
F3T: From Features to Frameworks Tool

Matheus Viana, Rosângela Penteado, Antônio do Prado
Department of Computing

Federal University of São Carlos

São Carlos, SP, Brazil

Email: {matheus viana, rosangela, prado}@dc.ufscar.br

Rafael Durelli
Institute of Mathematical and Computer Sciences

University of São Paulo

São Carlos, SP, Brazil

rdurelli@icmc.usp.br

Abstract—Frameworks are used to enhance the quality of
applications and the productivity of development process, since
applications can be designed and implemented by reusing frame-
work classes. However, frameworks are hard to develop, learn
and reuse, due to their adaptive nature. In this paper we
present the From Features to Framework Tool (F3T), which
supports framework development in two steps: Domain Modeling,
in which the features of the framework domain are modeled;
and Framework Construction, in which the source-code and the
Domain-Specific Modeling Language (DSML) of the framework
are generated from the features. In addition, the F3T also
supports the use of the framework DSML to model applications
and generate their source-code. The F3T has been evaluated in
a experiment that is also presented in this paper.

I. INTRODUCTION

Frameworks are reusable software composed of abstract
classes implementing the basic functionality of a domain.
When an application is developed through framework reuse,
the functionality provided by framework classes is comple-
mented with the application requirements. As this application
is not developed from scratch, the time spent in its development
is reduced and its quality is improved [1]–[3].

Frameworks are often used in the implementation of com-
mon application requirements, such as persistence [4] and user
interfaces [5]. Moreover, a framework is used as a core asset
when many closely related applications are developed in a
Software Product Line (SPL) [6], [7]. Common features of
the SPL domain are implemented in the framework and appli-
cations implement these features reusing framework classes.

However, frameworks are hard to develop, learn and reuse.
Their classes must be abstract enough to be reused by appli-
cations that are unknown beforehand. Framework developers
must define the domain of applications for which the frame-
work is able to be instantiated, how the framework is reused
by these applications and how it accesses application-specific
classes, among other things [7], [8]. Frameworks have a steep
learning curve, since application developers must understand
their complex design. Some framework rules may not be
apparent in its interface [9]. A framework may contain so
many classes and operations that even developers who are
conversant with it may make mistakes while they are reusing
this framework to develop an application.

In a previous paper we presented an approach for building
Domain-Specific Modeling Languages (DSML) to support
framework reuse [10]. A DSML can be built by identifying
framework features and the information required to instantiate
them. Thus, application models created with a DSML can

be used to generate application source-code. Experiments
have shown that DSMLs protect developers from framework
complexities, reduce the occurrence of mistakes made by
developers when they are instantiating frameworks to develop
applications and reduce the time spent in this instantiation.

In another paper we presented the From Features to
Framework (F3) approach, which aims to reduce framework
development complexities [11]. In this approach the domain
of a framework is defined in a F3 model, which is a extended
version of the feature model. Then a set of patterns, called F3
patterns, guides the developer to design and implement a white
box framework according to its domain. One of the advantages
of this approach is that, besides showing how developers can
proceed, the F3 patterns systematizes the process of framework
development. This systematization allowed that this process
could be automatized by a tool.

Therefore, in this paper we present the From Features to
Framework Tool (F3T), which is a plug-in for the Eclipse
IDE that supports the use of the F3 approach to develop and
reuse frameworks. This tool provides an editor for developers
to create a F3 model of a domain. Then, framework source-
code and DSML can be generated from the domain defined
in this model. Framework source-code is generated as a Java
project, while the DSML is generated as a set of Eclipse
IDE plug-ins. After being installed, a DSML can be used
to model applications. Then, the F3T can be used again to
generate the application source-code from models created with
the framework DSML. This application reuses the framework
previously generated.

We also have carried out an experiment in order to evaluate
whether the F3T facilitates framework development or not. The
experiment analyzed the time spent in framework development
and the number of problems found the source-code of the
outcome frameworks.

The remainder of this paper is organized as follows: back-
ground concepts are discussed in Section II; the F3 approach
is commented in Section III; the F3T is presented in Section
IV; an experiment that has evaluated the F3T is presented
in Section V; related works are discussed in Section VI; and
conclusions and future works are presented in Section VII.

II. BACKGROUND

The basic concepts applied in the F3T and its approach
are presented in this section. All these concepts have reuse as
their basic principle. Reuse is a practice that aims: to reduce
time spent in a development process, because the software

2013 27th Brazilian Symposium on Software Engineering

/13 $31.00 © 2013 IEEE

DOI 10.1109/SBES.2013.15

89

is not developed from scratch; and to increase the quality
of the software, since the reusable practices, models or code
were previously tested and granted as successful [12]. Reuse
can occur in different levels: executing simple copy/paste
commands; referencing operations, classes, modules and other
blocks in programming languages; or applying more sophisti-
cated concepts, such as patterns, frameworks, generators and
domain engineering [13].

Patterns are successful solutions that can be reapplied
to different contexts [3]. They provide reuse of experience
helping developers to solve common problems [14]. The
documentation of a pattern mainly contains its name, the
context it can be applied, the problem it is intended to
solve, the solution it proposes, illustrative class models and
examples of use. There are patterns for several purposes, such
as design, analysis, architectural, implementation, process and
organizational patterns [15].

Frameworks act like skeletons that can be instantiated to
implement applications [3]. Their classes embody an abstract
design to provide solutions for domains of applications [9].
Applications are connected to a framework by reusing its
classes. Unlike library classes, whose execution flux is con-
trolled by applications, frameworks control the execution flux
accessing the application-specific code [15]. The fixed parts of
the frameworks, known as frozen spots, implement common
functionality of the domain that is reused by all applications.
The variable parts, known as hot spots, can change according
to the specifications of the desired application [9]. According
to the way they are reused, frameworks can be classified as:
white box, which are reused by class specialization; black box,
which work like a set of components; and gray box, which are
reused by the two previous ways [2].

Generators are tools that transform an artifact into another
[16], [17]. There are many types of generators. The most com-
mon are Model-to-Model (M2M), Model-to-Text (M2T) and
programming language translators [18]. Such as frameworks,
generators are related to domains. However, some generators
are configurable, being able to change their domain [19]. In
this case, templates are used to define the artifacts that can be
generated.

A domain of software consists of a set of applications that
share common features. A feature is a distinguishing char-
acteristic that aggregates value to applications [20]–[22]. For
example, Rental Transaction, Destination Party and Resource
could be features of the domain of rental applications. Different
domain engineering approaches can be found in the literature
[20], [22]–[24]. Although there are differences between them,
their basic idea is to model the features of a domain and
develop the components that implement these features and are
reused in application engineering.

The features of a domain are defined in a feature model, in
which they are arranged in a tree-view notation. They can be
mandatory or optional, have variations and require or exclude
other features. The feature that most represents the purpose
of the domain is put in the root and a top-down approach
is applied to add the other features. For example, the main
purpose of the domain of rental applications is to perform
rentals, so Rental is supposed to be the root feature. The other
features are arranged following it.

Domains can also be modeled with metamodel languages,
which are used to create Domain-Specific Modeling Languages
(DSML). Metamodels, such as defined in the MetaObject
Facility (MOF) [25], are similar to class models, which makes
them more appropriate to developers accustomed to the UML.
While in feature models, only features and their constraints are
defined, metaclasses in the metamodels can contain attributes
and operations. On the other hand, feature models can define
dependencies between features, while metamodels depend on
declarative languages to do it [18]. A generator can be used
along with a DSML to transform models created with this
DSML into code. When these models represent applications,
the generators are called application generators.

III. THE F3 APPROACH

The F3 is a Domain Engineering approach that aims to
develop frameworks for domains of applications. It has two
steps: 1) Domain Modeling, in which framework domain is
determined; and 2) Framework Construction, in which the
framework is designed and implemented according to the
features of its domain.

In Domain Modeling step the domain is defined in a feature
model. However, an extended version of feature model is used
in the F3 approach, because feature models are too abstract to
contain information enough for framework development and
metamodels depend on other languages to define dependencies
and constraints. This extended version, called F3 model, incor-
porates characteristics of both feature models and metamodels.
As in conventional feature models, features in the F3 models
can also be arranged in a tree-view, in which the root feature
is decomposed in other features. However, features in the F3
models do not necessarily form a tree, since a feature can
have a relationship targeting a sibling or even itself, as in
metamodels. The elements and relationships in F3 models are:

• Feature: graphically represented by a rounded square,
it must have a name and it can contain any number of
attributes and operations;

• Decomposition: relationship that indicates that a fea-
ture is composed of another feature. This relationship
specifies a minimum and a maximum multiplicity.
The minimum multiplicity indicates whether the target
feature is optional (0) or mandatory (1). The maximum
multiplicity indicates how many instances of the target
feature can be associated to each instance of the source
feature. The valid values to the maximum multiplicity
are: 1 (simple), for a single feature instance; * (mul-
tiple), for a list of a single feature instance; and **
(variant), for any number of feature instances.

• Generalization: relationship that indicates that a fea-
ture is a variation generalized by another feature.

• Dependency: relationship that defines a condition for
a feature to be instantiated. There are two types of de-
pendency: requires, when the A feature requires the
B feature, an application that contains the A feature
also has to include the B feature; and excludes, when
the A feature excludes the B feature, no application
can include both features.

90

Framework Construction step has as output a white box
framework for the domain defined in the previous step. The F3
approach defines a set of patterns to assist developers to design
and implement frameworks from F3 models. The patterns treat
problems that go from the creation of classes for the features
to the definition of the framework interface. Some of the F3
patterns are presented in Table I.

TABLE I: Some of the F3 patterns.

Pattern Purpose
Domain Feature Indicates structures that should be created for a

feature.

Mandatory Decomposition Indicates code units that should be created when there
is a mandatory decomposition linking two features.

Optional Decomposition Indicates code units that should be created when there
is an optional decomposition linking two features.

Simple Decomposition Indicates code units that should be created when there
is a simple decomposition linking two features.

Multiple Decomposition Indicates code units that should be created when there
is a multiple decomposition linking two features.

Variant Decomposition Indicates code units that should be created when there
is a variant decomposition linking two features.

Variant Feature Defines a class hierarchy for features with variants.

Modular Hierarchy Defines a class hierarchy for features with common
attributes and operations.

Requiring Dependency Indicates code units that should be created when a
feature requires another one.

Excluding Dependency Indicates code units that should be created when a
feature excludes another one.

In addition to indicate the code units that should be created
to implement the framework functionality, the F3 patterns
also determine how the framework can be reused by the
applications. For example, some patterns suggest to include
abstract operations in the classes of the framework that allows
it to access application-specific information. In addition, the
F3 patterns make the development of frameworks systematic,
allowing it to be automatized. Thus, the F3T tool was created
to automatize the use of the F3 approach, enhancing the
processes of framework development.

IV. THE F3T

The F3T assists developers to apply the F3 approach in
the development of white box frameworks and to reuse these
frameworks through their DSMLs. The F3T is a plug-in for the
Eclipse IDE. So developers can make use of the F3T resources,

Fig. 1: Modules of the F3T.

such as domain modeling, framework construction, application
modeling through framework DSML and application construc-
tion, as well the other resources provided by the IDE. The
F3T is composed of three modules, as seen in Figure 1: 1)
Domain Module (DM); 2) Framework Module (FM); and 3)
Application Module (AM).

A. Domain Module

The DM provides a F3 model editor for developers to
define domain features. This module has been developed with
the support of the Eclipse Modeling Framework (EMF) and
the Graphical Modeling Framework (GMF) [18]. The EMF
was used to create a metamodel, in which the elements,
relationships and rules of the F3 models were defined as
described in the Section III. The metamodel of F3 models is
shown in Figure 2. From this metamodel, the EMF generated
the source-code of the Model and the Controller layers of the
F3 model editor.

GMF has been used to define the graphical notation of
the F3 models. This graphical notation also can be seen as the
View layer of the F3 model editor. With the GMF, the graphical
figures and the menu bar of the editor were defined and linked
to the elements and relationships defined in the metamodel of
the F3 models. Then, the GMF generates the source-code of
the graphical notation. The F3 model editor is shown in Figure
3 with an example of F3 model for the domain of trade and
rental transactions.

Fig. 2: Metamodel containing elements, relationships and rules of F3 models.

91

Fig. 3: F3 model for the domain of trade and rental transactions.

B. Framework Module

The FM is a M2T generator that transforms F3 models into
framework source-code and DSML. Despite their graphical
notation, F3 models actually are XML files. It makes them
more accessible to other tools, such as a generator. The FM was
developed with the support of Java Emitter Templates (JET)
in the Eclipse IDE [26].

JET contains a framework that is a generic generator
and a compiler that translate templates into Java files. These
templates are XML files, in which tags are instructions to
generate an output based on information in the input and text
is a fixed content inserted in the output independently of input.
The Java files originated from the JET templates reuse the JET
framework to compose a domain-specific generator. Thus, the
FM depend on the JET plug-in to work.

The templates of the FM are organized in two groups:
one related to framework source-code; and another related to
framework DSML. Both groups are invoked from the main
template of the DM generator. Part of the JET template which
generates Java classes in the framework source-code from the
features found in the F3 models can be seen as follows:

public
<c:if test="($feature/@abstract)">abstract </c:if>
class <c:get select="$feature/@name"/> extends
<c:choose select="$feature/@variation">
<c:when test="’true’">DVariation</c:when>
<c:otherwise> <c:choose>

<c:when test="$feature/dSuperFeature">
<c:get select="$feature/dSuperFeature/@name"/>

</c:when>
<c:otherwise>DObject</c:otherwise> </c:choose>

</c:otherwise>
</c:choose> { ... }

The framework source-code that is generated by the FM is
put in a Java project identified by the domain name and the
suffix “.framework”. Its classes follow the patterns defined by
the F3 approach. For example, the FM generates a class for
each feature found in a F3 model. These classes contain the
attributes and operations defined in its original feature. All gen-
erated classes also, directly or indirectly, extend the DObject
class, which implements non-functional requirements, such as
persistence and logging. Generalization relationships result in
inheritances and decomposition relationships result in asso-
ciations between the involving classes. Additional operations
are included in framework classes to treat feature variations
and constraints of the domains defined in the F3 models. For
example, according to the Variant Decomposition F3 pattern,
the getResourceTypeClasses operation was included in the
code of the Resource class so that the framework can rec-
ognize which classes implement the ResourceType feature in
the applications. Part of the code of the Resource class is
presented as folows:

/** @generated */
public abstract class Resource extends DObject {

/** @generated */
private int id;

/** @generated */
private Sting name;

/** @generated */
private List<ResourceType> types;

/** @generated */
public abstract Class<?>[] getResourceTypeClasses();

Framework DSML is generated as a EMF/GMF project
identified only by the domain name. The FM generates the
EMF/GMF models of the DSML, as seen in Figure 4.a, which
was generated from the F3 model shown in Figure 3. Then,
source-code of the DSML must be generated by using the
generator provided by the EMF/GMF in three steps: 1) using
the EMF generator from the genmodel file (Figure 4.a); 2)
using the GMF generator from the gmfmap file (Figure 4.b);
and 3) using the GMF generator from the gmfgen file (Figure
4.c). After this, the DSML will be composed of 5 plug-in
projects in the Eclipse IDE. The projects that contain the
source-code and the DSML plug-ins of the framework for the
trade and rental transactions domain are shown in Figure 4.d.

Fig. 4: Generation of the DSML plugins.

92

Fig. 5: Application model created with the framework DSML.

C. Application Module

The AM has been also developed with the support of
JET. It generates application source-code from an applica-
tion model based on a framework DSML. The templates of
the AM generate classes that extend framework classes and
override operations that configure framework hot spots. After
the DSML plug-ins are installed in the Eclipse IDE, the
AM recognizes the model files created from the DSML. An
application model created with the DSML of the framework
for the domain of trade and rental transactions is shown in
Figure 5.

Application source-code is generated in the source folder of
the project where the application model is. The AM generates
a class for each feature instantiated in the application model.
Since the framework is white box, the application classes
extend the framework classes indicated by the stereotypes in
the model. It is expected that many class attributes requested by
the application requirements have been defined in the domain.
Thus, these attributes are in the framework source-code and
they must not be defined in the application classes again. Part
of the code of the Product class is presented as follows:

public class Product extends Resource {

/** @generated */
private float value;

/** @generated */
public Class<?>[] getResourceTypeClasses() {

return new Class<?>[] {
Category.class, Manufacturer.class };

}

V. EVALUATION

In this section we present an experiment, in which we
evaluated the use of the F3T to develop frameworks, since the
use of DSMLs to support framework reuse has been evaluated
in a previous paper [10]. The experiment was conducted
following all steps described by Wohlin et al. (2000) and
it can be summarized as: (i) analyse the F3T, described in
Section IV; (ii) for the purpose of evaluation; (iii) with
respect to time spent and number of problems; (iv) from the
point of view of the developer; and (v) in the context of MSc
and PhD Computer Science students.

A. Planning

The experiment has been planned to answer two research
questions:

• RQ1: Does the F3T reduce the effort to develop a
framework?

• RQ2: Does the F3T result in a outcome framework
with a fewer number of problems?

All subjects had to develop two frameworks, both applying
the F3 approach, but one manually and the other with the
support of the F3T. The context of our study corresponds
to multi-test within object study [27], hence the experiment
consisted of experimental tests executed by a group of subjects
to study a single tool. In order to answer the first question, we
measured the time spent to develop each framework. Then,
to answer the second question, we analyzed the frameworks
developed by the subjects, then we identified and classified
the problems found in the source-code. The planning phase
was divided into seven parts, which are described in the next
subsections:

1. Context Selection

26 MSc and PhD students of Computer Science have
participated in the experiment, which has been made in an
off-line situation. All participants had prior experience in soft-
ware development, Java programming, patterns and framework
reuse.

2. Formulation of Hypotheses

The experiment questions have been formalized as follows:

RQ1, Null hypothesis, H0: Considering the F3 approach,
there is no significant difference, in terms of time, between
developing frameworks with the support of F3T and doing it
manually. Thus, the F3T does not reduce the time spent to
develop frameworks. This hypothesis can be formalized as:

H0: μF3T = μmanual

RQ1, Alternative hypothesis, H1: Considering the F3
approach, there is a significant difference, in terms of time,
between developing frameworks with the support of F3T and
doing it manually. Thus, the F3T reduces the time spent to
develop frameworks. This hypothesis can be formalized as:

H1: μF3T �= μmanual

RQ2, Null hypothesis, H0: Considering the F3 approach,
there is no significant difference, in terms of problems found
in the outcome frameworks, between developing frameworks
using the F3T and doing it manually. Thus, the F3T does
not reduce the mistakes made by subjects while they are
developing frameworks. This hypothesis can be formalized as:

H0: μF3T = μmanual

RQ2, Alternative hypothesis, H1: Considering the F3
approach, there is a significant difference, in terms of prob-
lems found in the outcome frameworks, between developing
frameworks using the F3T and doing it manually. Thus, the
F3T reduces the mistakes made by subjects while they are
developing frameworks. This hypothesis can be formalized as:

H1: μF3T �= μmanual

93

3. Variables Selection

The dependent variables of this experiment were:

• time spent to develop a framework;

• number of problems found in the frameworks.

The independent variables were as follows:

• Application: Each subject had to develop two frame-
works: one (Fw1) for the domain of trade and rental
transactions and the other (Fw2) for the domain of au-
tomatic vehicles. Both Fw1 and Fw2 had 10 features.

• Development Environment: Eclipse 4.2.1, Astah
Community 6.4, F3T.

• Technologies: Java version 6.

4. Selection of Subjects

The subjects has been selected through a non probabilist
approach by convenience, so that the probability of all popu-
lation elements belong to the same sample is unknown.

5. Experiment Design

The subjects were carved up in two blocks of 13 subjects:

• Block 1, development of Fw1 manually and develop-
ment of Fw2 with the support of the F3T;

• Block 2, development of Fw2 manually and develop-
ment of Fw1 with the support of the F3T.

We have chosen use block to reduce the effect of the
experience of the students, that was measured through a form
in which the students answered about their level of experience
in software development. This form was given to the subjects
one week before the pilot experiment herein described. The
goal of this pilot experiment was to ensure that the experiment
environment and materials were adequate and the tasks could
be properly executed.

6. Design Types

The design type of this experiment was one factor with
two treatments paired [27]. The factor in this experiment
is the manner how the F3 approach was used to develop a
framework and the treatments are the support of the F3T
against the manual development.

7. Instrumentation

All necessary materials to assist the subjects during the
execution of this experiment were previously devised. These
materials consisted of forms for collecting experiment data, for
instance, time spent to develop the frameworks and a list of the
problems were found in the outcome frameworks developed
by each subject. In the end of the experiment, all subjects
received a questionnaire, in which they should report about
the F3 approach and the F3T.

B. Operation

The operation phase of the experiment was divided into
two parts, Preparation and Execution, as described in the next
subsections:

1. Preparation

Firstly, the subjects received a characterization form, con-
taining questions regarding their knowledge about Java pro-
gramming, Eclipse IDE, patterns and frameworks. Then, the
subjects were introduced to the F3 approach and the F3T.

2. Execution

Initially, the subjects signed a consent form and then
answered a characterization form. After this, they watched a
presentation about frameworks, which included the description
of some known examples and their hot spots. The subjects
were also trained on how to develop frameworks using the F3
approach with or without the support of the F3T.

Following the training, the pilot experiment was executed.
The subjects were split into two groups considering the results
of the characterization forms. Subjects were not told about the
nature of the experiment, but were verbally instructed on the
F3 approach and its tool. The pilot experiment was intended
to simulate the real experiments, except that the applications
were different, but equivalent. Beforehand, all subjects were
given ample time to read about approach and to ask questions
on the experimental process. This could affect the experiment
validity, then, the data from this activity was only used to
balance the groups.

When the subjects understood what their had to do, they
received the description of the domains and started timing the
development of the frameworks. Each subject had to develop
the frameworks applying the F3 approach, i.e., creating its F3
model from a document which describes its domain features
and then applying the F3 patterns to implement it.

C. Analysis of Data

This section presents the experimental findings. The anal-
ysis is divided into two subsections: (1) Descriptive Statistics
and (2) Hypotheses Testing.

1. Descriptive Statistics

The time spent by each subject to develop a framework
and the number of problems found in the outcome frameworks
are shown in Table II. From this table, it can be seen that the
subjects spent more time to develop the frameworks when they
were doing it manually, approximately 72.5% against 27.5%.
This result was expected, since the F3T generates framework
source-code from F3 models. However, it is worth highlighting
that most of the time spent in the manual framework devel-
opment was due to framework implementation and the effort
to fix the problems found in the frameworks, while most of
the time spent in the framework development supported by the
F3T was due to domain modeling. The dispersion of time spent
by the subjects are also represented graphically in a boxplot
on left side of Figure 6.

In Table II it is also possible to visualize four types of
problems that we analyzed in the outcome frameworks: (i)
incoherence, (ii) structure, (iii) bad smells, (iv) interface.

The problem of incoherence indicates that, during the
experiment, the subjects did not model the domain of the
framework as expected. Consequently, the subjects did not
develop the frameworks with the correct domain features and

94

TABLE II: Development timings and number of problems.

constraints (mandatory, optional, and alternative features). As
the capacity to model the framework domains depend more on
the subject skills than on tool support, incoherence problems
could be found in equivalent proportions, approximately 50%,
when the framework was developed either manually or with
the support of the F3T.

The problem of structure indicates that the subjects did
not implement the frameworks properly during the experiment.
For example, they implemented classes with no constructor
and incorrect relationships or when they forgot to declare
the classes as abstract. This kind of problem occurred when
the subjects did not properly follow the instructions provided
by the F3 patterns. In Table II it can be seen that the F3T
helped the subjects to develop frameworks with less structure
problems, i.e., 10% in opposition to 90%.

The problem of bad smells indicates design weaknesses
that do not affect functionality, but make the frameworks
harder to maintain. In the experiment, this kind of problem
occurred when the subjects forgot to apply some F3 patterns
related to the organization of the framework classes, such as
the Modular Hierarchy F3 pattern. By observing Table II we
can remark that the F3T made a design with higher quality
than the manual approach, i.e, 0% against 100%, because the
F3T automatically identified which patterns should be applied
from the F3 models.

The problem of interface indicates absence of getter/setter
operations and the lack of operations that allows the applica-
tions to reuse the framework and so on. Usually, this kind of
problem is a consequence of problems of structure, hence the
number of problems of these two types are quite similar. As it
can be observed in Table II that the F3T helped the subjects to
design a better framework interface than when they developed
the framework manually, i.e., 8.6% against 91.4%.

Fig. 6: Dispersion of the total time and number of problems.

In the last two columns of Table II it can be seen that
the F3T reduced the total number of problems found in the
frameworks developed by the subjects. It is also graphically
represented in the boxplot on right side of Figure 6.

2. Testing the Hypotheses

The objective of this section is to verify, based on the data
obtained in the experiment, whether it is possible to reject
the null hypotheses in favor of the alternative hypotheses.
Since some statistical tests are applicable only if the population
follows a normal distribution, we applied the Shapiro-Wilk test
and created a Q-Q chart to verify whether or not the experiment
data departs from linearity before choosing a proper statistical
test. The tests has been carried out as follows:

1) Time: We have applied the Shapiro-Wilk test on the
experiment data that represents the time spent by

95

Fig. 7: Normality tests.

each subject to develop a framework manually or
using the F3T, as shown in Table II. Considering an α
= 0.05, the p-values are 0.878 and 0.6002 and Ws are
0.9802 and 0.9691, respectively, for each approach.
The test results confirmed that the experiment data
related to the time spent in framework development
is normally distributed, as it can be seen in the Q-Q
charts (a) and (b) in Figure 7. Thus, we decided to
apply the Paired T-Test to these data. Assuming a
Paired T-Test, we can reject H0 if | t0 | > tα/2,n−1.
In this case, tα, f is the upper α percentage point
of the t-distribution with f degrees of freedom.
Therefore, based on the samples, n = 26 and d =
{46,42,52,49,41,49,55,50,53,42,42,52,48,43,45,
42,47,48,44,49,51,48,52,51,48,45}, Sd = 9.95
and t0 = 1.6993. The average values of each data
set are μmanual = 76.42 and μF3T = 28.96. So,
d = 76.42 − 28.96 = 47.46, which implies that
Sd = 3.982 and t0 = 60.7760. The number of degrees
of freedom is f = n− 1 = 26− 1 = 25. We take
α = 0.025. Thus, according to StatSoft1, it can be
seen that t 0.025,25 = 2.05954. Since | t0 | > t0.025,25

it is possible to reject the null hypothesis with
a two sided test at the 0.025 level. Therefore,
statistically, we can assume that, when the F3
approach is applied, the time needed to develop
a framework using F3T is less than doing it manually.

2) Problems: Similarly, we have applied the Shapiro-
Wilk test on the experiment data shown in the last
two columns of Table II, which represent the total
number of problems found in the outcome frame-

1http://www.statsoft.com/textbook/distribution-tables/#t

works that were developed whether manually or using
the F3T. Considering an α = 0.05, the p-values are
0.1522 and 0.007469, and Ws are 0.9423 and 0.8853,
respectively, for each approach. As it can be seen in
the Q-Q charts (c) and (d) in Figure 7, the test results
confirmed that date related to manual development is
normally distributed, but the data related to the F3T
can not be considered as normally distributed. There-
fore we applied a non-parametric test, the Wilcoxon
signed-rank test in these data. The signed rank of
these data are S/R of | tproblemsmanual − tproblemsF3T |
= { +3.5, +7.5, +7.5, +16.5, -3.5, +23, +3.5, +3.5,
+10.5, +10.5, +3.5, +18.5, +10.5, +14, +24, +18.5,
+3.5, +21, +21, +14, +21, +10.5, +14, +16.5}, S/R
stand for “signed rank”. As result we got a p-value =
0.001078 with a significance level of 1%. Based on
these data, we conclude there is considerable differ-
ence between the means of the two treatments. We
were able to reject H0 at 1% significance level. The p-
value is very close to zero, which further emphasizes
that the F3T reduces the number of problems found
in the outcome frameworks.

D. Opinion of the Subjects

We analyzed the opinion of the subjects in order to evaluate
the impact of using the F3T. After the experiment operation, all
subjects received a questionnaire, in which they could report
their perception about applying the F3 approach manually or
with the support of the F3T.

The answers in the questionnaire has been analyzed in
order to identify the difficulties in the use of the F3 approach
and its tool. As it can be seen in Figure 8, when asked if they
encountered difficulties in the development of the frameworks
by applying the F3 approach manually, approximately 52%
of the subjects reported having significant difficulty, 29%
mentioned partial difficulty and 19% had no difficulty. In
contrast, when asked the same question with respect to the
use of the F3T, 73% subjects reported having no difficulty,
16% subjects mentioned partial difficulty and only 11% of all
subjects had significant difficulty.

Fig. 8: Level of difficulty of the subjects.

The reduction of the difficulty to develop the frameworks,
shown in Figure 8, reveals that the F3T assisted the subjects in
this task. The subjects also answered in the questionnaire about
the difficulties they found during framework development. The
most common difficulties pointed out by the subjects when

96

they developed the frameworks manually were: 1) too much
effort spent on coding; 2) mistakes they made due to lack
of attention; 3) lack of experience for developing frameworks;
and 4) time spent identifying the F3 patterns in the F3 models.
In contrast, the most common difficulties faced by the subjects
when they used the F3T were: 1) lack of practice with the tool;
and 2) some actions in the tool interface, for instance, opening
the F3 model editor, take many steps to be executed. The
subjects said that the F3 patterns helped them to identify which
structures were necessary to implement the frameworks in the
manual development. They also said the F3T automatized the
tasks of identifying which F3 patterns should be used and of
implementing the framework source-code. Then, they could
keep their focus on domain modeling.

E. Threats to Validity

Internal Validity:

• Experience level of the subjects: the subjects had
different levels of knowledge and it could affect the
collected data. To mitigate this threat, we divided the
subjects in two balanced blocks considering their level
knowledge and rebalanced the groups considering the
preliminary results. Moreover, all subjects had prior
experience in application development reusing frame-
works, but not for developing frameworks. Thus, the
subjects were trained in common framework imple-
mentation techniques and how to use the F3 approach
and the F3T.

• Productivity under evaluation: there was a possibil-
ity that this might influence the experiment results
because subjects often tend to think they are being
evaluated by experiment results. In order to mitigate
this, we explained to the subjects that no one was
being evaluated and their participation was considered
anonymous.

• Facilities used during the study: different computers
and installations could affect the recorded timings.
Thus, the subjects used the same hardware configu-
ration and operating system.

Validity by Construction:

• Hypothesis expectations: the subjects already knew the
researchers and knew that the F3T was supposed to
ease framework development, which reflects one of
our hypothesis. These issues could affect the collected
data and cause the experiment to be less impartial.
In order to keep impartiality, we enforced that the
participants had to keep a steady pace during the
whole study.

External Validity:

• Interaction between configuration and treatment: it is
possible that the exercises performed in the experiment
are not accurate for every framework development
for real world applications. Only two frameworks
were developed and they had the same complexity.
To mitigate this threat, the exercises were designed
considering framework domains based on the real
world.

Conclusion Validity:

• Measure reliability: it refers to metrics used to mea-
suring the development effort. To mitigate this threat,
we used only the time spent which was captured in
forms fulfilled by the subjects;

• Low statistic power: the ability of a statistic test in
reveal reliable data. To mitigate this threat, we applied
two tests: T-Tests to statistically analyze the time spent
to develop the frameworks and Wilcoxon signed-rank
test to statistically analyze the number of problems
found in the outcome frameworks.

VI. RELATED WORKS

In this section some works related to the F3T and the F3
approach are presented.

Amatriain and Arumi [28] proposed a method for the
development of a framework and its DSL through iterative and
incremental activities. In this method, the framework has its
domain defined from a set of applications and it is implemented
by applying a series of refactorings in the source-code of these
applications. The advantage of this method is a small initial
investment and the reuse of the applications. Although it is not
mandatory, the F3 approach can also be applied in iterative
and incremental activities, starting from a small domain and
then adding features. Applications can also be used to facilitate
the identification of the features of the framework domain.
However, the advantage of the F3 approach is the fact that
the design and the implementation of the frameworks are
supported by the F3 patterns and it is automatized by the F3T.

Oliveira et al. [29] presented the ReuseTool, which assists
framework reuse by manipulating UML diagrams. The Reuse-
Tool is based in the Reuse Description Language (RDL), a
language created by these authors to facilitate the description
of framework instantiation processes. Framework hot spots
can be registered in the ReuseTool with the use of the RDL.
In order to instantiate the framework, application models can
be created based on the framework description. Application
source-code is generated from these models. Thus, the RDL
works as a meta language that registers framework hot spots
and the ReuseTool provides a more friendly interface for
developers to develop applications reusing the frameworks. In
comparison, the F3T supports framework development through
domain modeling and application development through frame-
work DSML.

Pure::variants [30] is a tool that supports the develop-
ment of applications by modeling domain features (Feature
Diagram) and the components that implement these features
(Family Diagram). Then the applications are developed by se-
lecting a set of features of the domain. Pure::variants generates
only application source-code, maintaining all domain artifacts
in model-level. Besides, this tool has private license and its
free version (Community) has limitations in its functionality.
In comparison, the F3T is free, uses only one type of domain
model (F3 model) and generates frameworks as domain arti-
facts. Moreover, the frameworks developed with he support of
the F3T can be reused in the development of applications with
or without the support of the F3T.

97

VII. CONCLUSIONS

The F3T support framework development and reuse
through code generating from models. This tool provides an
F3 model editor for developers to define the features of the
framework domain. Then, framework source-code and DSML
can be generated from the F3 models. Framework DSML
can be installed in the F3T to allow developers to model
and to generate the source-code of applications that reuses
the framework. The F3T is a free software available at:
http://www.dc.ufscar.br/∼matheus viana.

The F3T was created to semi-automatize the applying
of the F3 approach. In this approach, domain features are
defined in F3 models in order to separate the elements of the
framework from the complexities to develop them. F3 models
incorporate elements and relationships from feature models
and properties and operations from metamodels.

Framework source-code is generated based on patterns that
are solutions to design and implement domain features defined
in F3 models. A DSML is generated along with the source-
code and includes all features of the framework domain and
in the models created with it developers can insert application
specifications to configure framework hot spots. Thus, the
F3T supports both Domain Engineering and Application En-
gineering, improving their productivity and the quality of the
outcome frameworks and applications. The F3T can be used
to help the construction of software product lines, providing
an environment to model domains and create frameworks to
be used as core assets for application development.

The experiment presented in this paper has shown that,
besides the gain of efficiency, the F3T reduces the complexities
surrounding framework development, because, by using this
tool, developers are more concerned about defining framework
features in a graphical model. All code units that compose
these features, provide flexibility to the framework and allows
it to be instantiated in several applications are properly gener-
ated by the F3T.

The current version of the F3T generates only the model
layer of the frameworks and applications. In future works we
intend to include the generation of a complete multi-portable
Model-View-Controller architecture.

ACKNOWLEDGMENT

The authors would like to thank CAPES and FAPESP for
sponsoring our research.

REFERENCES

[1] V. Stanojevic, S. Vlajic, M. Milic, and M. Ognjanovic. Guidelines for
Framework Development Process. In 7th Central and Eastern European
Software Engineering Conference, pages 1–9, Nov 2011.

[2] M. Abi-Antoun. Making Frameworks Work: a Project Retrospective. In
ACM SIGPLAN Conference on Object-Oriented Programming Systems
and Applications, 2007.

[3] R. E. Johnson. Frameworks = (Components + Patterns). Communica-
tions of ACM, 40(10):39–42, Oct 1997.

[4] JBoss Community. Hibernate. http://www.hibernate.org, Jan 2013.

[5] Spring Source Community. Spring Framework.
http://www.springsource.org/spring-framework, Jan 2013.

[6] S. D. Kim, S. H. Chang, and C. W. Chang. A Systematic Method
to Instantiate Core Assets in Product Line Engineering. In 11th Asia-
Pacific Conference on Software Engineering, pages 92–98, Nov 2004.

[7] David M. Weiss and Chi Tau Robert Lai. Software Product Line
Engineering: A Family-Based Software Development Process. Addison-
Wesley, 1999.

[8] D. Parsons, A. Rashid, A. Speck, and A. Telea. A Framework for
Object Oriented Frameworks Design. In Technology of Object-Oriented
Languages and Systems, pages 141–151, Jul 1999.

[9] S. Srinivasan. Design Patterns in Object-Oriented Frameworks. ACM
Computer, 32(2):24–32, Feb 1999.

[10] M. Viana, R. Penteado, and A. do Prado. Generating Applications:
Framework Reuse Supported by Domain-Specific Modeling Languages.
In 14th International Conference on Enterprise Information Systems,
Jun 2012.

[11] M. Viana, R. Durelli, R. Penteado, and A. do Prado. F3: From
Features to Frameworks. In 15th International Conference on Enterprise
Information Systems, Jul 2013.

[12] Sajjan G. Shiva and Lubna Abou Shala. Software Reuse: Research
and Practice. In Fourth International Conference on Information
Technology, pages 603–609, Apr 2007.

[13] W. Frakes and K. Kang. Software Reuse Research: Status and Future.
IEEE Transactions on Software Engineering, 31(7):529–536, Jul 2005.

[14] M. Fowler. Patterns. IEEE Software, 20(2):56–57, 2003.

[15] R. S. Pressman. Software Engineering: A Practitioner’s Approach.
McGraw-Hill Science, 7th edition, 2009.

[16] A. Sarasa-Cabezuelo, B. Temprado-Battad, D. Rodrguez-Cerezo, and
J. L. Sierra. Building XML-Driven Application Generators with
Compiler Construction. Computer Science and Information Systems,
9(2):485–504, 2012.

[17] S. Lolong and A.I. Kistijantoro. Domain Specific Language (DSL)
Development for Desktop-Based Database Application Generator. In
International Conference on Electrical Engineering and Informatics
(ICEEI), pages 1–6, Jul 2011.

[18] R. C. Gronback. Eclipse Modeling Project: A Domain-Specific Lan-
guage (DSL) Toolkit. Addison-Wesley, 2009.

[19] I. Liem and Y. Nugroho. An Application Generator Framelet. In
9th International Conference on Software Engineering, Artificial Intel-
ligence, Networking, and Parallel/Distributed Computing (SNPD’08),
pages 794–799, Aug 2008.

[20] J. M. Jezequel. Model-Driven Engineering for Software Product Lines.
ISRN Software Engineering, 2012, 2012.

[21] K. Lee, K. C. Kang, and J. Lee. Concepts and Guidelines of Feature
Modeling for Product Line Software Engineering. In 7th International
Conference on Software Reuse: Methods, Techniques and Tools, pages
62–77, London, UK, 2002. Springer-Verlag.

[22] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-Oriented Domain Analysis (FODA): Feasibility Study. Techni-
cal report, Carnegie-Mellon University Software Engineering Institute,
Nov 1990.

[23] H. Gomaa. Designing Software Product Lines with UML: From Use
Cases to Pattern-Based Software Architectures. Addison-Wesley, 2004.

[24] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid,
T. Widen, and J. DeBaud. PuLSE: a Methodology to Develop Software
Product Lines. In Symposium on Software Reusability, pages 122–131.
ACM, 1999.

[25] OMG. OMG’s MetaObject Facility. http://www.omg.org/mof, Jan 2013.

[26] The Eclipse Foundation. Eclipse Modeling Project, Jan 2013.

[27] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén. Experimentation in Software Engineering: an Introduction.
Kluwer Academic Publishers, Norwell, MA, USA, 2000.

[28] X. Amatriain and P. Arumi. Frameworks Generate Domain-Specific
Languages: A Case Study in the Multimedia Domain. IEEE Transac-
tions on Software Engineering, 37(4):544–558, Jul-Aug 2011.

[29] T. C. Oliveira, P. Alencar, and D. Cowan. Design Patterns in Object-
Oriented Frameworks. ReuseTool: An Extensible Tool Support for
Object-Oriented Framework Reuse, 84(12):2234–2252, Dec 2011.

[30] Pure Systems. Pure::Variants. http://www.pure-
systems.com/pure variants.49.0.html, Fev 2013.

98

