
Evaluating the Extension Mechanisms of the
Knowledge Discovery Metamodel for Aspect-Oriented

Modernizations

Bruno M. Santosa,∗, André de S. Landib, Daniel S. Santibáñeza, Rafael S.
Durellic, Valter V. de Camargoa

aFederal University of São Carlos, São Carlos, SP, Brazil
bS2IT SOLUTIONS CONSULTORIA LTDA, Araraquara, SP, Brazil

cFederal University of Lavras, Lavras, MG, Brazil

Abstract

Crosscutting concerns are an intrinsic problem of legacy systems, hindering their

maintenance and evolution. A possible solution is to modernize these systems

employing aspect-orientation, which provides suitable abstractions for modu-

larizing these kind of concerns. Architecture-Driven Modernization is a more

specific kind of software reengineering focused on employing standard metamod-

els along the whole process, promoting interoperability and reusability across

different tools/vendors. Its main metamodel is the Knowledge Discovery Meta-

model (KDM), which is able to represent a significant amount of system de-

tails. However, up to this moment, there is no extension of this metamodel

for aspect-orientation, preventing software engineers from conducting Aspect-

Oriented Modernizations. Therefore, in this paper we present our experience

on creating a heavyweight and a lightweight extension of KDM for aspect-

orientation. We conducted two evaluations. The first one showed all aspect-

oriented concepts were represented in both extensions. The second one was a

experiment, in which we have analyzed the productivity of software engineers

using both extensions. The results showed that the heavyweight extension pro-

∗Corresponding author
Email addresses: bruno.santos@ufscar.br (Bruno M. Santos),

andre.landi@s2it.com.br (André de S. Landi), daniel.santibanez@ufscar.br (Daniel S.
Santibáñez), rafael.durelli@dcc.ufla.br (Rafael S. Durelli), valtervcamargo@ufscar.br
(Valter V. de Camargo)

Preprint submitted to Journal of Systems and Software December 12, 2018

pitiate a more productive environment in terms of time and number of errors

when compared to the lightweight one.

Keywords: Aspect-Oriented Modernization; Knowledge Discovery

Metamodel; legacy systems; heavyweight extension; lightweight extension,

KDM, OMG, aspect-oriented.

2018 MSC: 00-01, 99-00

1. Introduction

For software systems to keep meeting the requirements previously estab-

lished it is necessary constant evolution or they will no longer fulfill their role

properly [1]. Many organizations have systems that, despite presenting the phe-

nomena of erosion and aging, still provide significant value for the organizations.5

These systems are usually referred to “legacy systems”. The erosion and aging

consists in a system’s detrition in consequence of successive and bad managed

modifications in the source-code [2, 3, 4].

For some organizations, the complete substitution of their system has a

high risk and consumes a large amount of resources, making this alternative10

unfeasible. On the other hand, system reengineering is an alternative that is

able to extend the system’s life cycle and it is more feasible economically [5].

However, traditional reengineering processes lacks formalization and stan-

dardization on how to develop tools and how to make them work together,

leading software engineers to create their own proprietary solutions, which are15

difficult (or even impossible) to be reused, hindering the productivity of the

team [5] .

In 2003, the Object Management Group (OMG)1 created a task force to

evolve the traditional reengineering processes, formalizing and preparing them

1OMG is an international organization that approves open standards to object oriented

applications since 1989.

ii

to be supported by models [6, 7]. Therefore the term Architecture-Driven Mod-20

ernization (ADM) came out as a solution to the standardization problem [6, 7].

Architecture-Driven Modernization advocates modernization processes must

employ MDA (Model-Driven Architecture) concepts along the process: Platform-

Specific Model (PSM), Platform-Independent Model (PIM) and Computational-

Independent Model (CIM). The goal is to rise the abstraction level to work in a25

technology-independent manner. Thus, the main idea is to represent the system

to be modernized in models and conduct analysis and transformations on these

models [5].

The Knowledge Discovery Metamodel (KDM) is the main ADM metamodel

and its goal is to represent all systems characteristics, from low level details30

(like lines of code and programming structures) to higher level concepts (like

architectural modules and business processes). In fact, KDM can be seen as a

multimodel since it incorporates other metamodels and each one is responsible

for representing a different system view.

Originally (and purposely) KDM does not include metaclasses for specifying35

particular domains or technologies, such as web services, multi-agent systems

and aspect-oriented programming (AOP). However, it can be adapted in two

different ways. The first one is by extending it in a lightweight (LW) man-

ner by using stereotypes and tag values. The second one is by extending it in

a heavyweight (HW) manner by changing the metamodel creating new meta-40

classes and/or modifying the existing ones.

When a legacy system presents modularization problems, usually due to

the presence of crosscutting concerns, a candidate technology to be used in the

modernization process is aspect-oriented software development (AOSD). AOSD

is a relevant development methodology that has a significant impact on the45

community research and it also has a great number of publications around the

world [8]. There are also publications that reports on real usage of AOSD in

industrial projects [9, 10]. Important frameworks such as Spring and JBoss

utilize aspect-oriented concepts, for example, a typical application might have

a security policy that prevents a user from executing a number of operations50

iii

unless the user has the correct privileges.

Even though the current KDM was devised to be a common intermediate

representation for existing software systems its current version does not support

the specification and instantiation of aspect-oriented concepts during modern-

ization processes [11]. Nowadays, KDM neither contain specific metaclasses nor55

stereotypes to fully support and represent aspect-oriented concepts such as: join

points, advices, aspects, etc.

Moreover, we observe lack of studies in literature about: (i) representation of

AOP in KDM [12] and (ii) comparisons between different extension mechanisms

of KDM. Regarding the first point, this lacking makes aspect-oriented modern-60

izations an error-prone activity. This happens because the absence of specific

metaclasses for representing aspect-oriented concepts needs to be compensated

by representing the same aspect-oriented concepts using canonical metaclasses

and trying to differentiating them somehow. This clearly can lead to misunder-

standings and the insertion of errors.65

In order to overcome these limitations in this paper we proposed two KDM

extension for AOP – a lightweight and a heavyweight. By using these exten-

sion, the modernization into object-oriented systems to aspect-oriented ones

becomes feasible, since it is possible to represent the aspect-oriented concepts

(join points, advices, aspects and others) in a clear way in the KDM instance70

that represents the aspect-oriented version of the system. Another goal is to in-

vestigate both extensions, showing evidences of their suitability. To support this

goal, a comparative study was performed to list the advantages/disadvantages

and main differences between both extensions.

Summing up, the primary contribution of this article is to report the ex-75

perience we have gained from creating both a LW and a HW Aspect-Oriented

Extension of KDM. The secondary contribution is the experiment we have con-

ducted whose goal was to answer the following Research Question (RQ):

iv

RQ – Which of the KDM AOP extensions (LW or HW) requires less

effort (time) and leads to less errors when creating and maintaining their

instances?

In the following, we present the background related to ADM and KDM,80

extension alternatives for KDM and aspect-oriented modernization scenario.

Then, in Section 3 we present the aspect-oriented extensions of KDM. After, in

Section 4 we discuss the evaluation of the approach. In Section 6 we describe

some related works, Section 7 presents the lesson learned herein, and finally in

Section 8 we draw some conclusions and describe plans for future work.85

2. ADM & KDM

Architecture-Driven Modernization (ADM) is a trend of reengineering pro-

cesses that considers standard metamodels and MDA concepts (like PIM, PSM

and CIM) along the process. According to OMG, the main reason of this

problem is the lack of standardization, hindering the productivity of teams,90

preventing the reuse of algorithms and techniques and also compromising the

interoperability among modernization tools from different vendors [13] [14].

The modernization process supported by ADM involves three phases and it

is similar to a horseshoe [15]: (i) reverse engineering, (ii) restructuring, and

(iii) forward engineering, as can be seen in Figure 1. Starting from the lower95

left side, in reverse engineering part, the knowledge is extracted from legacy

systems and PSM is generated. The PSM is used as a base to generate a PIM

that conforms to an ADM metamodel named Knowledge Discovery Metamodel.

After obtaining the PIM, one can generate the CIM going up to the level of

abstraction. Thus, during reverse engineering, transformations are done aiming100

to get a high-level representation of the system, independently of the adopted

platform.

In restructuring phase, it is possible to conduct refactoring [16, 17], opti-

v

R
e
v
e
rs

e
 E

n
g

in
e
e
ri

n
g

Reestructuring
F
o

rw
a
rd

E
n

g
in

e
e
rin

gLegacy system Improved system

Recovery

Abstract

Abstract Refine

Refine

Generate

Source PSM
Model

Target PSM
Model

Source PIM
Model

Target PIM
Model

Source CIM
Model

Target CIM
Model

Refactoring and optimization

Refactoring and optimization

Refactoring and optimization

Knowledge Discovery Metamodel (KDM)

Figure 1: Process flow of modernization supported by ADM [5].

mization [18, 19], and also insert new business rules in the system. Please note

that this restructuring phase can be performed in any level of the horseshoe105

(PSM, PIM and CIM level). The output is a new target model without the

problems previously identified, which can be called “a modernized model” in

any level of the horseshoe.

In the sequence, we can proceed to the forward engineering phase, wherein

the models are resubmitted to a set of transformations to reach the source-code110

level again.

The PIM and CIM abstractions can be represented by the main ADM meta-

model, called Knowledge Discovery Metamodel (KDM)2. The KDM is a meta-

model of common intermediate representation to existent systems and its oper-

ating environments. Using this representation it is possible exchange systems115

representation between platforms and languages aiming to analyze, to standard-

ize, and to transform existing systems [7].

The KDM can represent physical and logical software artifacts in different

2Formal specification of KDM: https://www.omg.org/spec/KDM/About-KDM/

vi

abstractions levels and it is formed by twelve packages organized in four layers:

(i) infrastructure, (ii) program elements, (iii) runtime resources, and (iv) ab-120

stractions. In Figure 2 it is shown the KDM architecture with its layers (right

side) and the internal packages, which can also be seen as sub-metamodels be-

cause each package represents a different system’s view [20].

Conceptual Build Structure

Data UI PlatformEvent

Code Actions

Micro
KDM

Source

kdm

Core

Abstractions
Layer

Runtime Resource
Layer

Programs Elements
Layer

Infrastructure
Layer

Figure 2: KDM’s architecture. Adapted from [5]

In this paper, the main goal is to represent the AOP concepts in KDM. To

develop a Heavyweight (HW) KDM extension that represents the AOP concepts125

it is necessary extend some metaclasses from Code package, located in programs

elements layer. Regarding the Lightweight (LW) extension, the package to be

used is the Kdm Package from infrastructure layer.

2.1. Code Package

The Code package defines a set of metaclasses, whose purpose is to repre-130

sent implementation-level program units and their associations. The package

also includes metaclasses that represent common program elements supported

by various programming languages, such as: data types, classes, procedures,

macros, prototypes, and templates.

vii

In a given instance of KDM, each element of the Code package represents135

some construct in a programming language, determined by the programming

language used in the system. The Code Package consists of 24 classes and

contains all the abstract elements for modeling the static structure of the source

code.

In Table 1 is depicted some of them. This table identifies KDM metaclasses140

possessing similar characteristics to the static structure of the source code. Some

metaclasses can be direct mapped, such as class and interface from OO language,

which can be easily mapped to the ClassUnit and InterfaceUnit metaclasses

from KDM.

Code Element Metaclass

Class ClassUnit

Interface InterfaceUnit

Method MethodUnit

Attribute MemberUnit/StorableUnit

Parameter ParameterUnit

Association KdmRelationship

Table 1: Mapping between Code Elements and the KDM Metaclasses

2.2. Kdm Package145

Kdm package describes several infrastructure elements that are present in

each KDM instance. Together with the elements defined in the Core package

these elements constitute the so-called KDM Framework. The remaining KDM

packages provide meta-model elements that represent various elements of exist-

ing systems.150

Kdm package is a collection of classes and associations that define the over-

all structure of KDM instances. From the infrastructure perspective, KDM

instances are organized into segments and then further into specific models.

viii

Kdm package consists of the following five class diagrams: (i) Framework

– defines the basic elements of the KDM framework, (ii) Audit – defines au-155

dit information for KDM model elements, (iii) Annotations - provides user-

defined attributes and annotations to the modeling elements, (iv) Extensions -

a class diagram that defines the overall organization of the lightweight extension

mechanism of KDM, and (v) ExtendedValues - the tagged values used by the

lightweight extension mechanism. We have used the last two class diagrams to160

create the lightweight extension mechanism presented herein.

2.3. Extension Alternatives for KDM

As already stated there are two ways of extending KDM: (i) lightweight

(LW) and (ii) heavyweight (HW). In the following subsections we detail each

of them.165

2.3.1. Lightweight Extensions

The KDM has a package called “Kdm” that involves a set of metaclasses

for creating lightweight extensions by means of stereotypes and tagged values.

Part of the class diagram of Kdm Package can be seen in Figure 3.

The ExtensionFamily metaclass acts as a container for encapsulating a set170

of related stereotypes. The Stereotype metaclass represents stereotypes, which

are ways of annotating metaclass instances so that they can represent a concept

different from the original meaning. The TagDefinition metaclass represents

the stereotype tags, which are used for adding attributes in the stereotypes.

The ExtendedValue metaclass defines common properties to TaggedValue and175

TaggedRef and represents the value of an attribute.

The precise meaning of each new stereotype is defined out of the KDM scope

and it should be informed by the developers so the users could properly use the

extended representations.

The LW KDM extension mechanism neither allow tags multiplicity, tags180

constraints, nor relationship between tags and stereotypes. Thus, the engineer

responsible for the extension creation should choose the most specific metaclass

ix

Stereotype

-name : String
-type : String

TagDefinition

-tag : String
-type : String

ExtensionFamily
-name : String

ExtendedValue

Element
(from core)

ModelElement
(from core)

0..*

Tags

+tag

1

0..*

Stereotypes

+stereotype

1

0..*
Extension

+stereotype

1

0..*

0..*

ExtendedValues

+taggedValue

Figure 3: Lightweight extension metaclasses

to define the stereotype with the semantics between the element to make sure

that the stereotype make sense.

2.3.2. Heavyweight Extensions185

Heavyweight extensions consists of creating (or modifying the existing ones)

new metaclasses and incorporate them in the metamodel. Most of the time, the

new metaclasses extend the existing ones. Usually, heavyweight extensions are

much more expressive than lightweight ones, but they hinder the reusability of

the metamodel instances.190

The creation of a heavyweight KDM extension does not require the existence

of a specific package, as occurs in the lightweight version. It is just necessary to

create new metaclasses of modifying existing ones.

Besides, one can devise metaclasses in any KDM package, i.e., one can devises

new metaclasses in the Code package, or in the Structure package, etc. In the195

context of this work, the Code KDM package is the central package for the

heavyweight extension we have created. This happens because all the concepts

we have created were implementation concepts thus the only package that these

x

new concepts could fit was Code package.

2.4. Aspect-Oriented Modernization Scenario200

According to Pérez-Castillo [4] there are several modernization scenarios that

can be conducted to modernize legacy systems: Platform Migration, Applica-

tion Improvement, Non-Invasive Application Integration, Data Architecture Mi-

gration, Service-Oriented Architecture Transformation, Language to Language

Conversion, and Paradigm to Paradigm migration.205

The scenario we are dealing herein is the last one since we are coping with

modernizations from Object-Oriented (OO) system to Aspect-Oriented (AO)

ones. It is important to highlight that, in this scenario, it is not mandatory

changing the language, i.e., it is possible to convert OO systems to AO versions

using the same language. Although not common and, possibly this is not the210

best alternative, it can be performed using dependency injections and other al-

ternative strategies. The most normal way is to use an aspect-oriented language,

like AspectJ [21].

The aspect-oriented modernization scenario we are working with is shown in

Figure 4. In the left lower part, we can find a legacy system with modularization215

problems, i.e., there are some crosscutting concerns (light gray, dark gray, and

black) bad modularized as they are spread throughout the system modules. The

modernization goal is to get an aspect-oriented version in which the modular-

ization problems are solved. This is represented by the target system, in which

the concerns are now well modularized, as can be seen in the low right part.220

As any other modernization scenario, it starts by reverse engineering the

system into a KDM instance that represents the system as is, i.e., a representa-

tion of the system with the same spreading and scattering problems presented

in the source code. This model will be called here as “Legacy KDM”3.

As soon as the legacy KDM is recovered, a concern mining process it is225

3Please note that in this section, we use double quotes (“ ”) to reference the elements in

the Figure 4.

xi

Legacy SystemR
ev

e
rs

e
 E

n
gi

n
e

e
ri

n
g

Legacy KDM instance

Mining
ProcessCCKDM

Tool

Recovering
Process

MoDisco
Tool

Target System

Fo
rw

ard
En

gin
e

erin
g

Refactorings
Marked Legacy
KDM instance

Aspects in KDM-AO
instance

2

1

Extended KDM
to support AOP Target KDM instance

3

metaclass

- Attribute
- Relationship

metaclass

- Attribute
- Relationship

metaclass

- Attribute
- Relationship

metaclass

- Attribute
- Relationship

metaclass

- Attribute
- Relationship

Original KDM

Figure 4: Aspect-Oriented Modernization Scenario

needed for identifying the source code elements (present in the KDM model)

that contribute to the implementation of the concerns. This mining process also

needs to annotate these elements in the KDM. This process is represented as a

gear and the output is the annotated KDM. An example of a tool that can be

used in this step is the CCKDM4, proposed by Santibáñez et al. [22].230

In the sequence, the restructuring phase gets the annotated KDM as input

and performs aspect-oriented refactorings on this model. The output is a new

modernized KDM instance with the concerns modularized with aspect-oriented

abstractions. The goal of the restructuring phase is to analyze the annotated

elements of the legacy KDM and creating aspect-oriented abstractions that allow235

a better modularization of those concerns.

4Available in: https://github.com/dsanmartins/cckdm

xii

In the scenario presented in Figure 4, an AO KDM Extension is needed for

representing the output of the restructuring phase. This occurs because the

AO refactorings get OO elements and need to write AO ones, thus, the AO

abstractions must be available in this target model. This situation happens240

with any other modernization process that reads specific element and needs to

write/create a different element, which it is not present in the original version of

the metamodel. Therefore, as can be seen in the figure, the original version of

KDM supports the phases prior the restructuring and the AO Extended version

supports the activities after the restructuring.245

The icon represented by an arrow and a circle shows when the AO concerns

are used. The first time shows the modified KDM with aspect-oriented concepts,

the second time represents some refactorings using the KDM-AO metamodel,

and the third time illustrates the target KDM instance that is the refactored

system in KDM model. Note that the others parts of the figure are not treated in250

this paper. Also note that the “Recovering Process” is executed by an existing

tool called MoDisco5 [23] and the “Mining Process” is executed by CCKDM

tool that was previously developed by Santibáñez et al. [22].

3. Aspect-Oriented Extensions of KDM

This section presents the two KDM extensions we have developed - the255

lightweight and the heavyweight. The creation of these two KDM extensions

had as the starting point an UML profile for AOP proposed by Evermann [24].

Evermann’s profile is a well accept and used profile in the academic area but

we also considered other approaches to compose ours [25, 26, 27]. One of the

distinguishing characteristics of the AO UML profile proposed by Evermann is260

the completeness. It covers most of the AspectJ elements, concentrating not

only on the basic concepts, like Aspects, Pointcuts and Joinpoints, but also the

different types of pointcuts (PreInitialization Pointcuts, WithintCode Pointcut,

5Available in: https://www.eclipse.org/MoDisco/

xiii

etc) and intertype declarations.

Please note that both extension presented herein are devised in meta-level.265

More specifically, in the heavyweight extension new metaclasses (represent-

ing aspect-oriented concepts) are added in the metamodel. These new meta-

classes (representing the AO concepts) extend existing KDM metaclasses. In

lightweight extension, there is no inclusion of new metaclasses or modifications

of existing ones in the metamodel. The extension here is done by means of the270

creation of stereotypes and tagged values, but it is also in the meta-level, since

the set of stereotypes created are available for all KDM instances.

In Figure 5 there is a class diagram that presents both extensions we have

created – the light and the heavy one. This picture has been adapted from

Evermann [24] and it is used here to represent both the new metaclasses we275

have created in the heavyweight extension and also the new stereotypes of the

lightweight extension.

As can be seen in Figure 5, each class has four lines in the first compart-

ment. The first word represents the name of the metaclass we have created in

heavyweight extension. For example, AspectUnit is a new metaclass we have280

created in the heavyweight extension. The second word, in brackets, is the KDM

metaclass that was chosen to serve as the base class of the current element. For

example, the new AspectUnit metaclass extends the ClassUnit metaclass from

KDM [28].

In lightweight extensions there is not addition of new metaclasses, just the285

creation of stereotypes. In order to represent this in Figure 5, there is a

<<stereotype>> symbol in the third line of the element. Therefore, all stereo-

types shown in Figure 5 exist in the lightweight extension. Stereotypes only can

be applied on existing metaclasses, thus the name of the element that the stereo-

type can be applied to is presented in second line. For example, the stereotype290

<<aspect>> can only be applied in ClassUnit instances.

In order to provide a different visualization of the extensions, the Table 2

shows the complete list of metaclasses (heavy) and stereotypes (light) created.

The first column represents all the metaclasses created in KDM metamodel to

xiv

<
<

p
ro

fil
e

>
>

K
D

M
 A

O
 E

x
te

n
s

io
n

-p
re

ce
de

s
0.

.1

-p
re

ce
de

dB
y

-s
el

ec
te

d
B

y

-c
om

p
os

ite

0.
.1

0.
.*

0.
.*

-
on

Ty
pe

: T
yp

e
[1

..*
]

-
fie

ld
 :

P
ro

pe
rt

y
[1

..*
]

-
op

er
at

io
n:

 O
pe

ra
tio

n
[1

..*
]

-
co

m
po

si
tio

nT
yp

e
: P

oi
nt

C
u

tC
om

po
si

tio
nT

yp
e

-
ar

gN
am

es
 :

S
tr

in
g

[1
..*

] {
or

de
re

d}

-
ty

pe
 :

Ty
pe

 [1
..*

] {
or

de
re

d}

-
ad

vi
ce

E
xe

cu
tio

n
: A

dv
ic

e
E

xe
cu

tio
n

Ty
pe

-s
el

ec
te

d
P

oi
nt

C
u

t

1

-c
om

p
os

ee

-p
oi

n
tC

ut
-a

dv
ic

e

0.
.*

1
0.

.*

G
e
tP
o
in
tC
u
tU
n
it

[M
em

b
er

U
n
it
]

<
<
G
e
tP
o
in
tC
u
t>
>

[S
tr

u
ct

u
ra

lF
ea

tu
re

]

S
e
tP
o
in
tC
u
tU
n
it

[M
em

b
er

U
n
it
]

<
<
S
e
tP
o
in
tC
u
t>
>

[S
tr

u
ct

u
ra

lF
ea

tu
re

]

P
re
In
it
ia
li
za
ti
o
n
P
o
in
tC
u
tU
n
it

[M
em

b
er

U
n
it
]

<
<
P
re
In
it
ia
li
za
ti
o
n
P
o
in
tC
u
t>
>

[S
tr

u
ct

u
ra

lF
ea

tu
re

]

In
it
ia
li
za
ti
o
n
P
o
in
tC
u
t

[M
em

b
er

U
n
it
]

<
<
In
it
ia
li
za
ti
o
n
P
o
in
tC
u
t>
>

[S
tr

u
ct

u
ra

lF
ea

tu
re

]

S
ta
ti
cC
ro
ss
C
u
tt
in
g
F
e
a
tu
re

[D
at

at
yp

e]
<
<
S
ta
ti
cC
ro
ss
C
u
tt
in
g
F
e
a
tu
re
>
>

[F
ea

tu
re

]

A
sp
e
ct
U
n
it

[C
la

ss
U

n
it
]

<
<
A
sp
e
ct
>
>

[C
la

ss
]

-
is

Pr
iv

ile
g
ed

 :
 b

oo
le

an
 [

1
]

-
p
er

Ty
p
e

:
A
sp

ec
tI

n
st

an
ti
at

io
n
Ty

p
e

[0
..

*
]

-
p
er

Po
in

tC
u
t

:
Po

in
tC

u
t

[0
..

1
]

-
d
ec

la
re

d
Pa

re
n
ts

 :
 G

en
er

al
iz

at
io

n
 [

0
..

*
]

-
d
ec

la
re

d
Im

p
le

m
en

ts
 :

 I
n
te

rf
ac

eR
ea

liz
at

io
n
 [

0
..

*
]

P
ro
p
e
rt
y
P
o
in
tC
u
tU
n
it

[M
em

b
er

U
n
it
]

<
<
P
ro
p
e
rt
y
P
o
in
tC
u
t>
>

[S
tr

u
ct

u
ra

lF
ea

tu
re

]

W
it
h
in
C
o
d
e
P
o
in
tC
u
tU
n
it

[M
em

b
er

U
n
it
]

<
<
W
it
h
in
C
o
d
e
P
o
in
tC
u
t>
>

[S
tr

u
ct

u
ra

lF
ea

tu
re

]

E
x
e
cu
ti
o
n
P
o
in
tC
u
tU
n
it

[M
em

b
er

U
n
it
]

<
<
E
x
e
cu
ti
o
n
P
o
in
tC
u
t>
>

[S
tr

u
ct

u
ra

lF
ea

tu
re

]

C
a
ll
P
o
in
tC
u
tU
n
it

[M
em

b
er

U
n
it
]

<
<
C
a
ll
P
o
in
tC
u
t>
>

[S
tr

u
ct

u
ra

lF
ea

tu
re

]

C
o
n
te
x
tE
x
p
o
si
n
g
P
o
in
tC
u
tU
n
it

[M
em

b
er

U
n
it
]

<
<
C
o
n
te
x
tE
x
p
o
si
n
g
P
o
in
tC
u
t>
>

[S
tr

u
ct

u
ra

lF
ea

tu
re

]

A
d
v
ic
e
E
x
e
cu
ti
o
n
P
o
in
tC
u
tU
n
it

[M
em

b
er

U
n
it
]

<
<
A
d
v
ic
e
E
x
e
cu
ti
o
n
P
o
in
tC
u
t>
>

[S
tr

u
ct

u
ra

lF
ea

tu
re

]

O
p
e
ra
ti
o
n
P
o
in
tC
u
tU
n
it

[M
em

b
er

U
n
it
]

<
<
O
p
e
ra
ti
o
n
P
o
in
tC
u
t>
>

[S
tr

u
ct

u
ra

lF
ea

tu
re

]

T
h
is
P
o
in
tC
u
tU
n
it

[M
em

b
er

U
n
it
]

<
<
T
h
is
P
o
in
tC
u
t>
>

[S
tr

u
ct

u
ra

lF
ea

tu
re

]

A
rg
sP
o
in
tC
u
tU
n
it

[M
em

b
er

U
n
it
]

<
<
A
rg
sP
o
in
tC
u
t>
>

[S
tr

u
ct

u
ra

lF
ea

tu
re

]

T
a
rg
e
tP
o
in
tC
u
tU
n
it

[M
em

b
er

U
n
it
]

<
<
T
a
rg
e
tP
o
in
tC
u
t>
>

[S
tr

u
ct

u
ra

lF
ea

tu
re

]

S
ta
ti
cI
n
it
ia
li
za
ti
o
n
P
o
in
tC
u
tU
n
it

[M
em

b
er

U
n
it
]

<
<
S
ta
ti
cI
n
it
ia
li
za
ti
o
n
P
o
in
tC
u
t>
>

[S
tr

u
ct

u
ra

lF
ea

tu
re

]

E
x
ce
p
ti
o
n
P
o
in
tC
u
tU
n
it

[M
em

b
er

U
n
it
]

<
<
E
x
ce
p
ti
o
n
P
o
in
tC
u
t>
>

[S
tr

u
ct

u
ra

lF
ea

tu
re

]

T
y
p
e
P
o
in
tC
u
tU
n
it

[M
em

b
er

U
n
it
]

<
<
T
y
p
e
P
o
in
tC
u
t>
>

[S
tr

u
ct

u
ra

lF
ea

tu
re

]

<
<

en
u
m

er
at

io
n
>

>
A
sp
e
ct
In
st
a
n
ti
a
ti
o
n
T
y
p
e

C
F
lo
w
B
e
lo
w
P
o
in
tC
u
tU
n
it

[M
em

b
er

U
n
it
]

<
<
C
F
lo
w
B
e
lo
w
P
o
in
tC
u
t>
>

[S
tr

u
ct

u
ra

lF
ea

tu
re

]

P
o
in
tC
u
tP
o
in
tC
u
tU
n
it

[M
em

b
er

U
n
it
]

<
<
P
o
in
tC
u
tP
o
in
tC
u
t>
>

[S
tr

u
ct

u
ra

lF
ea

tu
re

]
W
it
h
in
P
o
in
tC
u
tU
n
it

[M
em

b
er

U
n
it
]

<
<
W
it
h
in
P
o
in
tC
u
t>
>

[S
tr

u
ct

u
ra

lF
ea

tu
re

]

p
er

th
is

p
er

ta
rg

et
p
er

cf
lo

w
p
er

cf
lo

w
b
el

ow

C
F
lo
w
P
o
in
tC
u
tU
n
it

[M
em

b
er

U
n
it
]

<
<
C
F
lo
w
P
o
in
tC
u
t>
>

[S
tr

u
ct

u
ra

lF
ea

tu
re

]

P
o
in
tC
u
tU
n
it

[M
em

b
er

U
n
it
]

<
<
P
o
in
tC
u
t>
>

[S
tr

u
ct

u
ra

lF
ea

tu
re

]

C
o
m
p
o
si
te
P
o
in
tC
u
tU
n
it

[M
em

b
er

U
n
it
]

<
<
C
o
m
p
o
si
te
P
o
in
tC
u
t>
>

[S
tr

u
ct

u
ra

lF
ea

tu
re

]

<
<

en
u
m

er
at

io
n
>

>
P
o
in
tC
u
tC
o
m
p
o
si
ti
o
n
T
y
p
e

<
<

en
u
m

er
at

io
n
>

>
A
d
v
ic
e
E
x
e
cu
ti
o
n
T
y
p
e

C
ro
ss
C
u
tt
in
g
C
o
n
ce
rn

[P
ac

ka
g
e]

<
<
C
ro
ss
C
u
tt
in
g
C
o
n
ce
rn
>
>

[P
ac

ka
g
e]

A
d
v
ic
e
U
n
it

[C
on

tr
ol

E
le

m
en

t]
<
<
A
d
v
ic
e
>
>

[B
eh

av
io

ra
lF

ea
tu

re
]

A
n
d

O
r

N
ot

A
ro

u
n
d

A
d
vi

ce
B
ef

or
e

A
d
vi

ce
A
ft

er
A
d
vi

ce

Figure 5: Light and Heavyweight extensions. Adapted from [24]

xv

materialize the heavyweight extension and the second column represents all the295

stereotypes of the lightweight extension. The third column represent the original

KDM metaclasses used as base for both extensions.

One of the biggest challenges when extending metamodels is to choose which

metaclass is the most suitable one. As the stereotypes of Evermann’s profile

had already been previously mapped to UML metaclasses, we decided to take a300

deeper look and analyze if this information could be useful. As there are some

similarities between UML and the KDM Code Package, the information was

useful. However, to systematize this analysis, we built a mapping between both

metamodels (UML and KDM), that can be seen in Table 3.

This mapping shows a semantic correspondence between KDM and UML305

metaclasses. In some cases, the mapping is straightforward, such as Class

from UML and ClassUnit from KDM. They have the same goal of repre-

senting classes in an object-oriented context. However, as KDM can repre-

sent higher and lower abstraction levels than UML, some UML metaclasses

do not have just one candidate in KDM. Besides, there are others that have310

no equivalent. The Property UML metaclass, for example, has three possible

candidates metaclasses in KDM: StorableUnit, ItemUnit, and MemberUnit.

StorableUnit represents primitive type variables, ItemUnit represents records,

and MemberUnit represents associations with others classes.

This semantic gap happens because the KDM code package is in a lower315

abstraction level than UML. There are also KDM metaclasses that do not have

corresponding metaclasses in UML, in consequence of the low abstraction level.

For example, the CodeAssembly metaclass is a metaclass that represents a logical

element container, written in machine language, that were build in a specific

operating system or hardware. There is no UML metaclass for representing this320

concept.

Table 2 we can see the existing relation between the metaclasses and also

comments about them. As KDM is a metamodel broader than UML, many

relations consider only the code package from KDM, because this package is

the only one that can represent classes, attributes, methods, relationship and325

xvi

Table 2: Aspect-Oriented LW and HW mapping elements

AO Metaclasses

(Heavyweight)

AO Stereotypes and Tags

(Lightweight)

Base KDM

metaclass

AspectUnit aspectUnit ClassUnit

PointCutUnit pointCutUnit MemberUnit

CompositePointCutUnit compositePointCutUnit MemberUnit

OperationPointCutUnit operationPointCutUnit MemberUnit

WithinCodePointCutUnit withinCodePointCutUnit MemberUnit

ExecutionPointCutUnit executionPointCutUnit MemberUnit

CallPointCutUnit callPointCutUnit MemberUnit

PreInitializationPointCutUnit preInitializationPointCutUnit MemberUnit

InitializationPointCutUnit initializationPointCutUnit MemberUnit

PropertyPointCutUnit propertyPointCutUnit MemberUnit

GetPointCutUnit getPointCutUnit MemberUnit

SetPointCutUnit setPointCutUnit MemberUnit

AdviceExecutionPointCutUnit adviceExecutionPointCutUnit MemberUnit

PointCutPointCutUnit pointCutPointCutUnit MemberUnit

CFlowPointCutUnit cFlowPointCutUnit MemberUnit

CFlowBelowPointCutUnit cFlowBelowPointCutUnit MemberUnit

TypePointCutUnit typePointCutUnit MemberUnit

WithinPointCutUnit withinPointCutUnit MemberUnit

ExceptionPointCutUnit exceptionPointCutUnit MemberUnit

StaticInitializationPointCutUnit staticInitializationPointCutUnit MemberUnit

TargetPointCutUnit targetPointCutUnit MemberUnit

ArgsPointCutUnit argsPointCutUnit MemberUnit

ThisPointCutUnit thisPointCutUnit MemberUnit

ContextExposingPointCuitUnit contextExposingPointCuitUnit MemberUnit

CrossCuttingConcern crossCuttingConcern Package

SetAdviceExecution adviceExecutionType (tag) TaggedValue

SetPointCutCompositionType pointCutCompositionType (tag) TaggedValue

SetAspectInstantiationType aspectInstantiationType (tag) TaggedValue

StaticCrossCuttingFeature staticCrossCuttingFeature Datatype

AdviceUnit adviceUnit ControlElement

xvii

Table 3: Mapping UML - KDM

UML KDM Comments

Class ClassUnit The metaclass Class from UML intends to represent the same concept of

the ClassUnit metaclass from KDM. The metaclass Class (UML/ Basics

package) has four properties: isAbstract, ownedProperty[*], ownedOp-

eration[*] and superClass. The ClassUnit element, from Code Package

encompasses all of these properties through the AbstractCodeElement

class. A ClassUnit may have any attribute whose type is a concrete

class of AbstractCodeElement, like StorableUnit, MemberUnit, ItemU-

nit, MethodUnit, CommentUnit, KDMRelationships, etc.

Operation MethodUnit The semantic of the Operation metaclassfrom UML is closer to the

MethodUnitmetaclass from KDM. This happens beauseOperation (UM-

L/Basics package) is a behavioralelement that has the following prop-

erties: class(specifies the owner class), ownedParameter(Operation’s

parameters) and raisedException(Operation’s exceptions). The Metho-

dUnit class is the ideal element to represent Operations because itis

a behavioral KDM element capable to representthe most diverse pro-

gramming languages operations.MethodUnit has attributes like kind

(defines the kindof the operations, for example: abstract, construc-

tor,destructor, virtual, etc.) and export (defines the accessmodifiers,

for example: public, private and protected).

Property StorableUnit;

ItemUnit;

MemberUnit

Property (UML) represents variables in general (local variables, global

variables, arrays, associations, etc.),while KDM has an element for each

kind of Property: primitive type variable (StorableUnit), records and

arrays (ItemUnit) class members (MemberUnit).

Package Package A Package in UML (Basics package) is very similarly to a KDM Package

(Code Package). Both are containers for program elements, like classes,

and others code elements. A Package could have one or more classes,

and a class could have many others elements, like methods, properties,

comments, etc.

StructuralFeature DataElement StructuralFeature (UML/Core::Abstractions package) is an abstract

metaclass that can be specialized to represent a structural member of

a class, like a property. The KDM has the DataElement class (Code

package), that can be specialized to StorableUnit, MemberUnit or Ite-

mUnit.

BehavioralFeature ControlElement BehavioralFeature (UML/Core::Abstractions package) is an abstract

metaclass that can be specialized to represent behavioral members of a

class. The equivalent class on KDM is the ControlElement, an abstract

class that can be specialized to represent callable elements, including

behavioral elements like MethodUnit.

Parameter ParameterUnit Parameter (UML/ Core:Abstractions) is an abstract metaclass to rep-

resent the name and the type of the element that will be passed by

parameter in a behavioral element. On the KDM we can use the Pa-

rameterUnit class. This metaclass can also represent the name, type,

position of the parameter in the signature and the kind of parameter

(value or referece).

Relationship KDMRelationship Both Relationship and KDMRelationship metaclasses are abstract

metaclasses that can be specialized to represent some kind of relation-

ship between two elements, like Aggregation, Generalization, etc.

xviii

others elements with static features. Other KDM packages are concentrated in

other dimensions that are also present in UML 2.0, such as user interfaces, ar-

chitecture, and conceptual abstractions, but KDM was designed to support the

modernization process. To attend to one of our goals, this mapping table shows

only the main elements that were used in the aspect-oriented KDM extensions330

(KDM AO Extension), once the full mapping of the ninety metaclasses from

code package would be infeasible. Nevertheless, all the classes from Evermann’s

profile were mapped and are represented in Table 3. In our website6 we provide

others mapping tables developed by us.

3.1. The Lightweight AO Extension335

This subsection shows how we have created the Lightweight AO exten-

sion [29]. In this research the LW extension was created programmatically by

using Java language in the Eclipse IDE (Integrated Development Environment).

As previously commented, KDM provides a set of metaclasses in a package called

kdm that allows the creation of stereotype families, stereotypes, and tagged val-340

ues, as shown in Figure 3. Stereotype families are a kind of container for a light

weight extension.

In Listing 1 is shown part of the whole source code of the LW KDM AO Ex-

tension. In this listing, only the source code for creating the AspectUnit stereo-

type is shown. It is possible see the creation of three instances in Kdm Package:345

ExtensionFamily, Stereotype and TagDefinition. In line 1 it is shown the

creation of an instance of ExtensionFamily element named AspectConcepts.

This element encapsulate all the created stereotypes to the lightweight KDM

AO profile. In the second line an instance of Stereotype element is shown and

it is possible to see the creation of AspectUnit stereotype. Once a stereotype350

is created it is necessary specify the ExtensionFamily that it belongs to. The

source code snippet presented in line 3 adds the stereotype created in line 2

inside the ExtensionFamily element created in line 1.

6http://advanse.dc.ufscar.br/index.php/research-projects/fapesp-2017

xix

1 ExtensionFamily AspectConcepts = KdmFactory.eINSTANCE.createExtensionFamily

();

2 Stereotype AspectUnit = KdmFactory.eINSTANCE.createStereotype ();

3 AspectConcepts.getStereotype ().add(AspectUnit);

4 AspectUnit.setName("AspectUnit");

5 AspectUnit.setType("ClasUnit");

6 TagDefinition IsPrivileged = KdmFactory.eINSTANCE.createTagDefinition ();

7 AspectUnit.getTag ().add(IsPrivileged);

8 IsPrivileged.setTag("isPrivileged");

9 IsPrivileged.setType("boolean");

10 [...]

Listing 1: Creating the AspectUnit stereotype

Lines 4 and 5 are filled with Name and Type values of the stereotype, which

are String type. In this line the setName value is AspectUnit and represents355

the name of the stereotype, differently of what occurs in line 2 that the name

AspectUnit represents an instance of the Stereotype element.

Line 6 the TagDefinition IsPrivileged is created and in line 7 this tag

is attached to the AspectUnit stereotype. In line 8 and 9 the Tag and Type

properties of TagDefinition element are defined. Once more, the filled values360

of these elements are Strings, as is defined by the KDM rules.

All the stereotypes, relationship and attributes shown in Figure 5 were pro-

grammatically added and properly attached, i.e., the stereotypes were attached

to an ExtensionFamily and the relationships and the attributes were attached

to their respective stereotypes. Once all the elements were programmatically365

created it was possible to reuse them by means of a Java class with all the

programmed Stereotypes and TagDefinitions.

3.2. The Heavyweight AO Extension

The procedure for building the heavyweight extension was to create a new

KDM metaclass for each stereotype of Evermann’s profile [29]. The main dif-370

ference is the base metaclass used; instead of using the same UML metaclass

used by Evermann, we used our mapping table (see Table 3) to find an equiv-

alent in KDM. For example, if a stereotype in Evermann’s profile extended

xx

the Class metaclass of UML, in our heavyweight extension the new metaclass

should extended the ClassUnit of KDM, as these classes are equivalent in these375

metamodels.

As can be seen in Figure 5, the main aspect-oriented elements from Ever-

mann’s profile are represented as higher level classes/stereotypes: CrossCutting-

Concern, Aspect, Advice, Pointcut and StaticCrossCuttingFeature. The

remaining elements are subclasses.380

For example, CrosscuttingConcernUnit is a new metaclass we have created

for representing the existence of a crosscutting concern, such as persistence, se-

curity and concurrence. In Evermann’s profile this element extends the Package

metaclass from UML. In KDM AO extension this element extends the Pack-

age metaclass from KDM. This KDM metaclass represents a standard package385

where it is possible to group aspects, classes and others elements from AO and

OO programming languages.

AspectUnit is a new metaclass for representing an aspect and it extends

the ClassUnit metaclass. The decision to extend the ClassUnit metaclass is

justified because this element has all the characteristics that an aspect can have,390

besides, it can support new elements such as Pointcuts, Advices and inter-type

declarations.

AdviceUnit is a new metaclass for representing advices. The element to

represent advices is AdviceUnit, that extends the ControlElement metaclass.

Knowing that advice is an element that specifies behavior, it is possible to395

consider an advice as a method. Nevertheless, advices do not have neither access

specifiers (public, private and protected) nor types (constructor, destructor,

etc.). Because of this were decided not to make AdviceUnit metaclass extend

the MethodUnit behavior.

PointCutUnit is a new metaclass for representing Pointcuts and join points.400

According to Evermann’s profile, PointCut is a structural element and extends

a StructuralFeature metaclass from UML. The KDM also has a metaclass

to represent structural features called DataElement, which is an abstract meta-

class. Their sub-metaclasses are StorableUnit, MemberUnit, and ItemUnit. As

xxi

a PointCut can be abstract, and the StorableUnit and ItemUnit metaclasses405

can not, MemberUnit were chose to be the super-metaclass of PointCutUnit.

Besides, other motive that influenced in the choice of using the MemberUnit

as super-metaclass was the fact that the Pointcuts crosscuts others classes,

and the MemberUnit is the KDM metaclass that is used to make references to

members of others classes inside of a determinate class.410

StaticCrossCuttingFeature is new metaclass for representing inter-type

declaration. In heavyweight extension this element can extend two metaclasses:

StorableUnit and MethodUnit. Thus, StaticCrossCuttingFeature is capa-

ble of representing not only structural features but also behavioral features.

Therefore, a StaticCrossCuttingFeature instance can be an attribute or a415

method that will be inserted in a determinate class.

CrossCuttingConcern is a new element that was extended from Package

element of KDM Code Package. However, none attribute or additional relation-

ship were inserted in the new element, once its creation aimed only separate the

concerns in a KDM model, without adding behavior.420

Creating KDM Extensions. To create the heavyweight KDM AO exten-

sion version the Eclipse IDE and the Framework Eclipse Modeling Framework

(EMF) were used. This allowed the edition and visualization of the original

KDM in “.ECORE” format. More details of this process can be seen in Santos

et al. [28].425

Summarizing, by means of these tools we could insert all the metaclasses

depicted in Figure 5. In Figure 6 the AspectUnit metaclass properties are

shown. As we can see, the element created has some properties that have to be

filled, such as Abstract, ESuperTypes and others. Each new metaclass has its

properties set in different ways, but it has to be in accordance to the proposed430

profile (KDM AO extension). After the creation of all new metaclasses in KDM,

the heavyweight KDM AO extension plug-in version were created, allowing the

creation of new aspect-oriented instances of KDM.

In Listing 2 an instantiation example of the heavyweight KDM AO extension

is presented. In line 1 an instance of AspectUnit metaclass is created, in line 2435

xxii

Property Value

Abstract false

Default Value

ESuper Types ClassUnit -> Datatype

Instance Type Name

Interface false

Name AspectUnit

Figure 6: AspectUnit element properties

it is informed the name of the instance and in line 3 the property IsPrivileged

is filled.

1 AspectUnit myAspect = CodeFactory.eINSTANCE.createAspectUnit ();

2 myAspect.setName("connectionComposition");440

3 myAspect.setIsPrivileged(true);

Listing 2: HW extension instance example

Regarding the reuse of heavyweight KDM AO extension plug-in one should

say that it can only be reused in Eclipse tool, once it was developed in this

IDE. However, the AOP mataclasses, properties, and relationship inserted in445

the original KDM, can be reused in any tool that could read XMI source-code

from “.ECORE” extension. By reading the XMI information of the new meta-

classes and by creating a tool/plug-in with these new information, we believe

that it would be possible to create AO KDM instances independently of the pro-

gramming language (AspectC++, AspectS, etc.), because the metaclasses here450

created are extensions of the existing classes, that are platform and language

independents.

4. Evaluation

In this section we present an experiment to investigate whether software

engineers productivity (time and errors) is different when using HW and LW455

xxiii

KDM extensions. In this experiment, the subjects had to create and change

(apply maintenance modifications) instances of the both KDM AO extensions we

have developed. All the planning was done according to Wohlin guidelines [30].

As already pointed out in Section 1 our RQ is:

RQ – Which of the KDM AOP extensions (LW or HW) requires less

effort (time) and leads to less errors when creating and maintaining their

instances?

460

4.1. Method

4.1.1. Participants

The experiment was conducted in the context of a Software Engineering

course of the Federal University of São Carlos (UFSCar) in Brazil. The partic-

ipants (subjects) were 14 graduate candidates in computer science.465

4.1.2. The Aspect-Oriented Framework

In order to simulate a real situation, we had to choose some aspects, point-

cuts and joinpoints to be modeled by the subjects. Therefore, instead of creat-

ing hypothetical elements we decided to use an existing AO persistence frame-

work [31], because it had almost all existing aspect of aspect-oriented elements.470

Thus, all the activities performed by the subjects involved the creation and the

maintenance of aspects, pointcuts and joinpoints of this framework.

4.1.3. Selection of Variables

The dependent variables are the instantiation time, the maintenance time

and the number of errors. Instantiation time is the time subjects spent to475

create instances of the extended KDM. Maintenance time is the time subjects

spent for modifying (change) existing KDM-AO instances. The number of errors

represents the number of errors a subject got in each activity.

The independent variables or factors are:

xxiv

1. KDM AO extensions: There are 2 levels for this factor; the HW and LW480

extensions.

2. Activities performed by the subjects: There are 6 levels for the developing

activities and 2 levels for the maintaining activities. In Table 4, we present

the description of the activities.

Table 4: Activities Performed by the Subjects

Development Activities

Activity Number Activities Description

1 Creating three different CrosscuttingConcerns (security, logging and per-

sistence)

2 Creating three different Aspect and associate them with the Crosscutting

Concerns created in activity 1.

3 Creating three different PointCut with a joinpoint each.

4 Creating two different PointCut with two joinpoints each.

5 Creating three different Advice and link them to the PointCuts created

in activity 3.

6 Creating five different Inter-Type Declaration.

Maintenance Activities

Activity Number Activities Description

7 Adding three properties in a specific Aspect.

8 Transforming a PointCut with a Joinpoint in a PointCut with two Join-

points.

4.1.4. The Planning of the Experiment485

The experiment was planned in blocks [30], to ensure the subject’s experience

did not interfere in the result. Table 5 presents the experiment organization.

In Phase 1, the groups 1 and 2 worked in parallel - while group 1 performed

the activities (development and maintenance) using the LW extension, group 2

used the HW one. Once they have finished the activities, they where allowed490

xxv

Table 5: Groups distribution in relation to the extensions

Group 1 (7 subjects) Group 2 (7 subjects)

Phase 1 LW AO KDM HW AO KDM

Phase 2 HW AO KDM LW AO-KDM

to proceed to the second phase, where the extensions were shift between the

groups.

Each group was submitted to both factors, the extensions and the activi-

ties,but in different phases. This was done to verify if the order impacts the

result, i.e., if instantiating an specific KDM extension prior to the another one495

lead to different results.

As shown in Table 5, all the activities performed by the subjects were re-

lated to the same context - a persistence framework. The activities involved

the creation of aspects, Pointcuts, join points, Advices and Intertype

declarations of this persistence framework.500

The performed activities were divided into development and maintenance

activities. The name of each instance were informed to the subjects during the

experiment. The development activities are concentrated on creating new KDM

AO elements, while the maintenance ones are focused on changing existing AO

KDM instances. The complete activities can be seen in https://github.com/505

Advanse-Lab/KDM-AO

4.2. Operational Steps of the Experiment

The experiment was performed in three steps: (i) preparation, (ii) execution,

and (iii) data validation. We explain these steps in the following subsections.

xxvi

https://github.com/Advanse-Lab/KDM-AO
https://github.com/Advanse-Lab/KDM-AO
https://github.com/Advanse-Lab/KDM-AO

4.2.1. Preparation of the Experiment510

In this step, the materials to be used in the experiment were elaborated7.

Instrumentation. The following documents were developed to be used

in the experiment: (i) Subjects Characterization Form, to get the professional

experience and in the topics related to the study; (ii) Consent Form, to subjects

approval and consent of the study objectives and the participation terms; (iii)515

Description of the Activities with the instructions of its execution; (iv) Guide for

Using the LW and HW Extensions; (v) Mapping table of the AspectJ elements

to LW and HW extensions and (vi) Class diagram of the extensions, so the

subject could know which attributes and relationships belong to a determinate

element.520

Data Collecting Instruments. A data collecting form was elaborated to

gather data, in which the subjects should fill all the required information during

the experiment execution. In the same form, there was a field for qualitative

evaluation, so each subject should report its perception about the difficulties,

easiness and suggestions while using the extension. This was done after they525

have finished the experiment. This form was elaborated in the same file that

the activities descriptions of the experiment, so the subject could access all the

information and could record their conclusion times in the same document.

Training and Pilot. All the subjects were submitted to training and pilot

sessions prior the real experiment. In the training we explained about AOP and530

how to create KDM instances using the LW and HW extensions. The training

took four hours in total; two hours for explaining about the main topics and

two hours for exercising. The goal was to make them proficient in the creation

of KDM-AO instances (LW and HW). In this day we also handed the consent

and characterization forms to the subjects, so that this information could be535

used in the pilot.

In the pilot’s day, we simulated the activities that would be performed in

7The artifacts used in the experiment are available in the link: https://github.com/

Advanse-Lab/KDM-AO

xxvii

https://github.com/Advanse-Lab/KDM-AO
https://github.com/Advanse-Lab/KDM-AO

the real experiment. These activities helped us on improving some details, such

as the time limit required for each activity and the way the activities should be

distributed. The pilot was organized in groups, the 14 subjects were divided in540

two equal groups and each group should use both approaches, but in different

phases.

All the subjects used the same application, i.e., they should create aspects

with generic names and without context, for example, Aspect A, Pointcut

pt1, etc. This was different from the real experiment where the created aspects545

were related to the AO persistence framework. The training and pilot day

were conducted in such way that in the end all the subjects could use both

approaches.

In the real experiment day we basically used the same steps of the pilot; the

main difference were: (i) the activities and their descriptions were delivered to550

the subjects in a formal document, instead of explaining them by means of a

presentation, and (ii) all of the activities that should be done were explained in

the beginning of the experiment, so this could improve the subjects’ time and

avoid time interruptions.

Once the subjects have started the activities, they could only solve their555

doubts with the delivered artifacts. Any other doubt they had should be regis-

tered in the qualitative evaluation form.

Another difference between the experiment and the pilot was the activities

categorization. We categorize the activities in “development” and “mainte-

nance”. We decided to make this differentiation to investigate not only the560

productivity in writing new KDM instances but also the productivity in main-

taining the existing ones.

4.2.2. Execution of the Experiment

Firstly, the subjects were positioned in the groups based on its punctuation

of the Subjects Characterization Form. Each group had seven subjects. In565

Table 6 the subjects punctuation are represented considering the form questions

and the subjects total to each punctuation category. Both groups had the same

xxviii

subjects quantity in the same category, i.e., each group had one subject with very

low punctuation (0 to 10), one subject with low punctuation (11 to 20), three

subjects with average punctuation (21 to 30), one subject with high punctuation570

(31 to 40) and one subject with very high punctuation (41 to 50). After the

subjects were allocated, they received all the artifacts needed to perform the

activities.

Regarding the data of the experiment, for some activities our interest was the

time spent for conducting it. In this case, the time was registered in minutes.575

In other cases, our interest was in the number of errors and, in this case, it

was analyzed typos, missing punctuation and omitted reserved words. Thus

each correction performed in a code line in order to make it works properly was

counted as one error. For instance, if a statement contains one typo and two

missing reserved words the errors amount is 3 (three). For information purposes,580

all tables were obtained by using the R statistical software.

4.3. Data Validation of Development Activities

4.3.1. On Time Variable

In this section we analyze the data of the 14 subjects who performed the

six development activities and the effect of these two factors (extensions and585

activities) on the time variable. The type of analysis that was conducted is called

as two-within subjects factors (two-way repeated measures ANOVA), because

each group performs all the development activities of the two extensions.

In Table 7, we present the means (Time.mean) and standard deviations

(Time.sd) of the time variable related with development activities and in Fig-590

ure 7 the corresponding box-plot. We can see that box-plots of the HW extension

are more or less homogeneous in comparison with the box-plots of LW extension.

Box-plots of LW.Actv-4 and LW.Actv-5 look like they have the largest amount

of spread data for LW extension, indeed Table 7 corroborate that impression be-

cause the standard deviation values of each one are 2.92 and 2.20 respectively.595

Thus, this is an indicator that these activities requires more attention to be

analyzed.

xxix

Table 6: Subjects distribution according to their punctuation

Punctuation (Points based on their skills)

Subject

Very low

0 a 10

Low

11 a 20

Normal

21 a 30

High

31 a 40

Very High

41 a 50

1 24

2 21

3 27

4 41

5 19

6 21

7 9

8 24

9 29

10 32

11 42

12 20

13 10

14 35

Total 2 2 6 2 2

In order to use multifactorial ANOVA for analyzing the data, a precondition

imposed is the assumption of normality. Therefore, our first analysis was check-

ing whether there is no violation of normality by using Shapiro–Wilk test. The600

test showed that the data are not normal. The complete analysis can be found

in the following URL (https://github.com/Advanse-Lab/KDM-AO). In order

to overcome this problem we apply a non-parametric test for multiple factor

with repeated measures: the Aligned Rank Transform Procedure (ART) [32].

In Table 8, we show the results of the application of the ART test on the605

development activities, where the p-values for each factor and the interaction

between them are statistically significant, meaning there is a main effect of ex-

xxx

https://github.com/Advanse-Lab/KDM-AO

Table 7: Means and Standard Deviation for Time Variable of Development Activities

Technique Activity

Time.mean

(min)

Time.sd

(min)

HW Actv-1 2.571429 0.7559289

HW Actv-2 3.642857 1.0082081

HW Actv-3 5.000000 1.1766968

HW Actv-4 6.714286 1.4898927

HW Actv-5 4.857143 2.5975474

HW Actv-6 3.642857 1.2157393

LW Actv-1 3.428571 1.0894096

LW Actv-2 4.285714 0.6112498

LW Actv-3 7.571429 0.8516306

LW Actv-4 16.571429 2.9277002

LW Actv-5 9.357143 2.2051389

LW Actv-6 5.214286 1.2513729

tensions on time, a main effect of activities on time and a significant interaction

between extensions and activities. A “main effect” is the effect of a single in-

dependent variable on a dependent variable, in this case, the effect of extension610

and activity on time variable.

We can also see graphically the interaction between the two factors by means

of an interaction plot. In Figure 8 we show the interaction plot of development

activities between the two extensions (LW and HW) on time. The line that

represents the LW extension always holds a gap in relation with the line that615

represents the HW extension. That means there is a main effect of extension on

time because LW always take more time than HW for developing the activities.

From Actv-1 to Actv-2 the lines are sloped and almost parallel so there is a

main effect on activity because both require slightly more time. From Actv-2

to Actv-3 there is a behaviour called “alligator jaws”, in Actv-2, both of the620

extensions are basically the same, very close in performance but in Actv-3, the

LW extension technique has now become deferentially worst than HW extension

xxxi

Figure 7: Average Time of Development Activities on Time Variable

Table 8: ART test of Development Activities on Time Variable

F Df Df.res Pr(> F) Signif. codes

1 Technique 243.092 1 143 < 2.22e-16 ***

2 Activity 129.659 5 143 < 2.22e-16 ***

3 Technique:Activity 48.669 5 143 < 2.22e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Model: Mixed Effects (lmer), Response: art(Time).

F: Statistic.

Df: Degree of Freedom.

Df.res: Residual degrees of freedom.

Pr(> F): Significance probability.

technique in terms of developing time. The same can be said from Actv-3 to

Actv-4 and Actv-4 to Actv-5. Finally, from Actv-5 to Actv-6 both techniques

decrease the development time but the gap between the lines is bigger than the625

gap between Actv-1 and Actv-2.

In Table 9 we show the pairwise comparison among the activities of develop-

ment by taking into account the time variable. This can be interpreted by posing

the following questions: Is the difference between HW and LW significantly dif-

ferent in condition Actv-1 to condition Actv-2?. No, because its p-value > .05.630

Is the difference between HW and LW significantly different in condition Actv-2

xxxii

Figure 8: Interaction Plot of Development Activities on Time

Table 9: Interaction Contrast of Development Activities on Time Variable

V alue Df Chisq Pr(> F) Signif. codes

1 HW-LW : Actv -1-Actv -2 -3.857 1 0.0573 0.810797

2 HW-LW : Actv -2-Actv -3 57.857 1 12.8951 0.001977 **

3 HW-LW : Actv -3-Actv -4 146.214 1 82.3553 < 2.2e-16 ***

4 HW-LW : Actv -4-Actv -5 -82.429 1 26.1738 2.496e-06 ***

5 HW-LW : Actv -5-Actv -6 -90.643 1 1.6504 1.661e-07 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Chisq Test (χ2), P-value adjustment method: holm.

Df: Degree of Freedom.

Df.res: Residual degrees of freedom.

Pr(> F): Significance probability.

to condition Actv-3?. Yes, because its p-value < .05. Is the difference between

HW and LW significantly different in condition Actv-3 to condition Actv-4?.

Yes, because its p-value < .05. Is the difference between HW and LW sig-

nificantly different in condition Actv-4 to condition Actv-5?. Yes, because its635

p-value < .05. Is the difference between HW and LW significantly different in

condition Actv-5 to condition Actv-6?. Yes, because its p-value < .05.

xxxiii

4.3.2. On Error Variable

In this section we analyze the data of the fourteen subjects which performed

six development activities by using the two extension techniques in KDM mod-640

els, LW and HW and the effect of these two variables (technique and activity)

on the error variable. The type of analysis that was conducted in this section

is the same as the one we made in the previous section.

In Table 10, we present the statistics of means and standard deviations of

error variable related with development activities for HW and LW techniques.645

We do not provide the corresponding box-plot because there are several zero

values in the standard deviation column that does not bring valuable information

to our analysis. Instead of that, an interaction plot could be more useful to

analyze main effects and interactions among levels of factors.

Table 10: Means and Standard Deviation for Error Variable of Development Activities

Technique Activity Error.mean Error.sd

HW Actv-1 0.0000000 0.0000000

HW Actv-2 0.2142857 0.8017837

HW Actv-3 0.1428571 0.5345225

HW Actv-4 0.2142857 0.8017837

HW Actv-5 0.0000000 0.0000000

HW Actv-6 0.5000000 1.6052798

LW Actv-1 0.0000000 0.0000000

LW Actv-2 0.0000000 0.0000000

LW Actv-3 0.0000000 0.0000000

LW Actv-4 0.8571429 1.8337495

LW Actv-5 0.3571429 0.9287827

LW Actv-6 0.4285714 1.6035675

As in the previous analysis, herein we also check whether there is not a650

violation of normality by using Shapiro–Wilk test. The test showed that the

data are not normal and the complete analysis can be found in the following

URL (https://github.com/Advanse-Lab/KDM-AO). Thus, we apply the non-

xxxiv

https://github.com/Advanse-Lab/KDM-AO

Table 11: ART test of Development Activities on Error Variable

F Df Df.res Pr(> F) Signif. codes

1 Technique 10.7276 1 143 0.0013243 **

2 Activity 1.8368 5 143 0.1093124

3 Technique:Activity 3.2235 5 143 0.0086730 **

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Model: Mixed Effects (lmer), Response: art(Error).

F: Statistic.

Df: Degree of Freedom.

Df.res: Residual degrees of freedom.

Pr(> F): Significance probability.

parametric test for multiple factor with repeated measures ART.

Figure 9: Interaction Plot of Development Activities on Error

In Table 11, we show the results of the ART test of development activities on655

error, where the p-values are just significant for technique and the interaction

between technique and activity. That means that there is an overall main effect

of the technique on error and a significant interaction between technique and

activity.

In Figure 9 we show the interaction plot of development activities between660

the two techniques on error. As we see, the lines of the two techniques are

crossing and that is a classic picture of interaction effect. Also, if we draw a

line between the two techniques the proportion areas seems to be similar which

xxxv

Table 12: Interaction Contrast of Development Activities on Error Variable

V alue Df Chisq Pr(> F) Signif. codes

1 HW-LW : Actv-1-Actv-2 -18.357 1 1.7922 1.00000

2 HW-LW : Actv-2-Actv-3 3.143 1 0.0525 1.00000

3 HW-LW : Actv-3-Actv-4 41.571 1 9.1913 0.03404 *

4 HW-LW : Actv-4-Actv-5 -11.214 1 0.6689 1.00000

5 HW-LW : Actv-5-Actv-6 -20.071 1 2.1426 1.00000

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Chisq Test (χ2), P-value adjustment method: holm.

Df: Degree of Freedom.

Df.res: Residual degrees of freedom.

Pr(> F): Significance probability.

indicates, in overall, there is not much changes in activity, as the ART test

indicated previously (p-value > .05).665

Table 12 shows the interaction contrast of development activities on error

variable. Line 6 presents the only significant p-value, that means there is sig-

nificant differences on error by using HW and LW extension techniques when

developers perform Actv-3 or perform Actv-4.

Some conclusions can be made from the statistical analysis. The first one is670

that developers tend to make more errors when they are using the LW technique

than HW technique. The second one is that the activity does not affect signi-

ficatively the quantity of errors. The third one is that techniques in combination

with Act-3 and Act-4 have an effect on errors. One explanation could be that

the time for developing these activities is higher than the others because of the675

difficulties involved, and so more errors may be introduced in the development.

4.4. Data Validation of Maintenance Activities

4.4.1. On Time Variable

In this section we analyze the data of the fourteen subjects which performed

two development activities by using the two extension techniques in KDM mod-680

xxxvi

els, LW and HW and the effect of these two variables (technique and activity)

on the time variable. The type of analysis that was conducted is called as two

within subjects factors (2 repeated measures factors), because each group of the

seven subjects perform all the maintenance activities of the two techniques.

Figure 10: Average Time of Maintenance Activities on Time Variable

In Table 13, we present the statistics of means and standard deviations of685

time variable related with maintenance activities for HW and LW techniques

and in Figure 10 the corresponding box-plot of the data.

Table 13: Means and Standard Deviation for Time Variable of Maintenance Activities

Technique Activity Time.mean Time.sd

HW Actv-7 2.214286 0.6992932

HW Actv-8 3.428571 1.3424596

LW Actv-7 5.500000 1.6984156

LW Actv-8 7.142857 2.0701967

It seems that there is no big differences in time when applying the HW

technique to both activities. Similarly, there is no big differences in time when

applying the HW technique to both activities. Nevertheless, HW technique690

performs better (in less time) than LW technique.

As in the previous analysis, herein we also check whether there is not a

violation of normality by using Shapiro–Wilk test. The test showed that the

data are normally distributed. Thus, we analyze it by using a parametric test

xxxvii

Table 14: Main LMM Test of Maintenance Activities on Time Variable

F Df Df.res Pr(> F) Signif. codes

1 (Intercept) 246.5185 1 13 7.849e-10 ***

2 Technique 109.1364 1 39 7.313e-13 ***

3 Activity 18.1818 1 39 0.0001234

4 Technique:Activity 0.4091 1 39 0.5261708

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Model: Mixed Effects (lmer), Response: art(Error).

F: Statistic.

Df: Degree of Freedom.

Df.res: Residual degrees of freedom.

Pr(> F): Significance probability.

called Linear Mixed Model (lmm) which belongs to the lme4 package [33] of the695

R statistical software. The complete analysis can be found in the following URL

(https://github.com/Advanse-Lab/KDM-AO).

Figure 11: Interaction Plot of Maintenance Activities on Time

Table 14 shows lmm test of maintenance activities on time variable. There

are main effects on Technique and on Activity but there is not an interaction

of these factors. Indeed, Figure 11 shows the interaction plot of maintenance700

activities where the lines of each technique are slightly parallel without crossing

between them, consequently with the result of lmm test analysis.

In light of the overall significant result, we can do some pairwise comparisons

among the levels of technique and activity. In Table 15, we show the result of

these comparisons and it presents all the pairwise comparisons available across of705

xxxviii

https://github.com/Advanse-Lab/KDM-AO

Table 15: Post Hoc Pairwise Comparisons of Maintenance Activities on Time Variable

Simultaneous Tests for General Linear Hypotheses

Est.

Std. Error t value Pr(> |t|)

Signif.

codes

HW,Actv-7 - LW,Actv-7 == 0 -3.2857 0.4738 - 6.935 1.05e-07 ***

HW,Actv-7 - HW,Actv-8 == 0 -1.2143 0.4738 - 2.563 0.014355 *

HW,Actv-7 - LW,Actv-8 == 0 -4.9286 0.4738 -10.402 4.97e-12 ***

LW,Actv-7 - HW,Actv-8 == 0 2.0714 0.4738 4.372 0.000266 ***

LW,Actv-7 - LW,Actv-8 == 0 -1.6429 0.4738 - 3.467 0.002591 **

HW,Actv-8 - LW,Actv-8 == 0 -3.7143 0.4738 - 7.839 7.77e-09 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

P-value adjustment method: holm.

Fit: lme4::lmer(formula = Time ∼ (Technique * Activity) + (1 | Subject)).

Pr(> |t|): Significance probability.

the levels in the interaction plot. Note that all p-values are significant, so there

are differences on time when using different techniques for different maintenance

activities.

4.4.2. On Error Variable

In this section we analyze the data of the fourteen subjects which performed710

two development activities by using the two extension techniques in KDM mod-

els, LW and HW and the effect of these two variables (technique and activity)

on the error variable.

In Table 16, we present the statistics of means and standard deviations of

error variable related with development activities for HW and LW techniques.715

We do not provide the corresponding box-plot because of the values of the data

it does not bring valuable information to our analysis. Instead of that, an

interaction plot could be more useful to analyze main effects and interactions

among levels of factors.

xxxix

Table 16: Means and Standard Deviation for Error Variable of Maintenance Activities

Technique Activity Error.mean Error.sd

HW Actv-7 0.0000000 0.0000000

HW Actv-8 0.3571429 0.8418974

LW Actv-7 0.7857143 1.0509023

LW Actv-8 0.5714286 1.3985864

As in the previous analysis, herein we also check whether there is not a720

violation of normality by using Shapiro–Wilk test. The test showed that the

data are not normal and the complete analysis can be found in the following

URL (https://github.com/Advanse-Lab/KDM-AO). Thus, we apply the non-

parametric test for multiple factor with repeated measures ART.

In Table 17, we show the results of the ART test of maintenance activities on725

error, where there are not overall significant main effects on technique, activity

and also there is not an interaction between the two factors because p-values

are > .05 in all cases. In Figure 12 we show the interaction plot of maintenance

activities between the two techniques on error. Lines are slightly separated in

activity Actv-7 and tend to join in activity Actv-8. Indeed, for activity Actv-7730

there were no errors when developers used HW technique and means of error

for activity Actv-8 when developers used LW technique is very low. Thus, the

gap between the two lines is negligible and therefore, we state that there is not

a main effect on technique.

Figure 12: Interaction Plot of Maintenance Activities on Error

In Table 18, we show the interaction contrast of maintenance activities on735

error variable. There is not significant differences on error by using HW and

xl

https://github.com/Advanse-Lab/KDM-AO

Table 17: ART test of Maintenance Activities on Error Variable

F Df Df.res Pr(> F) Signif. codes

1 Technique 2.1128 1 39 0.15407

2 Activity 1.5888 1 39 0.21499

3 Technique:Activity 1.5733 1 39 0.21720

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Model: Mixed Effects (lmer), Response: art(Error).

F: Statistic.

Df: Degree of Freedom.

Df.res: Residual degrees of freedom.

Pr(> F): Significance probability.

Table 18: Interaction Contrast of Maintenance Activities on Error Variable

V alue Df Chisq Pr(> Chisq)

1 HW-LW : Actv -7-Actv-8 -8 1 1.5733 0.2097

Chisq Test (χ2), P-value adjustment method: holm.

Df: Degree of Freedom.

Pr(> Chisq): Significance probability.

LW extension techniques when developers perform Actv-7 or perform Actv-8.

4.5. Discussion of Results

After analyzed statistically the results, we can make some conclusions about

the extension techniques for the KDM. The analysis performed in Section 4.3740

shows that in the overall, the LW technique performed worse than HW tech-

nique, for all development activities. However, it was notorious the poor per-

formance of developers in activities 3, 4 and 5 with the LW technique. It seems

that activities that requires the extension of several AOP structures with the

LW technique, such as the combination of PointCuts and JoinPoints, take more745

time to implement because developers need to write more lines of code in com-

parison with the HW extension technique.

xli

The analysis in Section 4.3.1 shows that in the overall, the usage of LW or

HW extension technique for developing activities imply in the rise of errors. This

is in compliance with the previous analysis because as developers write more750

lines of code is reasonable that they make more mistakes in the codification.

The analysis in Section 4.4 shows that in the overall, the LW technique per-

formed worse than HW technique, for the two maintenance activities. However,

both of the techniques increase the maintenance time in the activity Actv-8.

The activity Actv-8 deals with PointCut and JoinPoints that is the same as in755

the previous scenario, taking more time to be implemented by developers.

Finally, the analysis in Section 4.4.2 shows that in general the techniques

and the activities does not affect significantly the number of errors because few

errors were committed by developers.

5. Threats to Validity760

As with any experimental study, this experiment has several threats to va-

lidity. In this section, we consider the study of Cook [34] as a template to

discuss the threats that might jeopardize the validity of our experiment. Inter-

nal validity is concerned with the confidence that can be placed in the cause-

effect relationship between the treatments and the dependent variables in the765

experiment. External validity has to do with generalization, namely, whether

or not the cause-effect relationship between the treatments and the dependent

variables can be generalized outside the scope of the experiment. Conclusion

validity focuses on the conclusions that can be drawn from the relationship be-

tween treatment and outcome. Finally, construct validity is about the adequacy770

of the treatments in reflecting the cause and the suitability of the outcomes in

representing the effect. We categorized all threats to validity according to this

classification.

5.1. Internal Validity

We mitigated the experience level of participants by splitting all the775

participants in two balanced groups. To the creation of these two groups we

xlii

have considered the experience level based on Table 6 and we have balanced the

groups considering the total points of each subject.

The training phase was focused on presenting the AOP concepts, the meta-

model extensions mechanisms and how to create KDM-AO instances (LW and780

HW). Thus, no training on Model-Driven Architecture (MDA) or ADM

were done. However, the subjects (masters and PhDs candidates) already had

a preparation by the professor of the course, so we did not have to be concerned

about it. Another point is that as they were instantiating the metamodel ex-

tensions programmatically, the model-based part was abstracted.785

Another internal validity is the productivity under evaluation. There is

a possibility that this might influence the experiment results because students

often tend to think they are being evaluated by experiment results. In order to

mitigate this, we explained to the students that no one was being evaluated and

their participation was considered anonymous. However, we cannot rule out the790

possibility that some participants has been influenced by this threat.

5.2. External Validity

The sample might not be representative of the target population.

As mentioned, we carried out the experiment with 14 subjects, which were

divided into two group. We cannot rule out the threat that the results could795

have been different if another sample had been selected. However, to diminish

this threat we have performed the training stage in order to provide to the

subjects the knowledge in extension mechanisms needed the make the sample

the most representative.

It is possible that the exercises are not accurate for every mainte-800

nance’s problem for real world applications. To mitigate this threat, the

activities were designed considering applications based on the real world.

Another point is that the activities were application-independent as can

be seen in Table 4. For example, creating three pointcuts is not different if the

pointcuts is from application Y or X, because just the name of them is different.805

The main point is that creating elements in the LW extension demands more

xliii

lines of code and, consequently, more effort and error proneness.

5.3. Conclusion Validity

The main threat to conclusion validity has to do with the quality of the

data collected during the course of the experiment. We have evaluated810

the performance of the subjects considering the time to perform the activities

and the number of errors in each task. About the time, we have asked to the

subjects to set the start and the end time. In this sense we could have had

a problem because a subject could forget to mark the time in the form. To

mitigate this, we have set a standard start time to all subjects and to certificate815

that they were recording the time in each activity we had three monitors in the

room just to check this.

About the numbers of errors, each subject had to hand two set of files,

one to each treatment, the challenge was to catch all the errors without miss

a single one. To mitigate this, we have performed the error checking by two820

experts from our group, if the number of errors of a subject was the same we

considered right, if not we would have to check again until the number of errors

be the same.

5.4. Construct Validity

The subjects already knew the researchers and they also knew that825

the HW instantiation process was supposed to be easier (less source

code to be written) if compared to the LW one. Both of these issues could

affect the collected data and cause the experiment to be less impartial. In order

to avoid impartiality, we enforced that the participants had to keep a steady

pace during the whole study and that both approaches had their advantages830

and disadvantages.

Since we have created both KDM-AO extensions we claim that we had no

preference neither for the LW one nor for the HW one. Thus we have

eliciting the main advantages and disadvantages of both in this paper.

xliv

6. Related Works835

This section presents the related works of our approch. We split this sec-

tion in three topics: (i) specific approaches to KDM extensions, (ii) generic ap-

proaches such as UML’s extensions and (ii) approaches that use aspect-oriented

in legacy systems.

6.1. Specific Approaches - KDM extensions840

The work more related to ours is the KDM AO extension created by Mir-

shams [12]. As we have done here, this author also created a heavyweight KDM

extension for aspect-oriented programming. There are three main differences

between our works. Firstly, while Mirshams has based her extension on an as-

pect model created by herself, we have created our extension based on a very845

well known profile for aspect-oriented programming. Evermann’s profile encom-

passes all the AO concepts presented in AspectJ and in other aspect-oriented

languages, like Aspect C++ and AspectS.

The second difference is the scope of our extensions. The aspect model

used by Mirshams contains much less elements than Evermann’s profile. That850

means our extension is able to represent both a high level (using the most

generic metaclasses) and a low level (using most specific metaclasses) view of

the system. In her case, just a higher level view is possible. The third difference

is that her work is limited to dynamic crosscutting as there are no elements for

representing inter-type declarations. However, despite all of these differences,855

the main similarity is that we have used the same KDM metaclasses she has

used too.

Another KDM extension is presented by Baresi and Miraz [35]. They pro-

posed a heavyweight KDM extension to support Component-Oriented MOdern-

ization (COMO). COMO is a metamodel that supports traditional concepts of860

software architecture, allowing to attach software components in KDM. Using

their extension it is possible to replace or add parts of a system. Unlike we have

done here, in their paper they had not used an existing profile as the starting

xlv

point for creating their extension - they combined another metamodel to the

KDM. COMO extends some high level metaclasses of KDM, such as KDMModel,865

KDMEntity and KDMRelationship. These classes are the base of their extension

and provide the link between KDM and COMO metamodels.

The main similarity with our work is that they have also performed a heavy-

weight extension in KDM. As a main difference, the extension presented by them

only extended high level elements of KDM, while in our solution we have use870

more specific elements such as ClassUnit and MemberUnit.

Usually event logs are represented with particular notations such as Mining

XML (MXML) rather than the recent software modernization standard, such

as KDM. Therefore, Pérez-Castillo et al. [36] created an extension aiming to

mitigate this limitation, i.e., the authors have extended KDM’s Event model to875

describe event logs. Similarly to our lightweight KDM extension they also have

used the ExtensionFamily mechanism – allowing them to create Stereotypes

comprising different TagDefinitions and also permitting them to integrate

event logs in KDM, tagging the extracted entities with the extended concepts.

6.2. Generic Approaches - UML extensions880

Similar to our work and the work proposed by Mirshams [12] there are

researches that seek to perform AOP extensions in UML [37, 38, 39, 40].

Ahmed et al., [37] focuses on creating a lightweight UML extension which

supports language specification for AspectJ. Similar to our extension they also

have used Eclipse IDE – more specifically they used Eclipse Modeling Framework885

(EMF), which is the core to represent KDM’s metamodels in Eclipse.

Zakaria et al., [38] proposed an UML extension for modeling AO system.

The authors used the lightweight mechanism to create the AO UML extension.

Lightweight UML extension mechanism are based on “Stereotypes”, “Tagged

Values”, and “Constraints”. As presented in Listing 1 our lightweight AO ex-890

tension mechanism also contains “Stereotypes” and “Tagged Values” (known

in KDM’s metamodel as “TagDefinition”), see lines 2 and 6, respectively. Za-

karia et al., proposed different types of tags for relationship between the classes

xlvi

and aspects, differently in our approach one just need to call the method

createTagDefinition() and add this tag into a “Stereotypes”, see Line 6 and895

Line 7 in Listing 1.

Qaisar et al., [39] describe a metamodel for AOP in which they proposed an

extension for AOP. The authors used Meta Object Facility (MOF) which has

the heavyweight extensibility mechanism in its specification. Likewise the KDM,

the authors tried to create a complete metamodel, i.e., according to the authors,900

the proposed metamodel not only models the static structure of AOP but also

can models the behavioral structure of the model. The authors also defined

new metaclasses, for example, they define the following metaclasses: Aspect,

PointCut, and Advice – these metaclasses are strongly similar to our heavy-

weight extension mechanism: AspectUni, PointCutUnit, and AdviceUnit.905

Stein et al., [40] also create AO extension to design notation for AspectJ

programs. Similar to our approach the authors classified similarities between

UML elements and AspectJ’s features. The extension proposed is used in three

UML’s diagrams, class diagram, use case diagram, and sequence diagram.

6.3. Aspect-oriented approaches in legacy systems910

The approaches of Chen et al. [41] and Schutter and Adams [42] are focused

on reengineering legacy systems with the help of aspect-orientation. The ap-

proache of Chen et al. [41] developed a method to generate class and sequence

diagrams using techniques of reflection and decompilation from the Java binary

byte code of AO legacy systems. The authors based their approach on the Java915

Reflection and decompiler tools.

The approach proposed by Schutter and Adams [42] address the combination

of AO programming and meta-programming during the revitalization of legacy

systems in Cobol and C. To address these combinations, the authors used four

use cases that are: 1) reverse engineering; 2) recovery of business logic; 3)920

encapsulation of business applications for integration with service-oriented en-

vironments; and 4) maintenance and bug-fix of legacy systems. The authors

achieved relevant results for the first three use cases where AO programming

xlvii

and meta-programming showed that can aided for the address problems, but for

the last use case the AO programming solution present too much of a limitation925

for Cobol legacy systems although the problem can be managed reasonably for

C legacy systems.

Although these publications are model-driven approaches and their goals are

in showing the reengineering/modernization process of legacy systems our work

is more focused on showing how the modernization process could benefit from930

KDM aspect-oriented extension.

7. Lessons Learned and Limitations

This section discusses the lessons learned of our investigation and shows

some limitations of modernization processes based on ADM.

The first lesson learned is that there is a lack of ready-to-use modernization935

tools that could help in the validation process of a modernization scenario.

In conducting this research, we learned that the power of ADM is strongly

influenced by the ability to represent specific concepts in an appropriate way.

For instance, a major concern in reverse and forward engineering steps derives

from the heterogeneity of how to represent software systems, in which the data940

are often uniformly represented as many models.

Therefore, ADM by means of its standards aims at switching from the het-

erogeneous scenario to the homogeneous scenario. The big idea is to retrieve

one or several models from a given system, depending on the needed viewpoints,

and then to work directly on these models.945

Nowadays there are very few tools that give full support to reverse and

forward engineering based on ADM scenario. As far as we know, there are few

initiatives to provide more generic integrated reverse engineering tools that can

be extended and used to different scenarios. A tool that we have used herein

is MoDisco. Although MoDisco is used in this project, its core components950

support discovery just for Java technologies, i.e., there is a lack of tools that

provides fully support for other implementation technologies such as C/C++,

C# (.NET) or COBOL. In fact, Clause [43] devised a Python discovery based on

xlviii

ADM. However, we could not find online the source-code to test this discovery.

Thus, after developing our AO-extensions and performing the validations955

that we have shown in this paper, the ideal scenario would be to perform a real

modernization project using the extensions but this was not possible because

we neither had an aspect-oriented discoverer nor a forward engineering tool to

convert KDM models in source-code again.

The second lesson learned is the importance of a research that presents how960

to extend KDM in a light and heavyweight manner. As we present in the related

works section, there is a shortage of guidelines on how to extend KDM as well

as lack of criteria on how to compare the instantiation process of HW and LW

extensions.

ADM claims KDM can represent all software artifacts, however, sometimes965

it is needed to represent specific domain concepts and that is why there are the

extension mechanisms. With the conduction of our research, we could notice

that the choice for an extension (HW or LW) will depend on the purpose that it

will be used for and for each one there is a set of consequences to be considered.

For instance, the LW extension mechanism is less demanding, since its creation970

process requires less effort and its reuse is more easily adapted in existing tools.

In general terms, the main advantage of using the HW extension is due to the

quality assurance of the produced instances. Another advantage of using the

LW extension mechanism is the speed and convenience of adding new behaviors

in instances of KDM, since its creation process is less labor intensive if compared975

to the HW mechanism.

As a third lesson learned we claim that there is a lack of research about

the synergy between KDM and others ADM standard metamodels. It is noted

that KDM is a powerful metamodel that can be adapted to several domains,

so it will only depend on the software engineer to create a solution that best980

serves its purpose. However, KDM is a metamodel to represent software systems

artifacts and it does not provide a graphical visualization of its content. For this

purpose, a modernization engineer should use another metamodel such as UML

or Business Process Model and Notation (BPMN), depending on the required

xlix

point of view.985

In other research of our group [16], we evaluated the application of refac-

torings in KDM instances with the support of UML classes diagrams in an ex-

periment involving seven systems implemented in Java, by using a tool named

Knowledge Discovery Model-Refactoring Environment (KDM-RE). The systems

used in the experiment were Xerces-J, Jexel, JFreeChart, JUnit, GanttProject,990

ArtofIllusion, and JHotDraw. According to the authors, these seven systems

were chosen because they are real-world Java applications whose sizes range

from 16,026 to 240,540 lines of code. In spite of the fact that, KDM seems to

be a robust metamodel to represent complete systems it is not possible to state

that the results can be generalized for all Java applications instantiated using995

KDM and represented in UML classes diagrams.

As a forth lesson learned we claim that dealing with the number of errors has

brought us a better understanding and knowledge on how to create automated

support for the creation of KDM-AO instances. We claim that this knowledge

have came from two sources: the definition of what would be considered as an1000

error and the importance of counting the number of errors.

Regarding the first part of the sentence, we have defined what would be an

“error” so that we could count the number of errors the subjects committed.

We believe it is not so important the granularity of the error, but how we are

counting them.1005

Regarding the second part, that is the importance of counting the number of

errors, we believe there are two important points: i) Clearly, the most expected

situation would be to have an automated tool for creating the instances of the

KDM extensions. However, the Modernization Engineer, in charge of imple-

menting such an automated support, must create ”scripts” that automate the1010

creation of instances. The subjects of the experiment played the role of these

scripts and this was very useful for identifying the most frequent errors in the

process of creating AO KDM instances. The second point is that, doing such

an exercise of creating the instances manually, we learned all the steps for the

correct implementation of the scripts.1015

l

8. Conclusion

In this paper we presented our investigation on aspect-oriented extensions

for the Knowledge-Discovery Metamodel [28]. To conduct this investigation we

have developed a heavyweight and a lightweight extension and conducted an

experiment that evaluated the productivity when creating instances of these1020

extensions and also when modifying these instances. The main goal is to de-

liver the KDM AO extensions created so that Aspect-Oriented Modernization

Projects can be conducted.

The experiment has concentrated on analyzing the productivity when cre-

ating instances (and also modifying them) of these both KDM AO extensions.1025

The tasks were performed programmatically for the software engineers and an

AO Persistence Framework was employed [31]. The statistical analysis showed

that the HW and LW do have impact over the time and also the number of

errors when creating the instances. So the choice between these options must

be carefully analyzed. Summarizing, when HW extension is employed, the soft-1030

ware engineers are 43% faster than using LW extensions. Besides, the software

engineers commit 7.7% less errors if compared to the subjects that have used

the LW extension.

Regarding the effort for creating the extensions, we claim that it is quite

similar. The creation of a LW extension requires the instantiation of some1035

classes of the kdm package for creating stereotypes and tagged values, but none

new metaclass is created. Similarly, in the HW case, one must create new

metaclasses that must be included as part of the KDM. The advantages and

disadvantages of HW and LW extensions were already stated many times in

literature, but basically, the main are that LW extensions are more easily to be1040

incorporated and used in tools, but they provide less precise semantics. On the

other hand, HW extensions are more difficult to be incorporated in tools, but

they are much more precise in semantics.

Although this paper has concentrated on aspect-oriented extensions, the

process we have used for creating the extensions can be generalized, as well as1045

li

most findings. For example, one of the generalizable findings is the perception

that the creation of KDM extensions for a specific domain can be based on

existing UML profiles, as we did with Everman´s profile. As the Code Package

of KDM has many similarities with UML, it is quite simple to find out which

KDM metaclass can be used as base metaclass in a new extension. To assist1050

software engineers in this task with developed a mapping table (UML – KDM)

shown in Table 3.

The choice of which KDM extension to use (HW or LW) is guided by several

points. Usually, it depends on the goal of the projects. For instance, if the HW

mechanism is chosen, the new metaclasses could be instantiated more easily and1055

this provides a better correcteness in instance level, but it makes difficult the

interoperability with other tools that uses KDM. On the other hand, the LW

extensions is more interoperable but harder to be instantiated and the correct-

ness of the models should be granted by the supported tools that implement

it.1060

As a main limitation we claim that the ADM approach do not have a wide set

of tools that works with KDM to facilitate the reverse and forward engineering

available in the literature. Thus, we are depending on specific tools and pro-

gramming languages, such as MoDisco tool and JAVA programming language.

However, we believe that the guidelines provided in this paper could be used1065

in another programming language because we explain how to use the KDM to

perform the extensions.

The usage scenario of KDM extensions as well as the right moment to use

them are still not so clear. Along aspect-oriented modernization projects, in-

stances of the extended KDM will be created as a result of refactorings/opti-1070

mizations/reestructuring tasks applied over the legacy KDM (the KDM that

represents the legacy system). This happens in the upper right part of the

horse shoe model. We believe that, in many situations, the instances of the new

concepts (metaclasses or stereotypes) of the extended KDM will be automati-

cally created by the transformation rules. For example, a transformation rule1075

could get as input a legacy KDM with some packages annotated with crosscut-

lii

ting concerns and generate aspects for each annotated package. However, there

are many other situations where the software engineers will have to create the

transformations manually for instantiating the new aspect-oriented concepts.

In these cases, it is important to know the differences between HW and LW1080

extensions and the advantages and disadvantages of them.

We are currently studying how KDM and KDM extensions can be arranged

into the architecture of modernization tools. In this sense, we are developing a

Reference Architecture for supporting the design of this kind of tools [44]. As

part of this effort, we are also working on creating a terminology that better1085

characterize these tools.

The experimental analysis presented in this paper has considered the devel-

opment and maintenance on KDM instances. These activities were performed

in Eclipse IDE without the help of a tool to simplify the codification process.

Thus, as a future work we envision the opportunity of developing a modern-1090

ization tool that allows the automatic instantiation of KDM-AO elements (HW

and LW) to easier the creation of aspect-oriented refactorings using KDM. With

this modernization tool would be possible to reapply the experiment with a big-

ger set of subjects in order to evaluate other quality attributes such as usability

and quality of KDM-AO instances in real company projects. Thus, with this1095

experiment we could be able to find out if the modernization process proposed

by ADM is suitable in the context of companies.

As another future work, we intend to conduct other case studies using other

aspect-oriented languages such as AspectC++ and AspectS in order to evaluate

if our KDM-AO extensions are generic and platform independent enough to1100

represent them.

9. Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de

Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001.

Daniel San Martin would like to thank CONICYT (Chile). André Landi1105

liii

would like to thank S2IT SOLUTIONS CONSULTORIA LTDA. Valter Ca-

margo would like to thank FAPESP (process number 2016/03104-0).

References

[1] Lehman, M.M.. Laws of software evolution revisited. In: Montangero, C.,

editor. Software Process Technology. Berlin, Heidelberg: Springer Berlin1110

Heidelberg. ISBN 978-3-540-70676-2; 1996, p. 108–124.

[2] Visaggio, G.. Ageing of a data-intensive legacy system: Symptoms and

remedies. Journal of Software Maintenance 2001;13(5):281–308. URL:

http://dl.acm.org/citation.cfm?id=565153.565154.

[3] Bianchi, A., Caivano, D., Marengo, V., Visaggio, G.. Iterative reengi-1115

neering of legacy systems. IEEE Transactions on Software Engineering

2003;29(3):225–241. doi:10.1109/TSE.2003.1183932.

[4] Pérez-Castillo, I.G.R., Piattini, M.. Modern software engineering concepts

and practices: Advanced approaches, architecture-driven modernization.

Chapter 4 2011;:75–103doi:10.4018/978-1-60960-215-4.1120

[5] Pérez-Castillo, R., de Guzmán, I.G.R., Piattini, M.. Knowledge dis-

covery metamodel-iso/iec 19506: A standard to modernize legacy systems.

Comput Stand Interfaces 2011;33(6):519–532. URL: http://dx.doi.org/

10.1016/j.csi.2011.02.007. doi:10.1016/j.csi.2011.02.007.

[6] OMG, . Architecture-Driven Modernization Standards Roadmap. 2009.1125

doi:10.1016/j.gie.2008.12.063; avaliable at http://adm.omg.org/.

[7] OMG, . OMG R© Specifications BUSINESS MODELING SPECIFICA-

TIONS. 2016. Available at http://www.omg.org/spec/.

[8] Kulesza, U., Soares, S., Chavez, C., Castor, F., Borba,

P., Lucena, C., et al. The crosscutting impact of the1130

aosd brazilian research community. Journal of Systems and Soft-

ware 2013;86(4):905 – 933. URL: http://www.sciencedirect.

liv

http://dl.acm.org/citation.cfm?id=565153.565154
http://dx.doi.org/10.1109/TSE.2003.1183932
http://dx.doi.org/10.4018/978-1-60960-215-4
http://dx.doi.org/10.1016/j.csi.2011.02.007
http://dx.doi.org/10.1016/j.csi.2011.02.007
http://dx.doi.org/10.1016/j.csi.2011.02.007
http://dx.doi.org/10.1016/j.csi.2011.02.007
http://dx.doi.org/10.1016/j.gie.2008.12.063
http://adm.omg.org/
http://www.omg.org/spec/
http://www.sciencedirect.com/science/article/pii/S0164121212002427
http://www.sciencedirect.com/science/article/pii/S0164121212002427
http://www.sciencedirect.com/science/article/pii/S0164121212002427

com/science/article/pii/S0164121212002427. doi:https://doi.org/

10.1016/j.jss.2012.08.031; sI : Software Engineering in Brazil: Ret-

rospective and Prospective Views.1135

[9] Lesiecki, N.. Applyinq aspectj to j2ee application development. IEEE

Software 2006;23(1):24–32.

[10] Hohenstein, U.D., Jäger, M.C.. Using aspect-orientation in industrial

projects: Appreciated or damned? In: Proceedings of the 8th ACM Inter-

national Conference on Aspect-oriented Software Development. AOSD ’09;1140

New York, NY, USA; 2009, p. 213–222.

[11] Durelli, R.S., Santibáñez, D.S.M., Marinho, B., Honda, R., Delamaro,

M.E., Anquetil, N., et al. A mapping study on architecture-driven modern-

ization. In: Proceedings of the 2014 IEEE 15th International Conference

on Information Reuse and Integration (IEEE IRI 2014). 2014, p. 577–584.1145

doi:10.1109/IRI.2014.7051941.

[12] Shahshahani, P.M.. Extending the knowledge discovery metamodel to sup-

port aspect-oriented programming. Master’s thesis; Concordia University;

2011. URL: http://spectrum.library.concordia.ca/7329/; .

[13] Ulrich, W.M., Newcomb, P.. Information Systems Transformation:1150

Architecture-Driven Modernization Case Studies. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc.; 2010. ISBN 0123749131,

9780123749130.

[14] Sadovykh, A., Vigier, L., Hoffmann, A., Grossmann, J., Ritter, T.,

Gomez, E., et al. Architecture driven modernization in practice 150; study1155

results. In: 2009 14th IEEE International Conference on Engineering of

Complex Computer Systems. 2009, p. 50–57. doi:10.1109/ICECCS.2009.

39.

[15] Kazman, R., Woods, S.G., Carrière, S.J.. Requirements for integrating

software architecture and reengineering models: Corum ii. In: Proceedings1160

lv

http://www.sciencedirect.com/science/article/pii/S0164121212002427
http://www.sciencedirect.com/science/article/pii/S0164121212002427
http://dx.doi.org/https://doi.org/10.1016/j.jss.2012.08.031
http://dx.doi.org/https://doi.org/10.1016/j.jss.2012.08.031
http://dx.doi.org/https://doi.org/10.1016/j.jss.2012.08.031
http://dx.doi.org/10.1109/IRI.2014.7051941
http://spectrum.library.concordia.ca/7329/
http://dx.doi.org/10.1109/ICECCS.2009.39
http://dx.doi.org/10.1109/ICECCS.2009.39
http://dx.doi.org/10.1109/ICECCS.2009.39

of the Working Conference on Reverse Engineering (WCRE’98). WCRE

’98; Washington, DC, USA: IEEE Computer Society; 1998, p. 154–160.

[16] Durelli, R.S., Viana, M.C., de S. Landi, A., Durelli, V.H.S., Delamaro,

M.E., de Camargo, V.V.. Improving the structure of kdm instances via

refactorings: An experimental study using kdm-re. In: Proceedings of the1165

31st Brazilian Symposium on Software Engineering. SBES’17; New York,

NY, USA: ACM; 2017, p. 174–183.

[17] Durelli, R.S., Santibáñez, D.S.M., Delamaro, M.E., de Camargo,

V.V.. Towards a refactoring catalogue for knowledge discovery meta-

model. In: Proceedings of the 2014 IEEE 15th International Conference1170

on Information Reuse and Integration (IEEE IRI 2014). 2014, p. 569–576.

doi:10.1109/IRI.2014.7051940.

[18] d. S. Landi, A., Chagas, F., Santos, B.M., Costa, R.S., Durelli, R., Terra,

R., et al. Supporting the specification and serialization of planned architec-

tures in architecture-driven modernization context. In: 2017 IEEE 41st An-1175

nual Computer Software and Applications Conference (COMPSAC). 2017,

p. 327–336.

[19] Chagas, F., Durelli, R., Terra, R., Camargo, V.. Kdm as the underlying

metamodel in architecture-conformance checking. In: Proceedings of the

30th Brazilian Symposium on Software Engineering. SBES ’16; ACM; 2016,1180

p. 103–112.

[20] Normantas, K., Sosunovas, S., Vasilecas, O.. An overview of the

knowledge discovery meta-model. In: Proceedings of the 13th Inter-

national Conference on Computer Systems and Technologies. CompSys-

Tech ’12; New York, NY, USA: ACM. ISBN 978-1-4503-1193-9; 2012, p.1185

52–57. URL: http://doi.acm.org/10.1145/2383276.2383286. doi:10.

1145/2383276.2383286.

[21] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.,

lvi

http://dx.doi.org/10.1109/IRI.2014.7051940
http://doi.acm.org/10.1145/2383276.2383286
http://dx.doi.org/10.1145/2383276.2383286
http://dx.doi.org/10.1145/2383276.2383286
http://dx.doi.org/10.1145/2383276.2383286

Loingtier, J.M., et al. Aspect-oriented programming. ECOOP’97—Object-

oriented programming 1997;:220–242.1190

[22] Mart́ın Santibáñez, D.S., Durelli, R.S., de Camargo, V.V.. A combined

approach for concern identification in kdm models. Journal of the Brazil-

ian Computer Society 2015;21(1):10. URL: http://dx.doi.org/10.1186/

s13173-015-0030-3. doi:10.1186/s13173-015-0030-3.

[23] Bruneliere, H., Cabot, J., Jouault, F., Madiot, F.. Modisco: A generic1195

and extensible framework for model driven reverse engineering. In: Pro-

ceedings of the IEEE/ACM International Conference on Automated Soft-

ware Engineering. ASE ’10; New York, NY, USA: ACM. ISBN 978-1-4503-

0116-9; 2010, p. 173–174. URL: http://doi.acm.org/10.1145/1858996.

1859032. doi:10.1145/1858996.1859032.1200

[24] Evermann, J.. A meta-level specification and profile for aspectj in uml.

In: Proceedings of the 10th International Workshop on Aspect-oriented

Modeling. AOM ’07; New York, NY, USA: ACM. ISBN 978-1-59593-658-5;

2007, p. 21–27. URL: http://doi.acm.org/10.1145/1229375.1229379.

doi:10.1145/1229375.1229379.1205

[25] Soares, S., Laureano, E., Borba, P.. Implementing distribution

and persistence aspects with aspectj. SIGPLAN Not 2002;37(11):174–

190. URL: http://doi.acm.org/10.1145/583854.582437. doi:10.1145/

583854.582437.

[26] Rausch, A., Rumpe, B., Hoogendoorn, L.. Aspect-oriented framework1210

modeling. In: Proceedings of the 4th AOSD Modeling with UML Workshop

(UML Conference 2003). 2003,.

[27] Júnior, J.U., Penteado, R.D., de Camargo, V.V.. An overview and an

empirical evaluation of uml-aof: An uml profile for aspect-oriented frame-

works. In: Proceedings of the 2010 ACM Symposium on Applied Comput-1215

ing. SAC ’10; New York, NY, USA: ACM. ISBN 978-1-60558-639-7; 2010,

lvii

http://dx.doi.org/10.1186/s13173-015-0030-3
http://dx.doi.org/10.1186/s13173-015-0030-3
http://dx.doi.org/10.1186/s13173-015-0030-3
http://dx.doi.org/10.1186/s13173-015-0030-3
http://doi.acm.org/10.1145/1858996.1859032
http://doi.acm.org/10.1145/1858996.1859032
http://doi.acm.org/10.1145/1858996.1859032
http://dx.doi.org/10.1145/1858996.1859032
http://doi.acm.org/10.1145/1229375.1229379
http://dx.doi.org/10.1145/1229375.1229379
http://doi.acm.org/10.1145/583854.582437
http://dx.doi.org/10.1145/583854.582437
http://dx.doi.org/10.1145/583854.582437
http://dx.doi.org/10.1145/583854.582437

p. 2289–2296. URL: http://doi.acm.org/10.1145/1774088.1774564.

doi:10.1145/1774088.1774564.

[28] Santos, B.M., Honda, R.R., Durelli, R.S., d. Camargo, V.V.. Kdm-

ao: An aspect-oriented extension of the knowledge discovery metamodel.1220

In: 2014 Brazilian Symposium on Software Engineering. 2014, p. 61–70.

doi:10.1109/SBES.2014.20.

[29] Santos, B.M., Durelli, R.S., Honda, R.R., Camargo, V.V.. Investigating

lightweight and heavyweight kdm extensions for aspect-oriented modern-

ization. In: 11th Workshop on Software Modularity (WMod), Maceió,1225

Brazil. 2014, p. 1–12.

[30] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén,

A.. Experimentation in software engineering: an introduction. Norwell,

MA, USA: Kluwer Academic Publishers; 2000. ISBN 0-7923-8682-5.

[31] de Camargo, V.V., Masiero, P.C.. An approach to design crosscut-1230

ting framework families. In: Proceedings of the 2008 AOSD Work-

shop on Aspects, Components, and Patterns for Infrastructure Software.

ACP4IS ’08; New York, NY, USA: ACM. ISBN 978-1-60558-142-2;

2008, p. 3:1–3:6. URL: http://doi.acm.org/10.1145/1404891.1404894.

doi:10.1145/1404891.1404894.1235

[32] Wobbrock, J.O., Findlater, L., Gergle, D., Higgins, J.J.. The aligned

rank transform for nonparametric factorial analyses using only anova pro-

cedures. In: Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems. CHI ’11; New York, NY, USA: ACM. ISBN 978-

1-4503-0228-9; 2011, p. 143–146. URL: http://doi.acm.org/10.1145/1240

1978942.1978963. doi:10.1145/1978942.1978963.

[33] Bates, D., Mächler, M., Bolker, B., Walker, S.. Fitting linear mixed-

effects models using lme4. Journal of Statistical Software 2015;67(1):1–48.

doi:10.18637/jss.v067.i01.

lviii

http://doi.acm.org/10.1145/1774088.1774564
http://dx.doi.org/10.1145/1774088.1774564
http://dx.doi.org/10.1109/SBES.2014.20
http://doi.acm.org/10.1145/1404891.1404894
http://dx.doi.org/10.1145/1404891.1404894
http://doi.acm.org/10.1145/1978942.1978963
http://doi.acm.org/10.1145/1978942.1978963
http://doi.acm.org/10.1145/1978942.1978963
http://dx.doi.org/10.1145/1978942.1978963
http://dx.doi.org/10.18637/jss.v067.i01

[34] Cook, T.D., Campbell, D.T.. Quasi-Experimentation: Design & Analysis1245

Issues for Field Settings. Houghton Mifflin; 1979.

[35] Baresi, L., Miraz, M.. A component-oriented metamodel for the mod-

ernization of software applications. In: 2011 16th IEEE International Con-

ference on Engineering of Complex Computer Systems. 2011, p. 179–187.

doi:10.1109/ICECCS.2011.25.1250

[36] Pérez-Castillo, R., de Guzmán, I.G.R., Piattini, M., Weber, B.. Integrat-

ing event logs into kdm repositories. In: Proceedings of the 27th Annual

ACM Symposium on Applied Computing. SAC ’12; New York, NY, USA:

ACM; 2012, p. 1095–1102.

[37] Ahmed, R.A.M., Aboutabl, A.E., Mostafa, M.S.M.. Extending unified1255

modeling language to support aspect-oriented software development. IN-

TERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE

AND APPLICATIONS 2017;8(1):208–215.

[38] Zakaria, A.A., Hosny, H., Zeid, A.. A uml extension for modeling

aspect-oriented systems. In: International Workshop on Aspect-Oriented1260

Modeling with UML, Germany. 2002,.

[39] Qaisar, Z.H., Anwar, N., Rehman, S.U.. Using uml behavioral model

to support aspect oriented model. Journal of Software Engineering and

Applications 2013;6(03):98.

[40] Stein, D., Hanenberg, S., Unland, R.. A uml-based aspect-oriented design1265

notation for aspectj. In: Proceedings of the 1st international conference on

Aspect-oriented software development. ACM; 2002, p. 106–112.

[41] Schutter, K.D., Adams, B.. Aspect-orientation for revitalis-

ing legacy business software. Electronic Notes in Theoretical Com-

puter Science 2007;166:63 – 80. URL: http://www.sciencedirect.1270

com/science/article/pii/S1571066106005299. doi:https://doi.org/

lix

http://dx.doi.org/10.1109/ICECCS.2011.25
http://www.sciencedirect.com/science/article/pii/S1571066106005299
http://www.sciencedirect.com/science/article/pii/S1571066106005299
http://www.sciencedirect.com/science/article/pii/S1571066106005299
http://dx.doi.org/https://doi.org/10.1016/j.entcs.2006.08.002
http://dx.doi.org/https://doi.org/10.1016/j.entcs.2006.08.002
http://dx.doi.org/https://doi.org/10.1016/j.entcs.2006.08.002

10.1016/j.entcs.2006.08.002; proceedings of the ERCIM Working

Group on Software Evolution (2006).

[42] Chen, L., Wang, J., Xu, M., Zeng, Z.. Reengineering of java legacy sys-

tem based on aspect-oriented programming. In: 2010 Second International1275

Workshop on Education Technology and Computer Science; vol. 3. 2010,

p. 220–223. doi:10.1109/ETCS.2010.298.

[43] Clausen, A.. Transforming python into kdm to support cloud conformance

checking. Ph.D. thesis; Kiel University; 2012.

[44] Santos, B.M., de Camargo, V.V.. A reference architecture for kdm-1280

based modernization tools. In: Proceedings of VI Workshop de Teses e

Dissertações do CBSOFT (WTDSOFT 2016). 2016, p. 1–9.

lx

http://dx.doi.org/https://doi.org/10.1016/j.entcs.2006.08.002
http://dx.doi.org/https://doi.org/10.1016/j.entcs.2006.08.002
http://dx.doi.org/10.1109/ETCS.2010.298

	Introduction
	ADM & KDM
	Code Package
	Kdm Package
	Extension Alternatives for KDM
	Lightweight Extensions
	Heavyweight Extensions

	Aspect-Oriented Modernization Scenario

	Aspect-Oriented Extensions of KDM
	The Lightweight AO Extension
	The Heavyweight AO Extension

	Evaluation
	Method
	Participants
	The Aspect-Oriented Framework
	Selection of Variables
	The Planning of the Experiment

	Operational Steps of the Experiment
	Preparation of the Experiment
	Execution of the Experiment

	Data Validation of Development Activities
	On Time Variable
	On Error Variable

	Data Validation of Maintenance Activities
	On Time Variable
	On Error Variable

	Discussion of Results

	Threats to Validity
	Internal Validity
	External Validity
	Conclusion Validity
	Construct Validity

	Related Works
	Specific Approaches - KDM extensions
	Generic Approaches - UML extensions
	Aspect-oriented approaches in legacy systems

	Lessons Learned and Limitations
	Conclusion
	Acknowledgements

