. The keyword used to this part depends that
the contained element, in this example,it is contained into
a layer, so the keyword used is inLayer (line 11). Line
17 (Listing 1) depicts that unlike layers, the components
requires that its access rules must be explicit specified.

Subsystems. The subsystems are represented through
the keyword subSystem. In Listing 1 (lines 2-3) there are
examples of the subsystem specification.

The expression for specifying a subsystem is divided into
one mandatory part and one optional. The mandatory part
is the specification of the subsystem through the keyword
subSystem, followed by its name and a comma/semicolon,
like “subSystem ss1;” (line 2). The optional part is used
when a subsystem is within other subsystem, i.e., the archi-
tect should specify in which subsystem the subsystem be-
longs to. The keyword used to this part is the inSubSystem.
As well as components, the subsystems constraints must be
defined by the software engineer (line 21).

3.2.2. Access Rules Specification. In this section we
present the two ways to specify access rules in DCL-KDM;
the manual and the automatic specification.

Manual Specification. In order to explain and define the
access rules between architectural elements, we have opted
for adopting the same terminology employed by Terra and
Valente [5]. So, we have three distinguish forms to declare
an access rule between two elements. Two of then can be
seen in Listing 1 (lines 18-19), the third one was the opposite
to the rule on line 18, being only c2 can-depend cl.

The expression for specifying an access rule is divided
into three mandatory parts. There are two ways to specify
the first mandatory part. The first one is the specification of
the initial architectural element of the restriction through its
name, like “c2” (line 17) The second one is if the engineer
want to specify that just one element can access some other
element. Thus the specification initiate with the keyword
only followed by the name of the architectural element.

The second mandatory part is the specification of the
access type of the access rule and its access, like “can-
depend” (lines 19-21). In this part the DCL-KDM has three
options for access type and ten options for access. The
access type are can, cannot and must. The can represents
that the architectural element can have the defined access
with other specific element and it could be used with three
different forms (can followed by the access, can followed
by the access and only and can after the keyword only).
The cannot represents that the architectural element cannot



have the defined access with other specific element. At
last, the must represents that the architectural element must
have the defined access with other specific element. Already
about of ten options for access, each one has its own mean.
Table 1 depicts a short description of each access.

TABLE 1. ACCESS TYPES SUPPORTED IN DCL-KDM

Type Short Description

access Access of methods and attributes

declare Declaration of variables

handle Access and declaration of methods ans variables
create Creation of objects

extend Extension of classes/interfaces

implement Implementation of classes/interfaces

derive Extension and Implementation of classes/interfaces
throw Throwing exceptions

useannotation  Use of annotations

depend All previous

The lastly mandatory part is the specification of the final
architectural element of the restriction through its name,
followed by a semicolon, like “c1;” (line 17)

Automatic Generation. In DCL-KDM there are two
access rules types that are automatically generated and do
not need to be specified for architects: i) access rules for
strict layering; and ii) access rules for object composition.

The access rules for strict layering are automatically
generated thanks to the use of the keyword level. For
example, the access rules in lines 1 and 2 shown in Listing
2 are automatically generated based on the lines 4, 5 and 6
of Listing 1. These two access rules are also responsible for
the generation of other access rules to ensure the consistency
of the PA. These other access rules are those in lines 3-6
(Listing 2) that deals with skip-calls and back-calls by means
of generating one access rule between each two layers (like
i,j) where the layer i cannot depend on the layer j when
the level of the layer j is smaller than the level of the layer
i-1 or the level of the layer j is bigger that of the layer i.

1 13 can-depend 12
2 12 can-depend 11
3 11 cannot-depend 12 {dealing with back calls}
4 12 cannot-depend 13 {dealing with back calls}
5 11 cannot-depend 13 {dealing with skip calls}
6 13 cannot-depend 11 {dealing with skip calls}

Listing 2. Example of automatically generated access rules

The second access rules type automatically generated
are the composition rules. In DCL-KDM this rules are
automatically generated by means of the use the keywords
inSubsystem, inComponent or inLayer. Through these
keywords we are capable of verify which architectural ele-
ments is composed by others architectural elements. This is
due to generate the composition between them and automat-
ically generate the rules like in lines 1 and 2 of Listing 3,
following the specification on lines 11 and 12 in Listing 1.
These two access rules also implies that others access rules
are generated to ensure the consistence of the PA. These
other access rules are those in lines 3 and 4 in Listing 3.

However, it is important to highlight that engineers can
still opt for not using the mechanism to automatically gen-
erated access rules and provide all the restrictions manually.
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12
12
cl
c2

can-depend cl
can-depend c2
cannot-depend 12
cannot-depend 12

oW =

Listing 3. Example of automatically generated access rules

3.3. DCL-KDM Serialization

As the Structure Package was not originally designed
for representing access rules of PAs, we had to de-
cide how to represent the rules on it. Our decision
was to represent the access rules by the presence/ab-
sence of AggregatedRelationship (AR) and also by
the presence/absence of primitive relationship types in-
side the AR instance. Therefore the existence of an
AggregatedRelationship instance between two elements
implies they can communicate and the absence means they
cannot communicate. At the same way, the presence of prim-
itive relationships inside the AR means those relationships
are allowed and the absence means they are prohibited.
Depending on the access rule, there is an different set
of relationships inside the AR container. In this way, the
absence of the AR means all the 34 primitive relationship
types are prohibited.

As an example, let us suppose Figure 2 is a PA. As there
exist an AggregatedRelationship between the two layers
it means these two architectural elements can communicate.
This AR could be converted to the fallowing access rule
“12 can-depend 11”. In this example, we had the source
element (from - 12) and the target one (to - 11). However, to
fully understand this communication, it is needed to analyze
the primitive relationships inside the AR.

Inside the AggregatedRelationship instance there
are four instances of relationships metaclasses of the KDM.
Each instance represents a different type of relationship that
is allowed between these elements. For instance, the Calls
instance represents that it is allowed method calls from
elements of 12 to elements of 11. As the complete set of
primitive relationships contains 34 elements, it is possible
to know that there are 30 relationship types that are not
allowed between these layers.

A KDM instance is serialized like a XMI file. In our
case, to serialize a PA as a KDM instance, the file contains
only instances of metaclasses of Structure Package and
instances of metaclasses that represents relationships.

Listing 4 shows part of a PA serialized in XMI following
the KDM format. Because of space limitations, we shown
just the XMI that refers to the part highlighted with “(a)”
in Listing 1.

This KDM instance have various elements that repre-
sents the Structure metaclasses. In this example, the ele-
ments shown are subSystem, layer and their access rules
automatically generated. The metaclasses to representing the
architectural elements can be seen on line 4 (Subsystem
metaclass), lines 5, 12 and 19 (Layer metaclass). The
metaclass to representing the access rules can be seen on
lines 6 and 13 (AggregatedRelationship metaclass).



1 <?xml version="1.0" encoding="ASCII"?>
2 <kdm:Segment xmi:version="2.0" [...] name="Planned
Architecture">

3 <model xsi:type="structure:StructureModel" name="
Planned Architecture">
4 <structureElement xsi:type="structure:Subsystem"
name="ss1">
5 <structureElement xsi:type="structure:Layer" name
13" [L..]>
6 <aggregated from="//@model.0/@structureElement
.0/@structureElement.0"

7 to="//@model.0/@structureElement.0/
@structureElement.1"

8 relation="//@model.1l/@codeElement.0/
@codeElement.0/@actionRelation.0 [...]"

9 density="7"/>

10 [...]
</structureElement>
<structureElement xsi:type="structure:Layer" name
=vi2" [...]>
<aggregated from="//@model.0/@structureElement
.0/@structureElement.1"
to="//@model.0/@structureElement .0/
@structureElement.2"
relation="//@model.1l/@codeElement.1/
@codeElement.0/@actionRelation.0 [...]"
density="7"/>
17 [...]
</structureElement>
<structureElement xsi:type="structure:Layer" name
="11" [...]/>
</structureElement>
21 </model>
22 <model xsi:type="code:CodeModel"> [.
23 </kdm:Segment>

20

..] </model>

Listing 4. Part of a PA Serialized as a Structure Package Instance

The access rules are represented by means of the
AggregatedRelationship metaclass. In this metaclass the
direction of the access rule is represented by means of the
from (lines 6 and 13) and to (lines 7 and 14) attributes.
There is also an attribute called density that defines how
many relationships the AggregatedRelationship contains
and an attribute called relation that represents each rela-
tionship that the density evidentiate (lines 8 and 15). Like
the attributes from and to, the attribute relation has the
same quantity of XMI paths as the density attribute.

4. DCL-KDM Evaluation

In this section we describe two evaluations we have con-
ducted. Below there are two GQM (Goal/Question/Metric)
templates [20] for both evaluations.

First evaluation: (i) object of study: DCL-KDM,; (ii)
goal/purpose: comparing DCL-KDM with KDM-SDK to
check which of them provides a better support in terms
of productivity for software engineers; (iii) perspective:
software engineers in need of specifying a PA in an ADM-
based modernization project; (iv) quality focus: the easiness
of specification of Planned Architectures comparing DCL-
KDM and KDM-SDK in terms of lines of code and the
quality of the generated instances (v) context: academic
context. To guide this first evaluation we have developed
two research questions: RQ1:“What are the pros and cons
of using DCL-KDM and KDM-SDK for specifying PAs?”;
and RQ2:“Does DCL-KDM contribute more to the correct-
ness/quality of the generated instances than KDM-SDK?”.
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Second evaluation: (i) object of study: DCL-KDM,; (ii)
goal/purpose: comparing DCL-KDM with other three state-
of-the-art techniques for specifying planned architectures.
The analyzed techniques were: DCL [5], Dependency Ma-
trix (DM) of the JArchitect tool [21] and Reflexion Models
(RM) used by the SAVE tool [8]. (iii) perspective: software
architects in charge of choosing a DSL for the specification
of a Planned Architecture to any modernization project; (iv)
quality focus: the specification of a PA, the use of the tool
support and the scope of specification. (v) context: hetero-
geneous software systems/programs. To guide the second
evaluation we have developed others two research questions:
RQ3:“In terms of pros and cons, how is the use of the
DCL-KDM comparing others state-of-the-art techniques?”;
and RQ4:“The DCL-KDM can be used as a language to
specify PAs as the others state-of-the-art techniques?”.

4.1. Evaluation Strategy

4.1.1. First Evaluation. To conduct this evaluation we have
used the hypothetical PA shown in Figure 3. We decided
to use it because it involves a variety of architectural ab-
stractions and combinations among them difficult to find in
real systems. We claim that this PA is more suitable for
exercising DCL-KDM than a real/big system with a fewer
number of combinations.

This evaluation has involved two software architects
from Academy who have high experience with ADM con-
cepts, DCL-KDM and KDM-SDK. Their task was to specify
three parts of the PA by using these both techniques. The
first part was the layers 11, 12, and 13 and their access
rules. The second one was the components c3, c4 and c5
and their access rules and the third one was the components
cl and c2 inside layer 12 and their relationships.

Listing 1 shows the whole specification of these three
parts in DCL-KDM. Part 1 - Lines 4-6, Part 2 - Lines
13-15/18-20 and Part 3 - Lines 11-12/17. However, as the
specification in KDM-SDK is much longer, Listing 5 shows
just the specification of the first part (layers 11, 12, and 13
and some access rules).

In Listing 5, it is possible to notice that the lines 2 and
3 instantiate a subsystem named ss1. In lines 4-9 the layers
are declared (13, 12 and 11). In lines 10-12 the layers are
added to the subsystem. In lines 13-16 a set of relationships
are created, these relations represents the allowed access
types between the architectural elements. Lastly, the lines
17-23 instantiate the AggregatedRelationship metaclass,
define its owner, its direction and the relationships allowed
between the two elements (13 and 12) by means of its
attributes.

It is important emphasize that these two representations
(“(a)’-Listing 1 and Listing 5) generate the same KDM
instance. Listing 4 shows a snippet of the KDM instance
(Structure Package metaclasses) serialized.

| private void createFirstPartToEvaluated() {
2 Subsystem ssl = StructureFactory.eINSTANCE.
createSubsystem() ;
ssl.setName ("ssl");
4 Layer 13 =StructureFactory.eINSTANCE.createlLayer();



13.setName ("13");

Layer 12 =StructureFactory.eINSTANCE.createlayer();

12.setName ("12");

Layer 11 =StructureFactory.eINSTANCE.createlayer();

9 11.setName ("11");

ssl.getStructureElement () .add(13);

ssl.getStructureElement () .add(12);
ssl.getStructureElement () .add(11);

List <KkDMRelationship> lisfOfRelationships
ArrayList<KDMRelationship>();

Calls relation ActionFactory.eINSTANCE.
createCalls();

lisfOfRelationships.add(relation);

16 [...]

AggregatedRelationship newRelationship
CoreFactory.eINSTANCE.
createAggregatedRelationship();

newRelationship.setDensity (1lisfOfRelationships.size
0);

newRelationship.setFrom(13);

newRelationship.setTo(12);

21 newRelationship.getRelation () .addAll (
lisfOfRelationships);

13.getAggregated () .add (newRelationship);

23 [...]

® <9 w

new

Listing 5. Part 1 of the PA (KDM-SDK)

4.1.2. Second Evaluation. In order to support the second
evaluation and the discussion about the expressivity of the
DCL-KDM, we conducted a comparison with the specifica-
tion of a PA in DCL [5], DM [21] and RM [8].

The system chosen for this comparison was the myAp-
pointments. This system was implemented by an software
engineer of the Group of Software Engineering in PUC
Minas and aims to manager personal information of agenda.
Figure 4 shows the PA that the myAppointments was
planned. The following constraints are the constraints that
myAppointments should follow in its implementation [22]:

e Only view layer of
AWT/Swing.

Only DAOs from the model layer can depend on database
services. An exception is granted to the model. DB class,
responsible for controlling database connections.

The view layer can only depend on services provided by
itself, by the controller layer, and by the util package (for
example, to decouple data presentation from data access
and view components can’t access model components).
Domain objects must not depend on the DAO, controller,
and view types.

DAO classes can only depend on domain objects, on other
model classes allowed to use database services (such as
model.DB), and on the util package.

The util package must not depend on any class specific

to the system source code.

Like the DCL-KDM is to specify PAs and in ACC process
this specification is required, this system offers a strongly
bases to our comparison, because it was implemented ex-
clusively to evaluate ACC processes and tools [22].

can depend on components

4.2. Results

First Evaluation. This evaluation were conducted by
focusing on the Lines of code (LoC) metric. This metric
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System: myAppointments
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-

’ Layer: view Module: util

A

‘ Layer: controller

3
Layer: model

Layer: dao

Layer: domain
(data access objects)

Legend: == Allowed Access — Hierarchy Access Composition

Figure 4. The Planned Architecture of myAppointments. Adapted of [22]

were chosen to provide an initial perception of the effort
for creating the same specification in DCL-KDM and KDM-
SDK. Table 2 shows the results for the specification of the
three parts defined in Section 4.1.1 for each engineer.

TABLE 2. LOC FOR PA SPECIFICATION

Evaluated Part | Approach LoC
Part 1 DCL-KDM | 4 4
KDM-SDK | 55 | 40
Part 2 DCL-KDM | 6 6
KDM-SDK | 61 | 43
Part 3 DCL-KDM | 4 4
KDM-SDK | 49 | 37

Second Evaluation. The specifications of the system
myAppointments was performed by one software engineer
with experience in these four state-of-the-art approaches
(DCL-KDM, DCL, DM and RM). This evaluation were
conducted by focusing in the use and in the pros/cons of
each specification in each approach. As results, we had
four specifications of the same system. Listing 6 shows
the specification in DCL-KDM by using the Eclipse Plug-
in. Listing 7 shows the specification in DCL by using the
Eclipse Plug-in. Figure 5 shows the specification in DM
by using JArchitect5 tool. And at last, Figure 6 shows the
specification in RM by using SAVE tool.

architeturalElements |
layer view, level 3;
layer controller, level 2;
layer model, level 1;
layer dao, level 2, inLayer: model;
layer domain, level 1, inLayer: model;
module util;
}restrictions{
model can-depend util;
view can-depend util;
controller can-depend util;
controller can-depend view;

1
2
3
4
5
6
7
8
9

10
1
12
13}

Listing 6. myAppointment specification in DCL-KDM

%$Modules

module Controller:
module View:

module Model:

module Domain:
module Util:

module DAO:

module JavaAwtSwing:
module JavaSqgl:

controller.x

myapp.view. x

myapp.model. xx
myapp.model.domain. *
myapp.util.x

"myapp.model. [a-zA-Z0-9/.] *DAO"
java.awt.*x, javax.swing.xx
java.sqgl.xx

myapp.

© BN U R W —




%Constraints

only View can-depend JavaAwtSwing
only DAO can-depend JavaSql
View cannot-depend Model
Domain can-depend-only $java
DAO can-depend-only Domain,
Util cannot-depend $system

10
11
12
13
14
15
16

Util, javaSql

Listing 7. myAppointments specification in DCL

=-s MyAppointments
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Figure 5. myAppointment specification in DM
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Figure 6. myAppointment specification in RM

4.3. Discussion of Results

In order to answer the RQ1 and RQ2 we focus in the
results of the first evaluation, the LoC and our perception
about the specification in DCL-KDM and KDM-SDK.

The RQ1 answer is organized here in pro and cons facts.
A pro fact is that DCL-KDM automatically instantiates and
serializes the PA as a KDM instance. Besides, it hides from
the architect the details of how is the serialization, leaving
(s)he free to concentrate on the specification of the PA and
its concerns. It is also possible to specify a high amount of
restrictions between the architectural elements, where some
of then are automatically generated. Another pro fact is that
to specify PAs in DLC-KDM it is not needed to have a
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deep knowledge of ADM and KDM metamodel. This occurs
because the language is quite straightforward to be used and
once it is learned, it is fairly easy to specify the PA.

A cons fact is that DCL-KDM just offers a fixed set
of architectural elements. On the other hand, in KDM-SDK
it is possible to define many architectural elements through
inheriting a specific metaclass, as well as its composition.

In KDM-SDK there is no any restriction of composition,
leaving out in the architect hands the decision of making
any type of hierarchy or composition. That is, in DCL-
KDM just some types of hierarchies and composition are
possible. Another cons fact is that the in KDM-SDK there
are no specific way to generate the specification, it is in the
architect hands and its own knowledge. Already, in DCL-
KDM it is required how the KDM will see the specification.
That is, the same PA in KDM-SDK could be written in dif-
ferent forms, potentially increasing the possibility of errors
or wrong specifications, but also increasing the possibilities
of alternatives. In KDM-SDK there are no a way to rep-
resenting restrictions. Leaving the engineer to specify your
own style of restrictions between the elements. Such a fact
that depending on the case may not be bad or wrong, while
in DCL-KDM we force one specific way when we opted
to use the presence/absence of primitive relationships into a
AggregatedRelationship to represents the communica-
tion between the elements.

To answer the RQ2, the correctness is improved but the
quality is the same. The correctness is improved mainly for
two reasons: (i) the responsibility of defining constraints is
largely removed from the software engineers, for instance,
in layers the engineer must indicate at what level the layer
belongs in order to automatically generate the constraints;
and (ii) like is possible to see in the LoC values, each
engineer has your own code style and logic, but using the
DCL-KDM the specification and the logic to specify has to
be the same, avoiding errors or mistakes in the specification.
However, the quality remained the same for two reasons:
(1) in DCL-KDM the generation of the KDM instance was
automatically avoiding commons errors; and (ii) the two
engineers that participate of the experiment has a deeply
knowledge of the KDM generating a high quality KDM
instance, an engineer that do not have the same knowledge
possibly generates an instance with a worse quality.

In order to answer the RQ3 and RQ4 we use the results
of the second evaluation focusing the use of the approach
and how is the specification in each technique chosen.

To answer the RQ3, we separate a discussion about each
approach. The specification in DCL-KDM it is simple and
intuitively as the examples showed in the article, once the
engineer understands how it is the syntax (s)he can specify
an PA. Regarding the constraints of the myAppointment,
the specification in DCL-KDM reaches five of the six con-
straints. While the DM reaches four of the six and the
other two approaches reaches the six constraints. This is
due to the deficit in DCL-KDM to specify specifics APIs
(like java.awt, java.sql, etc.) and the DM to the rule’s
language be insufficient to express constraints based on
the use of specifics interface types and name conventions.



Despite that, in comparing to the others techniques, the
DCL-KDM is as comprehensive as the others, making it
as an option to its use during the process to specify a PA.

The specification in DCL was similar to the specification
in DCL-KDM. It was predictable once the DCL-KDM was
based in the DCL. Despite that we observe quite interesting
differences between them. One predictable difference is the
possibility of specifying different architectural elements.
Another one is that how each approach visualize the default
access rules. In DCL, we observe that in the initial point of
the specification all communication in the PA is allowed and
the engineer needs to specify what is not allowed. Already,
in DCL-KDM it is the opposite, all communication is not
allowed and the engineer needs to specify what is allowed.

Other difference quite interesting is that the DCL needed
that the software engineer has in your mind how the source
code will be materialized. This is because in the specifica-
tion of the PA it is necessary to initiate at least the package
mapping between the source code and the PA. While in
DCL-KDM and RM this mapping is not needed.

DMs are a compact and useful abstraction to visualize
architectures, because they make it easier to engineer have a
prompt zoom in and out over their system structure. But, the
access rules language supported by the tools has revealed
itself insufficient to express some restrictions. Another prob-
lem that we observe was the intrinsically need of the source
code. In the JArchitect and others tools that we analyzed we
observe that to have an DMs instance was needed to use the
source code of the application. This leaves us to believe that
is quite difficult to specify and use the DMs to generate a
simple PA and its serializable version.

Out of the four techniques that we chose, RM and the
SAVE tool is the only one that use supports a clearly defined
ACC process by graphically means. The tool offers to an
engineer to create a high-level model of the PA with all
constraints needed. To use this tool support is ease and
intuitive, generating high-level diagrams like in Figure 6.
Despite that, the tool is proprietary one, consequently using
a proprietary metamodel. So, it hurt the ADM principles us-
ing only ADM metamodels in the modernization processes
making it difficult to promote the reusability. This happens
because the solution act over one proprietary metamodel
making it difficult and impossible the interchange among
modernization tools of others authors.

Evaluating these four techniques, we observe two inter-
esting facts that supports our answer to the RQ4. The first
one is that the DCL-KDM is a quite acceptable technique
to describe different PAs. The second one is that the basis
DSL, could be translated in various others techniques just
extending our KDM generation engine to generate others
serializations types, like other metamodel, one instance of
DM, etc. So, based on these facts the answer to RQ4 is yes,
the DCL-KDM despite was generated for ADM context can
be used as a language to specify PAs in any context.

5. Related Works

To the best of our knowledge, currently in the literature
there is no a proposal focused on providing a contribution to
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the ADM context in terms of the PAs. All approaches found
use proprietary metamodels and none of them mention the
KDM metamodel as an alternative. In this way, the related
works are those that present some support for specifying
PAs; graphical or textual. There are a number of works that
provide such support, but none of them focus on automatic
generation of rules for strict layering and composition.

SAVE [8] is an ACC approach that identifies convergent,
divergent and absent relationships in a system architecture.
SAVE employs two proprietary metamodels: a high-level
model for specifying the PA and a source code model for the
current system implementation. LDM [9] relies on Depen-
dency Structure Matrices (DSMs) to perform ACC. A DSM
is a weighted square matrix whose rows and columns denote
classes from an object-oriented system and the number of
references from B to A is represented in the cell (A, B).
Stafford and Wolf [15] have proposed a dependency analysis
technique with ADLs. Their focus is on the representation
of components, input and output ports and not architectural
styles of higher level architectural components.

ReflexML [14] defines the traceability of UML compo-
nent models to code using AOP type pattern expressions.
Herold and Rausch [7] expresses architectural rules as for-
mulas on a common ontology, and models are mapped
to instances of that ontology. A knowledge representation
and reasoning system is then used to check whether the
architectural rules are satisfied for a given set of models.

ArchJava and ArchLint rely on AST as the underlying
model for performing ACC. ArchJava [10] extends Java
with architectural modeling constructs that seamlessly unify
software architecture with implementation, ensuring that the
implementation is according to the architectural constraints.
ArchLint [11] is a data mining approach for ACC that
identifies architectural violations based on a combination
of static and historical source code analysis.

6. Conclusion

We have presented an approach for supporting software
architects in the specification and serialization of PAs to
be used in ADM-based projects. The primary usage of our
approach is in Architecture-Conformance Checking (ACC)
processes that occurs in ADM-based modernization projects.

An important aspect of our approach is showing it is pos-
sible to specify and serialize PAs with the original version
of KDM and Structure Package. Therefore, we respect the
standardization philosophy of OMG and propitiate a better
level of reusability of tools that work with those standard
metamodels. For example, modernization tools that already
recognize the KDM standard, could easily take advantage
of our approach reusing the DSL and the algorithm that
generates the KDM instance as a PA.

Although in this paper we have highlighted the features
that makes our approach more aligned with ADM-based
projects, it can also be used in non-ADM projects with
few adjustments. For example, the DCL-KDM can still be
used only with the keyword “module” and by specifying
all the access rules manually. However, the usage of the a



PA serialized as a KDM instance is a bit more difficult to
be used in non-ADM projects. This happens because the
algorithm that compares the Planned Architecture with the
Current Architecture would have to deal with two different
formats/metamodels. This makes the algorithms more com-
plex and error-prone.

The  Structure  Package, in  particular the
AggregatedRelationship, has demonstrated to be
powerful enough for our purposes. The possibility of
representing relationships between architectural elements
and encapsulate 34 types of primitive relationships inside
it, has provide a good granularity level of representation.

We believe that DCL-KDM improves the productivity
when specifying PA in ADM-based projects. This happens
because architects do not have to write access rules for strict
layering systems and composition of architectural elements.
They just must inform the level of the layers (by the keyword
level) and the composition of elements (by the keyword
in). Based on these keywords the internal mechanism is be
able to generate the access rules.

Furthermore, we conducted a preliminary evaluation di-
vided in two parts. The first one to evaluated the DCL-
KDM in the ADM context and the second one to show that
despite the ADM context the DCL-KDM can be used as a
language to specify PAs. The results show that DCL-KDM
is an efficient alternative to KDM-SDK, which is currently
the unique existing alternative for creating KDM instances
(Structure Package). The results also show us that despite
some differences between DCL-KDM and some state-of-
the-art techniques the DCL-KDM can be used in different
contexts to specify PAs in a high-level way.

As a future work we intend to improve our evaluation,
by elaborating a controlled experiment with subjects. Our
intention is to analyze it in a more deep way, each of
the metaclasses and how DCL-KDM contribute for them.
Our main focus is to evaluate its effectiveness to describe
planned architectures in the ADM context, i.e., using the
KDM as the main artifact.
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