
Content-based Navigation within Mathematical Formulae on
the Web for Blind Users and its Impact on Expected User Effort
Luiz Felipe da Paixão Silva, Antonio Armando de Oliveira Barbosa, Evelise Roman Corbalan Gois

Freire, Paula Christina Figueira Cardoso, Rafael Serapilha Durelli, André Pimenta Freire
Federal University of Lavras

Lavras, MG, Brazil
luizfelipe_p@hotmail.com,barbosaneto23@hotmail.com,evelise.freire@dex.ufla.br,\protect\T1\textbraceleftpaula.

cardoso,rafael.durelli,apfreire\protect\T1\textbraceright@dcc.ufla.br

ABSTRACT
Learning Mathematics presents many challenges for blind students.
The support for reading and navigating within web-based mathe-
matical content is still limited in screen reader software, specially
for languages such as Brazilian Portuguese. Lengthy and complex
formulae, in particular, may demand significant effort from users
who navigate only by keyboard and with linear feedback sound.
Current screen readers provide limited support with semantic nav-
igation based on content type. In this paper, we present a study
involving the implementation of an initial prototype screen reader
as proof-of-concept based on ChromeVox, aggregating new features
for direct navigation with semantic mathematical elements, such
as fractions, radicals and summation indexes. We also performed
a study on the expected user effort of this approach, comparing
it with the resources provided by other existing screen readers,
namely JAWS, NVDA (Non-Visual Desktop Access). The estimation
was performed using task models based on GOMS (Goals, Oper-
ators, Methods and Selection Rules) and KLM (Key-Level Model).
The results showed that it is feasible to implement forms of naviga-
tion based on problem solving, because according to task models
there was an expressive reduction in the estimated time to complete
tasks.

CCS CONCEPTS
• Human-centered computing → Accessibility design and
evaluation methods;

KEYWORDS
Screen reader navigation, Mathematics, Task models

ACM Reference Format:
Luiz Felipe da Paixão Silva, Antonio Armando de Oliveira Barbosa, Evelise
Roman Corbalan Gois Freire, Paula Christina Figueira Cardoso, Rafael Ser-
apilha Durelli, André Pimenta Freire. 2018. Content-based Navigationwithin

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DSAI’18, June 2018, Thessaloniki, Greece
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

Mathematical Formulae on the Web for Blind Users and its Impact on Ex-
pected User Effort. In Proceedings of 8th International Conference on Soft-
ware Development and Technologies for Enhancing Accessibility and Fight-
ing Info-exclusion (DSAI’18). ACM, New York, NY, USA, Article 4, 8 pages.
https://doi.org/10.475/123_4

1 INTRODUCTION
Assistive technologies are an essential resource people with visual
disabilities to have appropriate access to education,e specially in
fields such as Mathematics and Sciences. Technologies to aid learn-
ing of such contents should provide appropriate means to help
perform complex tasks, which are inherent of such areas.

Certain difficulties can be be even more pronounced in the case
of mathematical problems, particularly those involving algebraic
notation. The complexity of mathematical problems can be more
difficult for blind users than for sighted users due to the use of visual
symbols in algebraic structures, which is per se very challenging
to students in general. The lack of appropriate technologies to help
read and learn mathematical content can pose serious challenges
to blind students in Mathematics classes.

Whilst sighted students solve mathematical problems by means
of written language, and by blind students using of Braille or spoken
text. However, reading mathematical content in Braille can limit the
experience of blind users with mathematical content. This is mainly
due to fewer possibilities to “navigate” between lines, besides the
need to memorize terms and partial results [6]. For this reason, the
use of screen reader software with speech synthesis, commonly
used for using general-purpose computer software, can have more
possibilities to blind users.

Although previous studies have presented specialized stand-
alonemathematical reading software for blind users, such as Lambda
[5] and rules formathematical reading in English such asMathSpeak®
[8], the availability of embedded features to read mathematical con-
tent is very recent in screen readers, particularly those distributed in
Brazil, such commercial software JAWS1, and free software systems
NVDA2 and ChromeVox3. Although those screen readers are able
to read general-purpose text in Brazilian Portuguese, to date, none
of them provides support for reading Maths content in Portuguese.

Considering that screen reader software synthesizes speech in
a sequence, it is very important that blind users are able to use
1JAWS - Available at http://www.freedomscientific.com/, Maths support since version
16, in 2014
2NVDA - Non-visual Desktop Access - Available at http://www.nvaccess.com, Maths
support since 2015, integrating the external plug-in MathPlayer [11, 12]
3ChromeVox - Available at http://www.ChromeVox.com, Maths support since 2014
[13]

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

DSAI’18, June 2018, Thessaloniki, Greece
Luiz Felipe da Paixão Silva, Antonio Armando de Oliveira Barbosa, Evelise Roman Corbalan Gois Freire, Paula Christina Figueira Cardoso,

Rafael Serapilha Durelli, André Pimenta Freire

features to speed up their navigation to reach the content. On web
sites, for example, users frequently use navigation by reading the
headings of a page first, and then reading into detail the content they
expect to bemost relevant. According to the latest survey performed
by the organization Web Accessibility in Mind (WebAIM) in 2017
[16], more than 67% of the 1792 screen-reader users surveyed in
this study use this technique when navigating in long pages. Screen
readers also support navigation to reach other elements based on
their semantics, such as lists, paragraphs, images, forms, and others.

However, none of the screen readers with support to reading
Mathematical content currently provides similar features to nav-
igate within complex Mathematical formulae based on semantic
mark-up of their elements, in a similar fashion to what occurs on
web pages. Thus, there is little known about how such strategies
could help improve the expected user effort to read such formulae
if such resources were available.

In a previous study performed by some of the authors [7] of
this paper, we performed a comparison of screen readers with
mathematical reading available in terms of the expected effort from
users on tasks with the navigation strategies offered by them.

In the present paper, we report on the implementation of a proof-
of-concept prototype with traditional formulae navigation features
available on existing screen readers, and a selection of new features
to allow navigation based on mathematical semantical elements
and special internal elements, such as indices, parts of fractions
and other structures, using MathML (Mathematical Markup Lan-
guage). The implementations were based on the open-source soft-
ware Chromevox. Following this implementation, we analyzed task
models using functions as well as additional functions to the open
source software ChromeVox and to compare with the performance
of the others using task models GOMS (Goals, Operators, Meth-
ods and Selection Rules) and KLM (Key-Level Model) to compare
the expected user effort in best conditions, using the implemented
features, and navigation using the existing approaches.

This remainder of this paper is organized as follows. Section
2 presents the theoretical background, with the basic concepts
and related work. Section 3 details the methods, with information
regarding the tools and techniques used. In Section 4, we present
the results obtained and discussion. Finally, Section 5 presents
conclusions and future work.

2 THEORETICAL BACKGROUND
2.1 Mathematical Markup Language
MathML (Mathematical Markup Language) [3] is a language based
on XML (eXtensible Markup Language) for the markup of mathe-
matical content. MathML is also composed of tags, and represents
data in a well-structured manner. MathML has two main strands of
notations: MathML presentation and MathML content.

MathML presentation is used to describe the structure of math-
ematical expressions, with focus on the way it is rendered on the
user’s screen. To represent mathematical expressions visually we
use some elements such as: (1) <mi> - identifier, (2) <mn> - num-
ber, (3) <mo> - operator, fence, or separator, (4) <mtext> - text,
(5) <mspace> - space, (6) <ms> - string literal.

Other presentation elements are called layout schemata. These
elements only contain other elements as content and are not to-
ken elements. We listed a selection of examples of such layout
elements as follows: (1) <mrow> - groups any number of sub-
expressions horizontally, (2) <mfrac> - composes a fraction from
two sub-expressions, (3) <msqrt> - composes a square root (radical
without an index), (4) <mroot> - composes a radical with specified
index, (5) <mfenced> - surrounds content with a pair of fences,
(6) <menclose> - encloses content with a stretching symbol such
as a long division sign, (7) <msub> - attaches a subscript to a
base, (8) <msup> - attaches a superscript to a base, (9) <msubsup>
- attaches a subscript-superscript pair to a base, (10) <munder>
- attaches an underscript to a base, (11) <mover> - attaches an
overscript to a base, (12) <munderover> - attaches an underscript-
overscript pair to a base.

The other strand ofMathML specification is called contentMathML,
which focuses on the semantics or meaning instead of the expres-
sion layout, i.e., tags are used that denote operations and how they
should be applied. Content MathML contains a tag called “apply”,
where the first tag inside it is the function that will be applied and
the other tags are the parameters and operators.

In addition to these tags, there are many others available in the
specification [3]. Having access to these tags, it is possible to devise
navigation techniques to make it possible for blind users reach
specific content, such as the numerator of a fraction, as sighted
users do when solving exercises.

2.2 Task modelling and KLM
Task modeling is defined as a step-by-step description of tasks that
must be fulfilled by a user in order to achieve some objective. Task
models can be used to create interfaces, and also to to analyze and
evaluate the interactivity of applications [1].

Over the years, several approaches to task models have been
developed. One of the most widely used methods in the literature is
GOMS, defined by its authors as “a set of Goals, a set of Operators,
a set of Methods for achieving the goals, and a set of Selections
rules for choosing among competing methods for goals” [2], and
how to use operators, methods and selection rules.

For this study, we used the model Keystroke-Level Model or
simply KLM [2] in conjunction with GOMS. KLM uses only the
pressed keys, mouse movements, and mouse keys as a way of
evaluating and analyzing a task in terms of observable actions, as
well as mental operators and waiting times. The goal of using KLM
is to have an estimate of the expected time and effort that users
would have in a task.

2.3 Related Work
In an earlier study, Stoeger et al. [14] investigated requirements to
make navigation and reading of mathematical content possible to
blind students. Among themain results, that paper listed issues with
the inaccessibility of digital content and how screen readers and
other technologies should be provide further features to overcome
those difficulties.

Regarding the use of task models, we encountered few reports in
the literature concerning the use of assistive technologies by blind

Content-based Navigation within Mathematical Formulae on the Web for Blind Users DSAI’18, June 2018, Thessaloniki, Greece

users on the Web. The main studies encountered in this respect are
described as follows.

Schrepp and Fischer [10] performed a study on the accessibility
of pages with higher number of interactive elements. To this end,
they used a GOMS model derive estimations of the time that a user
would take to perform a task in applications in which keyboard
and mouse are used with high frequency. The authors concluded
that by using average values estimated by GOMS, it was possible
to have an initial estimation to evaluate different interfaces.

In another older study, Edwards [4] verified if it was possible
to adapt the visual interfaces of an application built with WIMP
(Windows, icons, menus and pointers) to an auditory form that
could be used by blind people. For that, he adapted a piece of WIMP
software to create a word processor called soundtrack. With an
analysis of the number of keystrokes and time-on-task, that paper
concluded that the development of assistive technologies for blind
people at the time had many challenges related to the complexity
of interaction.

In another study, Trewin et al. [15] investigated the need for a
reliable prediction of effort on tasks by means of keyboard-level
modelling for an efficient analysis of the accessibility of screen
readers for disabled users. They developed a tool developed that en-
abled modelling of screen reading interaction approaches, as well as
exploring action sequences and the interaction of less experienced
users, not so common in task model approaches.

According to Schrepp [9], an efficient keyboard access to Web
sites is highly important for many groups of disabled users. In their
study, the authors evaluated a number of web sites, in order to show
the main challenges encountered by users with visual disabilities,
who use keyboard-only navigation to access the content of Web
sites. For this, GOMS modelling was used to obtain quantitative
values of keyboard navigation performance. The paper pointed out
the main design errors that jeopardize navigation on keyboard.

3 METHOD
3.1 Study design
The present paper involved the implementation of a proof-of-concept
prototype based on the open-source software ChromeVox. The new
version was called ChromeVox - NavMatBR, following the acronym
of the main overarching research project in which it was developed.
The prototype included new keyboard commands to access specific
elements of three mathematical structures: fractions, summations
and radicals.

Following the implementation, in order to compare the effort
estimation for blind users when browsing web-based formulae, we
selected three expressions using the three selected structures in the
proof-of-concept, in which users would need to identify parts of
specific expressions.

Following this, task models were created considered a best-case
scenario in which blind users would have full command of their
screen readers and would have well-developed abilities to identify
parts of expressions. This way, the models portrayed an estimation
of the minimum effort that would be required using the resources
available in the screens readers analyzed. Although we recognize
that this does not represent what would be done by all blind users,
this model with the best-case scenario represents the complexity

Figure 1: Character navigation using ChromeVox

of the tasks in terms of the way the resources available were imple-
mented.

The models were created considering the commands for key-
board navigation within mathematical formulae available in JAWS,
ChromeVox, NVDA, and the new prototypf ChromeVox - Nav-
MatBR.

From the task models, we were able to perform analyses of
the expected effort in the different screen readers and navigation
approaches.

3.2 Existing screen readers analyzed
For this study, three screen readers were used to compare with the
implementation of the proof-of-concept prototype of ChromeVox -
NavMatBR, described as follows.

ChromeVox version 53.0.2784.5: this screen reader is an open-
source plugin freely available via the Chrome browser, and can
be used in multiple platforms. Being open source, it allowed for
the modifications carried out in the proof-of-concept prototype
described in this paper.

ChromeVox allows users to edit their command keys for any
type of action, and by default some commands are defined with the
addition of other keys. For the evaluation of the screen reader only
some basic commands were used, considering the default settings:

• TAB key - goes to the next focusable item.
• ChromeVox command - standard command key to start com-
mands, being the combination of the Shift + Alt keys by
default.

• ChromeVox command + N >M - Go to the next mathematical
expression found on the page.

• ChromeVox command + equal - increases the granularity, i.e.
causes the focus on the expression to be changed by levels
such as the characters, for example.

• ChromeVox key + down arrow - navigates forward or to the
next element.

The main features provided by the original ChromeVox version
aimed to allow reaching mathematical elements and reading char-
acters within the mathematical formula. Figure 1 shows an example
of reading in a higher level of granularity. Although the software
the option of changing granularity, this feature was not used in the
task models due to the difficulty of identifying operators that are
not read by the reader. One limitation of the screen reader is that it
only works within the Chrome browser environment

TheNon-visualDesktopAccess (NVDA) 2016.4 is a free screen
reader, compatible with theWindows operating system. NVDA also
has a series of commands, and allows for powerful resources to
navigate in Web elements, such as navigating across headings, para-
graphs, links, and others. However, for the particular case of this
analysis, only basic commands to access mathematical elements
are available. Mathematical reading in NVDA is done by access to
an external plug-in, MathPlayer, and NVDA has no control over
the navigation within formulae, which is done by the plug-in. In

DSAI’18, June 2018, Thessaloniki, Greece
Luiz Felipe da Paixão Silva, Antonio Armando de Oliveira Barbosa, Evelise Roman Corbalan Gois Freire, Paula Christina Figueira Cardoso,

Rafael Serapilha Durelli, André Pimenta Freire

Figure 2: Tree and the levels where the JAWS reads the par-
tial expressions

order to re-read a part of a formula, it is necessary to return to
its beginning and read it all over again. Following are some basic
commands from NVDA used in the task analysis in this research:

• NVDA key - Insert of the numerical keypad, Extended Insert
or the Caps Lock key can be used as your modifier keys.

• NVDA + tab - focuses on the current item.
• Down arrow - moves to next element on page.
• Up arrow - returns to previous element on page.

Although NVDA is a powerful and widely used software, in the
case of mathematical content it does not provide support or means
for internal navigation.

The Job Access With Speech (JAWS) version 17.0 is cur-
rently the most popular screen reader worldwide [16], is a com-
mercial software, and is compatible with the Windows operating
system. The screen reader presents relevant features compared to
its competitors regarding reading of mathematical content on Web-
sites. JAWS also has a number of commands to explore different
parts of Web pages. However, in this paper, we focused on the com-
mands used to reach a formula within a page and on the commands
used to navigate within formulae, shown as follows:

• Down arrow - focuses to the next page element.
• Enter key - open the mathematical formula viewer when
finding an expression.

• Right arrow - read the next character of the word where the
system focus is, also used to navigate within the mathemati-
cal formulas viewer.

Among all readers, JAWS provides the most advanced support
to mathematical content. The software allows users to navigate
within mathematical formulae, so that it becomes a mathematical
expression in a tree, as shown in Figure 2. we can also see in the
image that the arrows indicate the reading stream of expressions.

3.3 ChromeVox-NavMatBR
The implementation of the initial proof-of-concept prototype of
ChromeVox-NavMatBR was based on the available screen readers
cited in the previous section, especially the more advanced features
of tree navigation in JAWS.

Further to the previously existing features, the prototype imple-
mented a selection of navigation techniques to traverse parts of
algebraic expressions.

Thus, new features were added to implementation of ChromeVox
to assess the performance of the modified software. By doing this
analysis, we hoped to help guide new future of navigation in for-
mulae. One of the functionalities implemented was a search for
fractions within an expression, identification of lower and upper

limits in summation and navigating withing the parts of a radical,
as well as the internal navigation in algebraic expressions similar
to JAWS’s tree view (but without the visualization).

3.4 ChromeVox-NavMatBR implementation
ChromeVox-NavMatBRwas implemented based on the open-source
implementation of ChromeVox, described in Section 3.2.

In total five new features have been implemented. Most of the
commands used are subject to change. For navigation within parts
of the formulae, only the activation and deactivation keys can be
modified, the other keys in this case, the directional arrows on
the keyboard will not be able to to be modified, since for a better
performance the smaller number of keys pressed to perform a
function is ideal.

The internal parts navigation commands are defined as:
• Enable split enter + shift navigation.
• Exit the internal navigation escape key.
• Navigate right inside the expression right key.
• Navigate left inside the expression left key.
• Navigate to a level above the up key expression.
• Navigate to a level below the expression key down.

To find fractions within the mathematical expressions, the fol-
lowing fraction command was created with the following keys:

• Cvox + N>D to go to the next fraction.
• Cvox + P>D to go to the previous fraction.

Similarly to the feature that finds fractions in a mathematical ex-
pression, an extra functionality was implemented to find the limits
of an existing summation in the expression. We also implemented a
feature to find the next and previous summation on the page, using
the commands defined as Cvox + N> S to go to the next found sum
and Cvox + P> S to go to the previous summation.

Another functionality implemented was the numerator and de-
nominator identification. This functionality was implemented as
follows: when the numerator or denominator identification com-
mand is pressed and the navigation focus is in a Mathml tag called
mfrac, we update the focus to the first child of mfrac that will be
the numerator or denominator, the definition of which tag will be
focused will depend exclusively on the user’s desire. The commands
defined to identify the numerator and denominator are respectively
shitf + N and shitf + D.

A last command was implemented that has the objective of
finding the roots in an equation, the command defined for this
function was Cvox + N> R to search the next root and Cvox + P> R
to return to a previously found root.

In Table 1, we can see all commands implemented.

3.5 Task modelling
In order to analyze and evaluate the expected effort demanded from
people with visual disabilities to identify parts or even solve mathe-
matical expressions, we used the two predictive models GOMS and
KLM.GOMS was used to model the goals and actions of the users that
should be taken to perform simple tasks in the expressions chosen
for testing. The proposed tasks were:

(1) Verify if the expression has any numerator whose value is
fifteen. This task was applied to the expression

Content-based Navigation within Mathematical Formulae on the Web for Blind Users DSAI’18, June 2018, Thessaloniki, Greece

Table 1: All commands implemented in ChromeVox-
NavMatBR

Commands Functionalities
Shift + enter Enable internal navigation
Esc Disable internal navigation
Rigth arrow Navigate to the right side of the expression
Left arrow Navigate to the left side of the expression
Up arrow Navigate one level above the expression
Down arrow Navigate one level below the expression
Cvox + N >D Go to the next fraction
Cvox + P >D Go to the previous fraction
Cvox + N >S Go to the next summation
Cvox + P >S Go to the previous summation
Shift + N Go to the numerator of the expression
Shift + D Go to the denominator of the expression
Cvox + N >R Go to the next root of the expression
Cvox + P >R Go to the previous root of the expression

2x × −1/16 + −52 = 24 15/16 (1)

(2) Verify the upper limit in the summation
3∑

m=1

m∑
n=1

sin(xm + yn) (2)

(3) Verify the index of the second root in the expression

A =
√
122 + 3√125 (3)

For the first task, users would have to find the mathematical
formula in a Web page, and after that they should find the fraction
in the formula and verify if the numerator was fifteen.

In the second task, users would have to find the formula on the
page and find the second summation. Then, they would have to
check the value of the upper bound.

For the last task, the user would have to find the formula he
wants on the web page and check its second root’s index.

We considered that after each keyboard operation, blind users
would have to perform a mental operation to assess whether the
content they had listened to was relevant to their task.

For the planning of the tasks, we defined the use of three ex-
pression being 1 and 2 in written MathML (Mathematical Markup
Language) [3]. As an example, the MathML code for Expression 1
is presented in Listing 1.

It is important to highlight that, in order to use predictive models
such as GOMS, the models will be limited to conditions in which
users already know what the tasks are, what they have to do and
also that they would have previous knowledge about Mathematics,
in this particular case.

Finally, the KLMmodel was used to estimate the time required by
users to complete the selected tasks. In this work, only the operators
K (keystroke), M (mental operation) and W (waiting for system
response) were used. Considering that the models were targeted
at blind users, only keyboard operations would be used as input
methods to perform the defined tasks.

3.6 Data analysis
The task models and analyses presented in this paper were per-
formed following the same method performed in the comparison
carried out in a previous study from the authors’ research group
[7], now including new tasks and the new implemented proof-of-
concept prototype with new navigation strategies. The tasks to be

analyzed encompassed the steps to navigate a Web page, find an
expression and obtain information from the expression by means
of the terms analyzed. Given the tasks and their actions, we used
KLM to evaluate each task according to the number of operations
that needed to be carried out.

Listing 1: MathML code for expression 1
<math xmlns="http ://www.w3.org /1998/ Math/MathML" >

<mn >2</mn> <mo >&# x2062;</mo > <mi>x</mi>

<mo >×</mo> <mo >-</mo>

<mfrac >

<mrow > <mi >1</mi ></mrow >

<mn >16</mn>

</mfrac >

<mo >+</mo>

<msup >

<mrow > <mo >&# x2212;</mo> <mn >5</mn> </mrow >

<mn >2</mn>

</msup >

<mo >=</mo> <mn >24</mn> <mo >&# x2064;</mo>

<mfrac >

<mn >15</mn>

<mn >16</mn>

</mfrac >

</math >Unfortunately, we could not find previous research with refer-
ence values for times taken by blind users to perform tasks using
screen readers. Were are aware that the time taken by blind users
can be considerably longer than for sighted users. However, in order
to have some means of comparing the values numerically, we used
the reference values for KLM operations defined by Card et al. [1].

The execution time of a task was the sum of the time of all the
operators involved to complete the task. From that estimation we
calculated the sum of all the operators used, being K (keystroke),
M (mental operation) and W (wait for system response).

The W operator was used mainly for cases in which users would
wait until the screen reader finished reading a word. We used the
value of 1 second per word as an average estimation. This is partic-
ularly important in the consideration of such tasks in comparison
to the interaction by sighted users, as listening to spoken content
takes a considerable time for blind users.

Two models of a GOMS with time analyses using KLM were
used for each screen reader. By obtaining the total time for each
task using the reference values presented by Card et al. [1], the time
on each task was compared between the screen readers used.

As previously mentioned, the values do not reflect the actual
time that blind users would take on tasks, but were important to
enable comparisons in terms of the proportion of time difference
for the navigation tasks between the evaluated screen readers.

4 RESULTS AND DISCUSSION
4.1 Task models
The tasks were modelled using the CMN-GOMS (Card, Moran and
Newell GOMS), with a structure that represents a pseudo-code of
the realized tasks. This was the original version of the GOMS model
proposed by Card, Moran and Newell [2]. Twelve task models were
created.

In Listing 2, we show the GOMS model for Task 1 (to verify if
the expression has any numerator whose value is fifteen) applied
on expression 1 using the screen reader ChromeVox. The total
estimated number of operations on Task 1 on ChromeVox was 16
K, 25 M and 73 W, being 16 keystrokes, 25 mental operations and
waiting for reading 73 words.

DSAI’18, June 2018, Thessaloniki, Greece
Luiz Felipe da Paixão Silva, Antonio Armando de Oliveira Barbosa, Evelise Roman Corbalan Gois Freire, Paula Christina Figueira Cardoso,

Rafael Serapilha Durelli, André Pimenta Freire

Listing 2: GOMS model for Task 1 using ChromeVox
GOAL:VERIFY IF THE EXPRESSION HAS ANY NUMERATOR WHOSE VALUE

IS FIFTEEN

. . GOAL: FIND THE DESIRED EXPRESSION

. . .PRESS SHIFT + ALT + N> M 4K + w(30) + 1M

. . .PRESS SHIFT + ALT + N> M 4K + w(21) + 1M

. . GOAL: FIND FRACTION IN EXPRESSION

. . . PRESS SHIFT + ALT + P> M 4K + w(30) + 1M

. . . PRESS SHIFT + ALT + N> M 4K + w(21) + 21M

. . GOAL: CHECK THAT THE VALUE IS FIFTEEN 1M

TASK1: 16K + W(73) + 25M = 107.48

Listing 3 shows the GOMS model for Task 1 for the JAWS screen
reader. The total number of operations on Task 1 on JAWS was 18
keystrokes, 18 mental operations and waiting for 105 words.

Listing 3: GOMS model for Task 1 using JAWS
GOAL: VERIFY IF THE EXPRESSION HAS ANY NUMERATOR WHOSE VALUE IS FIFTEEN

. . GOAL: FIND THE DESIRED EXPRESSION

. . .PRESS DOWN ARROW 1K + W(2) + 1M

. . .PRESS DOWN ARROW 1K + W(5) + 1M

. . .PRESS DOWN ARROW 1K + W(2) + 1M

. . .PRESS DOWN ARROW 1K + W(35) + 1M

. . .PRESS DOWN ARROW 1K + W(2) + 1M

. . .PRESS DOWN ARROW 1K + W(17) + 1M

. . GOAL: FIND FRACTION IN EXPRESSION

. . .PRESS ENTER 1K + W(21) + 1M

. . GOAL: CHECK THAT THE VALUE IS FIFTEEN

. . .PRESS RIGHT ARROW 1K + W(1) + 1M

. . .PRESS LEFT ARROW 1K + W(1) + 1M

. . .PRESS RIGHT ARROW 1K + W(1) + 1M

. . .PRESS RIGHT ARROW 1K + W(4) + 1M

. . .PRESS RIGHT ARROW 1K + W(1) + 1M

. . .PRESS RIGHT ARROW 1K + W(3) + 1M

. . .PRESS RIGHT ARROW 1K + W(1) + 1M

. . .PRESS RIGHT ARROW 1K + W(4) + 1M

. . .PRESS DOWN ARROW 1K + W(1) + 1M

. . .PRESS RIGHT ARROW 1K + W(2) + 1M

. . .PRESS DOWN ARROW 1K + W(2) + 1M

TASK1: 18k + W(105) + 18M = 131.64

Listing 4 shows the GOMSmodel for Task 1 for the NVDA screen
reader. The total number of operations on Task 1 on NVDA was 6
keystrokes, 22 mental operations and waiting for reading 72 words,
considering all the repetitions necessary to re-read the content due
to the lack of in-formula navigation.

Listing 4: GOMS model for Task 1 using NVDA
GOAL: VERIFY IF THE EXPRESSION HAS ANY NUMERATOR WHOSE VALUE

IS FIFTEEN

. . GOAL: FIND THE DESIRED EXPRESSION

. . PRESS DOWN ARROW 1K + W(34) + 1M

. . PRESS DOWN ARROW 1K+W(2) + 1M

. . PRESS DOWN ARROW 1K + W(2) + 1M

. . PRESS DOWN ARROW 1K + W(16) + 1M

. . GOAL: FIND FRACTION IN EXPRESSION

. . PRESS UP ARROW 1K + W(2) + 1M

. . PRESS DOWN ARROW 1K + W(16) + 16M

. . GOAL: CHECK THAT THE VALUE IS FIFTEEN 1M

TASK1 : 6K +W(72) + 22M = 100.08

In Listing 5, we show the GOMSmodel for task 1, using the screan
reader ChromeVox-NavMatBR whose new features was added to
improve performance. The total number of operations on Task 1
on ChromeVox-NavMatBR was 18 keystrokes, 5 mental operations
and waiting for reading 65 words.

In Listing 6, we show the GOMS model for Task 2 (verify the
upper limit in the second sum) using ChromeVox. The total number
of operations on Task 2 on ChromeVoxwas 12 keystrokes, 21 mental
operations and waiting for reading 87 words.

Listing 7 shows the GOMS model for Task 2 for the JAWS screen
reader. The total number of operations on Task 2 on JAWS was 12
keystrokes, 12 mental operations and waiting for 135 words.Listing 8 shows the GOMSmodel for Task 2 for the NVDA screen
reader. The total number of operations on Task 2 on NVDA was 3
keystrokes, 19 mental operations and waiting for reading 73 words.

Listing 5: GOMS model for Task 1 using ChromeVox-
NavMatBR
GOAL:VERIFY IF THE EXPRESSION HAS ANY NUMERATOR WHOSE VALUE IS FIFTEEN

. . GOAL: FIND THE DESIRED EXPRESSION

. . .PRESS SHIFT + ALT + N> M 4K + W(30) + 1M

. . .PRESS SHIFT + ALT + N> M 4K + W(21) + 1M

. . GOAL: FIND FRACTION IN EXPRESSION

. . .PRESS SHIFT + ALT +N>D 4K + W(5) + 1M

. . .PRESS SHIFT + ALT +N>D 4K + W(5) + 1M

. . GOAL: CHECK THAT THE VALUE IS FIFTEEN

. . .PRESS SHIFT + N 2K+ W(4) + 1M

TASK1 : 18K+ W(65) + 5M = 76.04

Listing 6: GOMS model for Task 2 using ChromeVox
GOAL: VERIFY THE VALUE OF THE HIGHEST LIMIT OF THE SECOND

SUMMATION IN THE EXPRESSION

. . GOAL:FIND THE DESIRED EXPRESSION

. . . PRESS SHIFT + ALT + N> M 4K + W(30) + 1M

. .GOAL: FINDING THE DESIRED SUM IN EXPRESSION

. . . PRESS SHIFT + ALT + P> M 4K + W(24) + 1M

. . . PRESS SHIFT + ALT + N> M 4K + W(33) + 18M

. . GOAL: CHECK THE LIMIT VALUE 1M

TASK2: 12K + W(87) + 21M = 111.36

Listing 7: GOMS model for Task 2 using JAWS
GOAL: VERIFY THE VALUE OF THE HIGHEST LIMIT OF THE SECOND

SUMMATION IN THE EXPRESSION

. . GOAL: FIND THE DESIRED EXPRESSION

. . PRESS DOWN ARROW 1K + W(2) + 1M

. . PRESS DOWN ARROW 1K + W(5) + 1M

. . PRESS DOWN ARROW 1K+W(2) +1M

. . PRESS DOWN ARROW 1K + W(35) + 1M

. . GOAL: FINDING THE DESIRED SUM IN EXPRESSION

. . PRESS ENTER 1K + W(21) + 1M

. . GOAL: CHECK THE LIMIT VALUE

. . PRESS RIGHT ARROW 1K+ W(21) +1M

. . PRESS LEFT ARROW 1K+ W(10) +1M

. . PRESS RIGHT ARROW 1K+ W(21) +1M

. . PRESS DOWN ARROW 1K+ W(10) +1M

. . PRESS DOWN ARROW 1K +1M

. . PRESS RIGHT ARROW 1K+ W(4) +1M

. . PRESS RIGHT ARROW 1K+W(3)+1M

TASK2: 12k + W(135)+ 12M = 152,76

Listing 8: GOMS for Task 2 using NVDA
GOAL: VERIFY THE VALUE OF THE HIGHEST LIMIT OF THE SECOND

SUMMATION IN EXPRESSION

. . GOAL: FIND THE DESIRED EXPRESSION

. . .PRESS DOWN ARROW 1K + W(34) + 1M

. . GOAL: FINDING THE DESIRED SUM IN EXPRESSION

. . .PRESS UP ARROW 1K + W(5) + 1M

. . .PRESS DOWN ARROW 1K + W(34)+17M

. .GOAL: CHECK THE LIMIT VALUE 1M

TASK2: 3K + W(73) + 19M = 96.64

Listing 9 shows the GOMS model for Task 2 for the ChromeVox-
NavMatBR screen reader. The total number of operations on Task 2
on ChromeVox-NavMatBR was 17 keystrokes, 6 mental operations
and waiting for reading 72 words.

Listing 10 shows the GOMS model for Task 3 for the ChromeVox
screen reader. The total number of operations on Task 3 onChromeVox
was 20 keystrokes, 17 mental operations and waiting for 102 words.

Listing 11 shows the GOMS model for Task 3 for the ChromeVox
-NavMatBR screen reader. The total number of operations on Task 3

Content-based Navigation within Mathematical Formulae on the Web for Blind Users DSAI’18, June 2018, Thessaloniki, Greece

Listing 9: GOMS for Task 2 using ChromeVox-NavMatBR
GOAL: VERIFY THE VALUE OF THE HIGHEST LIMIT OF THE SECOND

SUMMATION IN THE EXPRESSION

. .GOAL: FIND THE DESIRED EXPRESSION

. . .PRESS SHIFT + ALT + N> M 4K + w(30) + 1M

. .GOAL: FIND THE DESIRED SUM IN EXPRESSION

. . .PRESS SHIFT + ALT +N>D 4K + W(11) + 1M

. . .PRESS SHIFT + ALT +N>D 4K + W(11) +1M

. .GOAL: CHECK THE LIMIT VALUE

. . .PRESS SHIFT + ENTER 2K + W(10)

. . .PRESS DOWN ARROW 1K + W(4) +1M

. . .PRESS RIGHT ARROW 1K + W(4)+1M

. . .PRESS RIGHT ARROW 1K +W(2)+1M

TASK2: 17K + W(72) + 6M = 83.96

Listing 10: GOMS for Task 3 using ChromeVox
GOAL: VERIFY THE INDEX OF THE SECOND ROOT OF the EXPRESSION

. .GOAL: FIND THE DESIRED EXPRESSION

. . PRESS SHIFT + ALT + N> M 4K + w(30) + 1M

. . PRESS SHIFT + ALT + N> 4K + w(21) + 1M

. . PRESS SHIFT + ALT + N> M 4K + W(15) + 1M

. .GOAL: FIND THE SECOND ROOT IN THE EXPRESSION

. . PRESS SHIFT + ALT + P> M 4K + W(21) + 1M

. . PRESS SHIFT + ALT + N> M 4K + W(15) + 12M

. .GOAL: CHECK THE VALUE OF THE INDEX 1M

TASK3 :20K + W(102) + 17M = 128

on ChromeVox -NavMatBRwas 20 keystrokes, 15 mental operations
and waiting for reading 77 words.

Listing 11: GOMS for Task 3 using ChromeVox-NavMatBR
GOAL: VERIFY THE INDEX OF THE SECOND ROOT OF EXPRESSION

. .GOAL: FIND THE DESIRED EXPRESSION

. . PRESS SHIFT + ALT + N> M 4K + w(30) + 1M

. . PRESS SHIFT + ALT + N> M 4K + w(21) + 1M

. . PRESS SHIFT + ALT + N> M 4K + w(15) + 1M

. .GOAL: FIND THE SECOND ROOT IN THE EXPRESSION

. . PRESS SHIFT + ALT + N> R 4K + w(6) + 6M

. . PRESS SHIFT + ALT + N> R 4 K + w(5) + 5 M

. .GOAL: CHECK THE VALUE OF THE INDEX 1M

TASK3 :20K + W(77) + 15M = 100.6

Listing 12 shows the GOMS model for Task 3 for the NVDA
screen reader. The total number of operations on Task 3 was 7
keystrokes, 19 mental operations and waiting for reading 84 words.

Listing 12: GOMS for Task 3 using NVDA
GOAL: VERIFY THE INDEX OF THE SECOND ROOT OF EXPRESSION

. . GOAL: FIND THE DESIRED EXPRESSION

. . PRESS DOWN ARROW 1K + W(34) + 1M

. . PRESS DOWN ARROW 1K + W(2) + 1M

. . PRESS DOWN ARROW 1K + W(2) + 1M

. . PRESS DOWN ARROW 1K + W(16) + 1M

. . PRESS DOWN ARROW 1K + W(14) + 1M

. .GOAL: FIND THE SECOND ROOT IN THE EXPRESSION

. . PRESS UP ARROW 1K + W(2) + 1M

. . PRESS DOWN ARROW 1K + W(14) + 12M

. . GOAL: CHECK THE VALUE OF THE INDEX 1M

TASK3 :7K + W(84) + 19M = 108.55

Listing 13 shows the GOMSmodel for Task 3 for the JAWS screen
reader. The total number of operations on Task 3 was 12 keystrokes,
19 mental operations and waiting for reading 111 words.

Listing 13: GOMS for Task 3 using JAWS
GOAL: VERIFY THE INDEX OF THE SECOND ROOT OF EXPRESSION

. . GOAL: FIND THE DESIRED EXPRESSION

. . PRESS DOWN ARROW 1K+W(2) + 1M

. . PRESS DOWN ARROW 1K + W(5) + 1M

. . PRESS DOWN ARROW 1K + W(2) + 1M

. . PRESS DOWN ARROW 1K + W(35) + 1M

. . PRESS DOWN ARROW 1K + W(2) + 1M

. . PRESS DOWN ARROW 1K + W(17) + 1M

. . PRESS DOWN ARROW 1K + W(2) + 1M

. . PRESS DOWN ARROW 1K + W(15) + 1M

. .GOAL: FIND THE SECOND ROOT IN THE EXPRESSION

. . PRESS ENTER 1K + W(21) + 1M

. . PRESS RIGHT ARROW 1K+ W(1) + 1M

. . PRESS RIGHT ARROW 1K+ W(5) + 1M

. . PRESS RIGHT ARROW 1K+ W(4) + 1M

. . GOAL: CHECK THE VALUE OF THE INDEX 1M

TASK3: 12K + W(111) + 13M = 129.96

Table 2: Estimated time to perform tasks on ChromeVox

Tasks K M W Time

1 16 25 73 107.48
2 12 21 87 111,36
3 20 17 102 128

Table 3: Estimated time to perform tasks on ChromeVox-
NavMatBR

Tasks K M W Time

1 18 5 65 76.04
2 17 6 72 83.96
3 20 15 77 100.6

Table 4: Estimated time to perform tasks on JAWS

Tasks K M W Time

1 18 18 105 131.64
2 12 12 135 152.76
3 12 13 111 129.96

4.2 Time estimation comparisons between
screen readers

As in a previous study performed by the research group [7], we
used the values for time estimates suggested by Card [1] to obtain
a quantitative number that could be used to compare the perfor-
mance of screen readers analyzed in this article. Thus, the time for
operator K (Keystroke) was assigned the value of 0.28 seconds for
its execution. For the M (Mental) operator, the value of 1.2 seconds
was used, and for the operator W (Wait) it was decided that the
value of 1 second was used for each word, since this time is very
relative to user preferences with their screen readers.

The time spent on each task was calculated given the following
formulaTexecute = 0.28K + 1.2M + 1W , the total time of each task
on each screen reader can be found in Table 2, Table 3, Table 4 and
Table 5 on column Time.
4.3 Discussion
As seen in the application of GOMS and KLM on the screen readers
evaluated, quantitative values were provided, in order to perform
a critical analysis of the proportion of effort and time blind users
would have to devote in the execution of tasks of reading mathe-
matical content in problem-solving tasks.

For this, we applied time values, widely used and advised in
the academic scope [1], for each operator used in the models. This

DSAI’18, June 2018, Thessaloniki, Greece
Luiz Felipe da Paixão Silva, Antonio Armando de Oliveira Barbosa, Evelise Roman Corbalan Gois Freire, Paula Christina Figueira Cardoso,

Rafael Serapilha Durelli, André Pimenta Freire

Table 5: Estimated time to perform tasks on NVDA

Tasks K M W Time

1 6 22 72 100.08
2 3 19 73 96.64
3 7 19 84 108.55

Table 6: Estimated time for each reader to perform the tasks

Tasks ChromeVox ChromeVox -NavMatBR NVDA Jaws

1 107.48 76.04 100.08 131.64
2 111,36 83.96 96.64 152.76
3 128 100.6 108.55 129.96

yielded metrics that can be used to compare the performance of
each screen reader evaluated. However, it is worth noting that
these values do not reflect the times spent by people with visual
disabilities, and that this value would probably be much higher.

It can be observed on Table 6 that the proof-of-concept proto-
type ChromeVox-NavMatBR had a decrease in the estimated time
to perform the task, by providing the extra funcionalities, when
compared to the original version.

The time to perform task 1 on ChromeVox-NavMatBR was 76.04
seconds against 107.48 of NVDA, 100.08 of ChromeVox and 131.64
of JAWS. This showed that the addition of features such as finding
some specific term in the expression and using the part navigation to
achieve the desired goal had a good effect in reducing the expected
time and effort. On task 2, ChromeVox-NavMatBR demonstrated the
same result obtained with task 1, showing that providing freedom
to search for a specific element makes a significant difference.

Although JAWS allows the navigation in parts via the tree naviga-
tion, it still does not offer alternatives of search of specific elements.
For example, on task 2, the lack of search of elements makes the
expected effort required to find a specific element bigger than if it
could be done directly. Another negative point found in JAWS is
that the feedback messages to the user are very long, like in the
case of activation of navigation by expression, which extends the
time to read results.

Despite the limitations in the types of context explored in this
proof-of-concept prototype, the results were very positive, and
have pointed out directions to help design other strategies and to
generalize this to other types of mathematical content.

5 CONCLUSIONS AND FUTUREWORK
With the results obtained by this study, we showed that there is
a considerable potential for developing new ways of navigation
in open source screen readers. This can make them capable of
changing the way users with visual disabilities deal with mathe-
matical content, since there are still gaps to improve the navigation
capabilities of technologies that support mathematical content.

The results showed that enabling navigation using semantic
markup of mathematical elements can enhance the expected user
effort. This can lead to users being able to locate important content
more easily as they solve mathematical problems read on the web,
using similar navigations strategies as those available for different
web content types, such as headings, paragraphs, links, and others.

Despite the limitations, the results from this paper are good
indications for more research in the field, involving both users and
Mathematics educators and experts. This could point out to new

navigation strategies based on problem-solving approaches that
consider the specificities of blind users.

At the moment, the research group has started a study involving
users with visual disabilities to refine the current strategies and
to help define broader schemes for the navigation. After this, user
evaluations with the prototypes will be performed in order to ob-
tain feedback from those who actually use screen readers in the
mathematical context.

REFERENCES
[1] Stuart K. Card, Thomas P. Moran, and Allen Newell. 1980. The Keystroke-level

Model for User Performance Time with Interactive Systems. Commun. ACM 23,
7 (July 1980), 396–410.

[2] Stuart K Card, Thomas P Moran, and Allen Newell. 1983. The psychology of
human-computer interaction. L. Erlbaum Associates.

[3] David Carlisle, Patrick Ion, and Robert Miner. 2014. Mathematical Markup
Language (MathML) Version 3.0 2nd Edition. (2014). Available online at
https://www.w3.org/TR/MathML/, last accessed 15/01/2018.

[4] Alistair D. N. Edwards. 1989. Modelling Blind Users’ Interactionswith anAuditory
Computer Interface. International journal of man-Machine studies 30, 5 (1989),
575–589.

[5] Alistair DN Edwards, Heather McCartney, and Flavio Fogarolo. 2006. Lambda::
a multimodal approach to making mathematics accessible to blind students. In
Proceedings of the 8th international ACM SIGACCESS conference on Computers
and accessibility. ACM, 48–54.

[6] Silvia Fajardo Flores and Dominique Archambault. 2012. Understanding algebraic
manipulation: Analysis of the actions of sighted and non-sighted students. In
The International Workshop on Digitization and E-Inclusion in Mathematics and
Science, Vol. 2012.

[7] Anonymous for blind review. 2017. HowMuch Effort is Necessary for Blind Users
to Read Web-based Mathematical Formulae?: A Comparison Using Task Models
with Different Screen Readers. In Proceedings of the XVI Brazilian Symposium
on Human Factors in Computing Systems (IHC 2017). ACM, New York, NY, USA,
Article 29, 10 pages. https://doi.org/10.1145/3160504.3160549

[8] Mick D Isaacson, Dave Schleppenbach, and Lyle Lloyd. 2014. Increasing STEM
accessibility in students with print disabilities through MathSpeak. Journal of
Science Education for Students with Disabilities 14, 1 (2014), 3.

[9] Martin Schrepp. 2006. On the efficiency of keyboard navigation in Web sites.
Universal Access in the Information Society 5, 2 (2006), 180–188.

[10] P Schrepp, M. & Fischer. 2007. GOMS models to evaluate the efficiency of
keyboard navigation in web units. Eminds - International Journal of Human
Computer Interaction 1, 2 (2007), 33–46.

[11] Neil Soiffer. 2005. MathPlayer: web-based math accessibility. In Proceedings of
the 7th international ACM SIGACCESS conference on Computers and accessibility.
ACM, 204–205.

[12] Neil Soiffer. 2009. A flexible design for accessible spoken math. Universal Access
in Human-Computer Interaction. Applications and Services (2009), 130–139.

[13] Volker Sorge, Charles Chen, TV Raman, and David Tseng. 2014. Towards making
mathematics a first class citizen in general screen readers. In Proceedings of the
11th Web for All Conference. ACM, 40.

[14] Bernhard Stoeger, Mario Batusic, Klaus Miesenberger, and Philipp Haindl. 2006.
Supporting blind students in navigation and manipulation of mathematical ex-
pressions: Basic requirements and strategies. Computers Helping People with
Special Needs (2006), 1235–1242.

[15] Shari Trewin, Bonnie John, John T Richards, Calvin Swart, Jonathan P Brezin,
Rachel K E Bellamy, and John C Thomas. 2010. Towards a tool for keystroke
level modeling of skilled screen reading. In ASSETS’10 - Proceedings of the 12th
International ACM SIGACCESS Conference on Computers and Accessibility. 27–34.

[16] Web Accessibility in Mind (WebAIM). 2017. Screen Reader User Survey #7 Results.
(2017). Available online at https://webaim.org/projects/screenreadersurvey7/,
Last accessed on 17 March 2018.

https://doi.org/10.1145/3160504.3160549

	Abstract
	1 Introduction
	2 Theoretical Background
	2.1 Mathematical Markup Language
	2.2 Task modelling and KLM
	2.3 Related Work

	3 Method
	3.1 Study design
	3.2 Existing screen readers analyzed
	3.3 ChromeVox-NavMatBR
	3.4 ChromeVox-NavMatBR implementation
	3.5 Task modelling
	3.6 Data analysis

	4 Results and Discussion
	4.1 Task models
	4.2 Time estimation comparisons between screen readers
	4.3 Discussion

	5 Conclusions and future work
	References

