
Model-Based Reuse for Crosscutting Frameworks:
Assessing Reuse and Maintainability Effort
Thiago Gottardi∗, Rafael Serapilha Durelli†, Oscar Pastor López‡ and Valter Vieira de Camargo∗

∗Departamento de Computação, Universidade Federal de São Carlos,
Caixa Postal 676 – 13.565-905, São Carlos – SP – Brazil

Email: {thiago gottardi,valter}@dc.ufscar.br
†Instituto de Ciências Matemáticas e Computação, Universidade de São Paulo,

Av. Trabalhador São Carlense, 400, São Carlos – SP – Brazil
Email: rdurelli@icmc.usp.br

‡Universidad Politecnica de Valencia, Camino de Vera s/n, Valencia, Spain
Email: opastor@dsic.upv.es

Abstract—Over the last years a number of Crosscutting Frame-
works (CFs) have been developed employing white-box strategies.
This strategy requires significant technical knowledge to reuse
these frameworks, such as, knowledge in specific programming
languages, architectural details and also about the framework
nomenclature. Besides, the reuse process can only be initiated
when the development reaches the implementation phase, avoid-
ing starting the reuse process in early development phases. In this
paper we present a model-based approach for reusing CFs that
improves the productivity by allowing the application engineer to
concentrate on what is really important during the reuse process.
We present the foundations of our approach and also the result
of two experiments that uses two versions of a Persistence CF;
the original and the model-based. The results were promising
regarding the effort employed to conduct the reuse process,
but almost no difference was noticed concerning the effort in
conducting maintenance activities.

I. INTRODUCTION
Model-Driven Development (MDD) consists of the combi-

nation of generative programming, domain-specific languages
and model transformations. MDD aims to reduce the semantic
gap between the program domain and the implementation,
using high-level models that shield software developers from
complexities of the underlying implementation platform [1].
On the other hand, Aspect-Oriented Programming (AOP)

is a programming paradigm that overcomes the limitations
of Object-Orientation by providing abstractions able to mod-
ularize crosscutting concerns (CC) such as persistence, se-
curity and distribution. Among these abstractions, Pointcuts
are expressions used to capture join-points of an application,
e.g., method calls and executions and variable accesses. By
capturing these join-points, it is possible to write code to be
executed upon a Pointcut occurrence in a modular fashion.
AspectJ is one of the AOP languages that implement these
abstractions [2]. It is also the language employed in our work.
Since the advent of AOP, several researchers have investi-

gated how its abstractions and concepts impact reuse method-
ologies, like product lines [3] and frameworks [4]. Many of
these researchers investigated how to design a CC in a generic
way to enhance their reusability [5]–[15]. Several terms are
used to represent this kind of design, e.g., reusable aspects [5],

aspect-oriented frameworks and aspect libraries [12]. Because
the absence of a taxonomy for this kind of design, we have
defined and employed the term “Crosscutting Framework”
(CF) to represent a specific kind of abstract aspect-oriented
framework implementation of a single CC [9].
Most of the CFs found in literature apply white-box reuse

strategies in their instantiation process, relying on writing
source code to reuse the framework [5]–[15]. White-box
strategy makes application engineers to worry about low
level implementation details during the reuse process, leading
to the following problems: (i) to get know coding details
regarding the programming paradigm employed in the frame-
work, making the learning curve steeper; (ii) coding mistakes
are more likely to happen when the reuse code is created
manually; (iii) several lines of code must be written for the
definitions of small number of hooks, impacting development
productivity and (iv) reuse process can only be started during
implementation phase, as there is no source code in earlier
phases.
To overcome these problems, in this paper, we present an

approach for supporting the reuse of CFs. The approach is
based on two models: Reuse Requirements Model (RRM) and
Reuse Model (RM). The RRM documents all the features
and variabilities of a CF and is a partial replacement for
cookbooks. Based on the RRM, the application engineer can
then select just the desired features, building a more specific
model, referred as RM. The application engineer has the
opportunity to conduct the reuse process in our model-driven
approach by filling the fields of this model, which is also used
for code generation.
We also present the results of two experiments. In both

experiments we have used the same Persistence CF [9]. Our
approach showed benefits for the instantiation time, however,
no differences were identified regarding the maintenance ef-
fort. Therefore, the main contributions of this paper are: (i)
presenting a model-based approach for CFs, (ii) presenting
the results of two experiments and (iii) the problems of the
presented approach can be generalized to other model-based
framework reuse processes.

2012 Brazilian Symposium on Software Engineering

978-0-7695-4868-5/12 $26.00 © 2012 IEEE

DOI 10.1109/SBES.2012.27

31

In Section II the notion related to CF, their details and a
CF’s description that is used in this paper are showed; both
the proposed approach and an example of instantiation related
to a member of persistence CF are presented in Section III;
in Section IV, an empirical evaluation is presented; in Section
V, there are related works and in Section VI, there are the
conclusions.

II. CROSSCUTTING FRAMEWORKS
Crosscutting Frameworks (CF) encapsulate the generic be-

havior of a single crosscutting concern [9], [13]–[15]. There
are CFs developed for persistence [7], [9], security [6], cryp-
tography [10], distribution [7] and other concerns [5]. Their
main objective is to make the reuse of such concerns easier
during the development of an application.
As well as other types of frameworks, CFs also need

information regarding the base application in order to be
reused correctly and work properly. We named these infor-
mation “Reuse Requirements” (RR). For instance, the RR for
an Access Control CF includes: 1) the application methods
that need to have their access controlled; 2) which are the
roles played by users; 3) how many times a user is allowed
get an incorrect password. This information is commonly
documented in manuals known as “Cookbooks”.
Unlike application frameworks, which are used to generate

a whole new application, a CF needs to be coupled to a base
application in order to become functional. The standard pro-
cess to reuse a CF is composed by two activities: instantiation
and composition. The instantiation is when the application
engineer is choosing variabilities and implementing hooks,
while the coupling is when he/she is providing composition
rules to couple the chosen variabilities to a base code. During
the composition activity, pointcuts and composition rules are
defined, unifying the chosen variabilities and the base code.
Applications developed with CFs are composed by three

types of code modules: base, reuse and framework. The
“base code” represents code of the base application. In the
“framework code” there is the code of the CF, which is
untouched during the reuse process. The “reuse module” is
the connection between the base application and a framework.
Each final application can be composed by several CFs, each
one coupled by a reuse module. The code that was created
specifically to reuse an CF is referred here as “reuse code” and
applications which were developed based on CFs is referred
here as CF-based Applications.
In a previous work we have developed a Persistence

CF [16], which is used as case study in this paper. This
CF has some features, for instance, both “Persistence” and
“Connection” are mandatory features. The first one, aims to
introduce a set of persistence operations (e.g., store, remove,
update, etc) into applications persistence classes. The second
feature, is related to the database connection and identifies
points in the application code where the connection should
be opened and closed. This feature has variabilities, as for
example, the Database Management System (e.g., MySQL,
SyBase, Native and Interbase). The CF also has a set of

optional features such as “Caching”, which is used to improve
performance by keeping copies of the data in local memory,
and “Pooling” which represents a number of active database
connections.

III. MODEL-BASED REUSE APPROACH

In order to assist the instantiation and composition of
members of a CF we have put forward two new models,
“Reuse Requirements Model” (RRM) and “Reuse Model”
(RM). These models have been devised on top of Eclipse Mod-
eling Framework and Graphical Modeling Framework [17]
The formal definition of both models is specified by a single
metamodel, which is shown in Figure 1. This metamodel is a
set of enumerations and metaclasses, which are either concrete
or abstract.

composition : CompositionType
internalDefinition : EString
iterableDefinition : EString

Pointcut

qualifiedOwnerName : EString
elementName : EString
superType : SuperType
argument : EString

AbstractDeclaredElement

elementType : EString

TypedElement

description : EString

Definition

usedValue : EString

Value

definitions : EString

MultipleDefinition

visibility : Visibility

VisibilityDefinition

enabled : EBoolean

Option

and
or

CompositionType

ReuseDefinition

name : EString

NamedElement

AbstractGroup

TypeExtension

undefined

protected

package
private

public

Visibility

OptionGroup

Variability

Interface

Aspect
Class

SuperType

Group

definitions
0..*

options

0..*

Fig. 1. Metamodel of the proposed models

The metamodel was built based on the vocabulary com-
monly used in the context of CFs. Among these concepts, there
are pointcuts, classifier extensions, method overriding to return
values and variabilities selections. These concepts were then
mapped into concrete metaclasses, which are visible under the
dashed line in Figure 1.
Above the dashed line in Figure 1, there are also the

following enumerations: “Visibility”, “SuperType” and “Com-
positionType”, which are sets of literals used as properties of
the metaclasses. The other elements above the line are abstract
metaclasses. They were created after performing an analysis
to generalize the properties of the concrete metaclasses. These
abstract metaclasses can be applied in similar approaches and

32

are also important to improve modularity and avoid code
replication of the reuse code generator.
In Figure 2 there is an overview of our tool which is

used to edit both of our proposed models. On the right of
Figure 2, there is a “Palette” with the possible elements that
can be inserted into these models. These elements are instances
of the concrete metaclasses of the metamodel, visible under
the dashed line in Figure 1. Their uses are: (I) “Group”: an
element to group any element visible in the models, including
child groups; (II) “Pointcut”: employed to override abstract
pointcuts which represent join-points of the base application
code that should be affected by the CF; (III) “TypeExtension”:
elements used to represent types found in the base application
that must extend or implement classes, aspects or interfaces
found in the CF; (IV) “Value”: elements used to override
methods to return any numeric or textual values that must
be informed while reusing the CF; (V) “Option”: defines a se-
lectable variability of the framework and (VI) “OptionGroup”:
group selectable variabilities of the framework. The last two
elements are used to represent the variabilities provided by
the CF that may be chosen by the application engineer.
The “Group” element is also employed to support feature
hierarchy, however, details on feature selection are not shown
on this paper. Nevertheless, more details related to both feature
selection and the tool can be seen in another paper [18]. This
tool provides fully computational environment to the approach
herein described.
Both of our proposed models have identical appearance,

however, they are employed in different moments. The first
proposed model, the RRM, is a graphical documentation
regarding the Reuse Requirements, which are related to the
information needed to couple the CF to a base application,
which is conventionally part of “cookbook”. This model con-
tains all of information regarding all CF features and should be
provided by a framework engineer. The second model, the RM,
is a subset of the RRM that only contains the features selected
for reuse. Since both models share the same metamodel, it is
possible to employ a direct model transformation to instantiate
a RM from a RRM by selecting a valid set of features. Both of
our models are represented as forms that contain boxes, as seen
in Figure 2. Each box is an instance of a concrete metaclass
element and represent a reuse requirement. They also contain
three lines, the first line contains a icon of the element type,
which is the same type visible in the “Palette”, and a name for
the reuse requirement. The second line shows a description to
facilitate the comprehension of the application engineer and
the last line is filled by the application engineer to provide the
information regarding the base application. Note that the last
line is only used in RMs.
By analyzing the RRM, an application engineer should be

able to learn which informations are required by the framework
during the reuse process. This model also represents the
variabilities provided by a framework that must be chosen by
an application engineer. In order to instantiate a framework,
the RRM may indicate the need of informing join-points of
the base code where crosscutting behavior would be applied

to, as well as classes, interfaces or aspect names that would be
affected. Framework variabilities that must be chosen during
reuse process are also visible. For example, to be able to
instantiate a persistence CF, the application engineer must
specify methods from base application that should be executed
after a database connection is opened and before it is closed.
It is also needed to specify methods that represent data base
transactions, and the variabilities must be chosen, e.g., the
driver which should be used to connect to the database system.
The other model, the RM, is shown in Figure 2. It supports

the reuse process of a crosscutting framework. It is intended
that the reuse process can be completely executed by com-
pleting the third line of the boxes of this model. Therefore, it
should be used by the application engineer in order to reuse a
framework. For instance, the value “base.Customer.opening()”
is a method of the base application and was inserted by
the application engineer in the third line of box “Connection
Opening”.
After the application engineer fills in the RM with the

information needed by an member of a CF, it is possible
to generate the final reuse code. To illustrate the use of
these models we have used the “persistence” CF described
in Section II.

A. Reuse Example
In this section, we briefly show an example of how to use

our models and generate code in order to reuse a CF. To reuse
the “persistence” CF, the application engineer must specify
explicitly which features will be used in the base application.
This is important because usually the CFs have a great deal
of features that probably will not be used in the application
base. Therefore, we developed an environment to facilitate
the feature selection in order to instantiate a member. This
environment also provides a way to validate the combinations
of features. Further details of this environment are described
in another paper [18].
In Figure 2, there is our model editor. By using this editor,

it is possible to model RRMs and RMs. In this example there
is a RM related to the “persistence” CF being completed with
information of a base application. The pointcuts “Connection
Opening”, “Connection Closing” and “Transaction Methods”
are intended to capture specific join-points of the base ap-
plication, e.g. names of methods of the base application that
will be affected by the framework. The first two represent,
respectively, method executions that should occur after a
database connection is open or before it is closed. The last
pointcut represents methods that encapsulate data transactions.
The “Persistent Objects” is a type extension definition, then,

it may represent either a class or an interface that should be
extended or implemented by a base class or interface. In this
case, the application engineer must supply names of classes
(or their super-types) which represent objects that should be
persisted on the database.
“Dirty Objects Controller” is a boolean value which is used

to define if the dirty objects controller should be active. This
is used to update the database records automatically as soon as

33

��������
	
����������
�����
������
�����������

�������������	
����������
������

��������	
�����
�������

��������	
����
���	��������

��������	
���� ��������
���� ����������� ����������
���

�����������

���������� !�!�"���������

	���
�������
��
���
����������
�������
�������
�����
��
�������
������������

�������
���
����������
������
���������
��
�������
��
���
���������

�������
���
��������
������
��
�������
��
���
���������

�������
���
��������
������
��
�������
��
���
���������

�����������	
�����
 ������
����������������	
����������
 ������

�������
���
�����
��
�������
�����
�����
�!�����
���
�����
�
��������
����������
��
�������

�������
���
�����
��
�������
�����
�!�����
������
�
��������
����������
�����
��
������

��������	
"�����������
#������

�������
���
�����
��
������
�����
���������
�
��������
������������

"���$!�������	
����������
 ������

�������
���
����
��
������
����
���������
�������
����
�����
��
����������

��������	
����
#��������
����	
��������
����������
������

����	
��������
%�������

����	
��������
��������

Fig. 2. Reuse Requirements Models and Reuse Models editor

any attribute belonging to a persistent object is changed by a
set method. “Database Username” and “Database Password”
are string values that are used to define the username and
password needed to log into the database system. “Database
Connection String” is a string value which should be used
to specify the database connection details, i.e., the database
system address, port and database name.
After completing the Reuse Model, it is possible to execute

a code generator, which is a model to code transformation
tool capable of generating reuse code in AspectJ, illustrated
on Figure 3, which allows coupling the base application to
the framework in a separate module. The final software is
the composition of base application code, reuse code for each
reused framework and the code of reused frameworks.

Fig. 3. Reuse Code Fragment

The first code of Figure 3 contains a new aspect which
was created by generating code for the three pointcuts of the

RM. This aspect extends an abstract aspect of the framework
with the supplied information. In the second code, the type
extension is implemented, then the classes written in the RM,
“Customer”, “Resource” and “Order”, receive an interface of
the framework, which is used to apply crosscutting behavior.
In the third code, the value definitions are set by overriding
methods of the framework.

IV. EVALUATION
Two experiments were conducted to compare our reuse

tool with the conventional technique. The first experiment
is called “Reuse Study” and was planned to identify the
gains in productivity when reusing a framework, which is
the main objective of our tool. The second experiment is
referred as “Maintenance Study” and was planned to identify
whether the reuse models help or not the maintenance of
an application that uses a CF and needs modifications. This
second study is important because maintenance activities are
usually performed more times than the reuse process. Each
experiment was applied twice. In this paper, the first execution
is referred as “Primary” and the second execution is referred
as “Secondary”. Since there are two executions for each
experiment, we present four study executions in this section.

A. Reuse Study Definition
The objective is to compare the effort of reusing frameworks

by using a conventional technique with by using a model-based
technique. The Persistence CF briefly presented in Section II
played the role of “study subject” and it was used in both reuse
techniques (conventional and model-based). The quantitative
focus was determined considering the time spent in conducting
the reuse process and the qualitative focus was to determine
which technique takes less effort during reuse process. This
experiment was conducted from the perspective of application
engineers reusing CFs and the study object is the ‘effort’ to
perform a CF reuse.

B. Maintenance Study Definition
The objective was to compare the effort in modifying a

CF-based application by editing the reuse code (conventional

34

technique) with by editing the RM. The Persistence CF shown
in Section II was again used in the two maintenance exercises.
The quantitative focus was measured by means of the time
spent in the maintenance tasks and the qualitative focus was
to determine which artifact takes less effort to edit during
maintenance. This experiment was conducted from the per-
spective of application engineers who intend to maintain CF-
based applications. The study object is the ‘effort’ to maintain
a CF-based application.

C. Study Planning
The first experiment was planned considering the following

question: “Which reuse technique takes less effort to reuse
a CF?”; The second experiment was planned considering
the question: “Which artifact takes less effort to edit during
maintenance, reuse model or reuse code?”; We gathered and
analyzed the timings taken to complete the process for each
activity.
1) Context Selection: Both studies were conducted with

students of Computer Science, in this section, they are re-
ferred as participants. Sixteen participants took part on the
experiments, eight of these were undergraduate students and
the other eight were post graduate students. Every participant
had prior AspectJ experience.
2) Formulation of Hypotheses: The Table I contains our

formulated hypotheses for the reuse study, which are used
to compare the productivity of our tool and the conventional
ad-hoc process. Both of these processes can be used to
successfully reuse a CF and couple it to an application that
has no reuse code.

TABLE I
HYPOTHESES FOR THE REUSE STUDY

H0r There is no difference between using our tool and using
an ad-hoc reuse process in terms of productivity (time) to
successfully couple a CF with an application. Then, the
techniques are equivalent. Tcr - Tmr ≈ 0

Hpr There is a positive difference between using our tool and
using an ad-hoc reuse process in terms of productivity (time)
to successfully couple a CF with an application. Then, the
conventional technique takes more time than the model-
based tool. Tcr - Tmr > 0

Hnr There is a negative difference between using our tool and
using an ad-hoc reuse process in terms of productivity (time)
to successfully couple a CF with an application. Then, the
conventional technique takes less time than the model-based
tool. Tcr - Tmr < 0

There are two variables shown on the table: “Tcr” and
“Tmr”. “Tcr” represents the overall time to reuse the frame-
work using the conventional technique while “Tmr” represents
the overall time to reuse the framework using the model-
based tool. There are three hypotheses shown on the table:
“H0r”, “Hpr” and “Hnr”. The “H0r” hypothesis is true when
both techniques are equivalent; then, the time spent using the
conventional technique minus the time spent using the model-
based tool is approximately zero. The “Hpr” hypothesis is
true when the conventional technique takes longer than the
model-based tool; then, the time spent to use the conventional

technique minus the time of the model-based tool is positive.
The “Hnr” hypothesis is true when the conventional technique
takes longer than the model-based tool; then, the time taken
to use the conventional technique minus the time taken to use
the model-based tool is negative. As these hypotheses consider
different ranges of a single resulting real value, then, they are
mutually exclusive and exactly one of them is true.
The formulated hypotheses for the maintenance study are

listed on Table II. These hypotheses consider the outcome
of comparing the edition of the reuse code (conventional
technique) with our approach (model-based).

TABLE II
HYPOTHESES FOR THE MAINTENANCE STUDY

H0m There is no difference between using editing a reuse model
and editing the reuse code in terms of productivity (time)
when maintaining an application that reuses a CF. Then, it
is equivalent to edit any of the artifacts. Tcm - Tmm ≈ 0

Hpm There is a positive difference between using editing a reuse
model and editing the reuse code in terms of productivity
(time) when maintaining an application that reuses a CF.
Then, editing the reuse code takes more time than editing
a reuse model during maintenance. Tcm - Tmm > 0

Hnm There is a negative difference between using editing a reuse
model and editing the reuse code in terms of productivity
(time) when maintaining an application that reuses a CF.
Then, editing the reuse code takes less time than editing a
reuse model during maintenance. Tcm - Tmm < 0

The Table II also contains three variables. “Tcm” represents
the overall time to edit a reuse code during maintenance while
“Tmm” represents the overall time to edit the reuse model
during maintenance. The “H0m” hypothesis is true when the
edition of both artifacts is equivalent. The “Hpm” hypothesis
is true when the edition of the reuse code takes longer than
editing the RM. The “Hnm” hypothesis is true when the edition
of the reuse code takes less time than editing the RM. These
hypotheses are also mutually exclusive and exactly one of
them is true.
3) Variable Selection: The dependent variables are those

which we analyze in this work. For each study, we provide
analysis of the “time spent to complete the process”. The
independent variables are controlled and manipulated, for
example, “Base Application”, “Technique” and “Execution
Types”.
4) Participant selection criteria: The participants were

selected through a non probabilistic approach by convenience,
i. e., the probability of all population elements belong to the
same sample is unknown.
5) Design of the studies: The participants were divided into

two groups. Each group was composed by four post graduate
students and four undergraduate students. Each group was also
balanced considering a characterization form and their results
from the pilot study. On Table III, there are the phases planned
for both studies.
6) Instrumentation for the Reuse Study: Base applications

were provided along with two documents. The first document
is a manual regarding the current reuse technique, and the
second document is a list of details, which describes the

35

TABLE III
STUDY DESIGN

Phase Group 1 Group 2
General Training Reuse and Maintenance Training

Repair Shop
1st Reuse Conventional Models
Pilot Phase Hotel Application
2nd Reuse Models Conventional
Pilot Phase Library Application
1st Primary Conventional Models
Reuse Phase Deliveries Application
2nd Primary Models Conventional
Reuse Phase Flights Application
1st Secondary Conventional Models
Reuse Phase Medical Clinic Application
2nd Secondary Models Conventional
Reuse Phase Restaurant Application
1st Primary Conventional Models

Maintenance Phase Deliveries Application
2nd Primary Models Conventional

Maintenance Phase Flights Application
1st Secondary Conventional Models

Maintenance Phase Medical Clinic Application
2nd Secondary Models Conventional
Maintenance Phase Restaurant Application

classes, methods and values regarding the application to be
coupled which are needed when reusing the framework.
The applications provided had the same reuse complexity,

then, in order to reuse each application, the participants
had to specify four values, twelve methods and six classes.
Each phase row of the Table III is divided into the name
of the application and the technique employed to reuse the
framework. For instance, during the 1st Primary Reuse Phase,
the participants of the first group coupled the framework to the
“Deliveries Application” by using the conventional technique,
while the participants of the second used the model-based tool
to perform the same exercise.
7) Instrumentation for the Maintenance Study: The base

applications provided for the second study were modified
versions of the same applications supplied during the first
study. These applications were provided with incorrect reuse
codes (conventional) and reuse models (model-based), which
should be fixed by the participants. The participants received
a manual regarding generic errors that could happen when the
reuse code or model is incorrectly defined. It is important to
point that the manual did not have details regarding the base
applications, then, the participants had to find the errors by
themselves by browsing the source code.
The applications provided had the same reuse complexity

and the reuse codes and models had the same amount of
errors. Then, in order to fix each CF coupling, the participants
had to fix three outdated class names, three outdated method
names and three mistyped characters. It is also important to
point that errors specific to manual edition of reuse code
were not inserted in this study. The phases are also listed
on Table III. That table contains the name of the application
and the technique employed during maintenance. For instance,
during the 1st Primary Maintenance Phase, the participants of
the first group had to fix the reuse code of the “Deliveries

Application” , while the participants of the second had to fix
the reuse model to perform the same exercise.

D. Operation
1) Preparation: At first, every student was introduced to

the tool and was taught how to edit reuse codes and reuse
models. During each phase of the reuse study, the students
were required to reuse the CF with a provided application.
During the maintenance study, the students had to fix a reuse
code or reuse model to complete the process. Every participant
had to reuse and maintain every application by using only one
of the techniques in equal numbers. Also, at any moment of
the experiment, each group was using a different technique
than the other group.
2) Execution: Initially, the participants signed a consent

form and then answered a characterization form. The char-
acterization form had questions regarding knowledge about
AspectJ constructs, Eclipse IDE and Crosscutting Frameworks.
After concluding the characterization forms, participants

were trained on how to reuse the supplied CF with the model-
based reuse tool and then conventionally. It is important to note
that every participant already had a basic experience with As-
pectJ and the conventional reuse of crosscutting frameworks.
Following the training, the pilot experiment was executed.

The participants were split into two groups considering the
results of the characterization forms. The pilot experiment
was intended to simulate the real experiments, except that the
applications were different, but equivalent. During the pilot
experiment, the participants were allowed to ask questions
about any issues they did not understand during the training.
This could affect the validity, then, the data from this activity
was only used to rebalance the groups.
During the real experiments, the participants had to work

with two applications starting with a different technique for
each group. The secondary executions were replications of the
primary executions with another two applications. They were
created in order to avoid the risk of getting unbalanced results
during the primary execution, since some data gathered during
the pilot were rendered invalid.
3) Data Validation: The forms filled by the participants

were confirmed with preliminary data gathered during the pilot
study. The researchers also watched the information system
notifications to confirm if the participants had concluded and
the captured data.
4) Data Collection: The recorded timings during the reuse

processes with both techniques are listed on the Table IV. The
timings for the maintenance study are found on Table V. There
are five columns in each of these tables, “G” stands for the
group of the participant during the activity; “A” stands for the
application being reused; “T” stands for the reuse technique
which is either “C” for conventional or “M” for model-based
tool; “P” column lists an identifying code of the participants
(students), whereas the least eight values are allocated to post-
graduate students and the rest are undergraduate students;
“Time” column lists the time the participant spent to complete
each phase.

36

The information system employed to gather the experiment
data stored the timings with milliseconds precision considering
both the server and clients system clocks. However, the values
presented in this paper only consider the server time, then, the
delay of transmission by the computers are not considered,
which are believed to be insignificant in this case, because
preliminary calculations considering the client clocks did not
change the order of results.
That system was able to gather the timings and supplied

information transparently. The participants only had to ex-
ecute the start time, which was supervised, and work on
the processes by themselves. Once the test case provided
had successful results, which meant that the framework was
correctly coupled, the finish time was automatically submitted
to the server before notifying the success to the participant.

TABLE IV
REUSE PROCESS TIMINGS

Primary Execution Secondary Execution
G A T P Time G A T P Time
1 F M 15 04:19.952015 2 C M 10 02:59.467569
1 F M 13 04:58.604963 1 R M 13 03:56.785359
1 F M 8 05:18.346829 1 R M 15 04:23.629206
2 D M 11 05:24.249952 2 C M 11 04:25.196135
2 D M 5 05:31.653952 1 R M 8 04:33.954349
2 D M 9 05:45.484577 2 C M 9 04:41.254920
2 D M 3 06:16.392424 1 R M 12 05:05.524264
2 D M 10 06:45.968790 2 C M 3 05:45.333167
2 D M 14 07:05.858718 2 C M 14 05:57.009310
2 D M 6 07:39.300214 2 C M 5 06:31.365498
2 D M 2 08:02.570996 2 C M 2 06:59.967490
1 F M 1 08:38.698360 2 R C 2 07:18.927029
2 F C 2 08:42.389884 2 C M 6 07:45.403075
1 F M 16 10:18.809487 2 R C 10 08:56.765163
1 D C 13 10:25.359836 1 C C 16 09:20.284593
2 F C 9 10:51.761493 1 R M 7 09:23.574403
1 F M 7 10:52.183247 1 R M 4 09:25.089084
2 F C 10 10:52.495216 2 R C 14 09:27.112225
1 D C 8 11:39.151434 2 R C 3 09:55.736324
1 D C 15 12:03.519008 1 C C 15 10:25.475603
1 F M 4 12:17.693128 2 R C 5 10:37.460834
2 F C 3 12:26.993837 2 R C 9 10:49.014842
2 F C 14 12:49.585392 1 R M 16 10:56.743477
2 F C 11 13:04.272941 1 C C 13 11:04.485390
1 D C 4 13:16.470523 1 C C 4 12:06.690347
1 D C 1 15:47.376327 1 C C 8 13:38.014602
1 D C 16 18:02.259692 1 C C 12 14:37.197260
1 F M 12 20:03.920754 1 R M 1 17:09.073104
2 F C 5 21:32.272442 2 R C 11 17:11.980052
2 F C 6 23:10.727760 1 C C 7 19:35.816561
1 D C 7 23:20.991158 2 R C 6 28:02.391335
1 D C 12 41:29.414342 1 C C 1 28:18.301114

E. Data Analysis and Interpretation

The data of the first study is found on Table IV, which is
ordered by the time taken to complete the process. The first
notorious information found on this table is that the model-
based reuse tool, which is identified by the letter ‘M’, is found
on the first twelve results. The conventional process, which is
identified by the letter ‘C’, got the last four results.
The timings data of Table IV is also represented graphically

in a bar graph, which is plotted on Figure 4. The same
identifying code for each participant and the elapsed time in
seconds are visible on the graph. The bars for conventional
technique and model tool use are paired for each participant,
allowing easier visualization of the amount of time taken by
each of them.
The second important information found on the first study is

that is not a single participant that could reuse the framework
faster by using the conventional process in the same activity
than by using the reuse tool.

TABLE V
MAINTENANCE PROCESS TIMINGS

Primary Execution Secondary Execution
G A T P Time G A T P Time
2 F C 10 02:30.944685 2 C M 5 01:43.801965
2 F C 9 02:54.232578 2 C M 3 02:17.158954
1 D C 8 03:02.751342 1 C C 8 02:34.248260
2 F C 2 03:11.695431 1 C C 14 02:57.405545
1 D C 15 03:31.801582 2 R C 2 03:01.547524
2 F C 12 03:45.692316 2 R C 10 03:09.169865
2 F C 3 05:09.817914 2 C M 2 03:25.640129
2 F C 5 05:44.462030 2 R C 3 03:39.443080
1 F M 8 05:53.407296 1 C C 7 04:28.998071
2 F C 11 07:08.687074 2 R C 6 04:35.517498
2 F C 6 07:38.576312 2 R C 12 04:41.052812
1 F M 4 07:53.595699 2 R C 11 04:46.028085
1 F M 14 08:14.148937 1 R M 8 04:51.290971
2 D M 3 08:27.092566 2 C M 6 04:53.800449
1 D C 1 08:37.138931 1 R M 15 04:58.094389
1 F M 13 08:50.185469 1 C C 15 05:21.846560
1 F M 1 09:15.253791 2 R C 5 05:42.389865
2 D M 5 09:15.934211 2 C M 10 07:18.533351
1 D C 14 09:32.031612 1 R M 14 07:24.342788
1 D C 7 10:04.694800 1 C C 16 07:37.332151
1 F M 15 11:07.617639 1 R M 1 07:44.516376
2 D M 6 11:32.482992 2 C M 11 08:08.144168
2 D M 2 11:49.247460 2 R C 9 08:13.115942
1 D C 16 12:12.576158 1 R M 13 08:32.056119
1 F M 7 12:27.297563 1 R M 16 11:28.592180
1 D C 13 12:49.443610 1 R M 7 11:45.459699
2 D M 11 13:00.604583 2 C M 9 12:42.958789
1 D C 4 13:25.433748 1 R M 4 13:57.879299
2 D M 9 15:51.117061 1 C C 1 14:46.465482
2 D M 12 15:56.048486 1 C C 4 17:55.176353
2 D M 10 21:23.533192 1 C C 13 18:02.486509
1 F M 16 32:32.875079 2 C M 12 25:54.176697

Primary Secondary

� � � � � � � 	
 �� �� �� �� �� �� ��

�
���
���
���

����
����
����
����
����
����
����

����
����

� � � � � � � 	
 �� �� �� �� �� �� ��

�
���
���
���

����
����
����
����
����
����
����

����
����

Fig. 4. Reuse Process Timings Bars Graph

The data of the second study is found on Table V. This
study has provided similar results. The first eleven values were
scored by using the model-based tool while the last four were
scored by using the conventional tool. Only the participant
number 16 was able to reuse the framework faster by using
the conventional process, which contradicts the results taken
from the same participant in the previous study. There is also
a bar graph for this study in Figure 4.
The plots for the maintenance study are found on Figure 5,

which also follow the same guidelines used while plotting
the graphs for the previous study. Considering the timings
of the maintenance study, the reuse model edition does not
provide advantage in terms of productivity when maintaining
an application that reuses a CF, since most of participants took
longer to edit the model than the reuse code.

Primary Secondary

� � � � � � � 	
 �� �� �� �� �� �� ��

�
���
���
���

����
����
����
����
����
����
����

����
����

� � � � � � � 	
 �� �� �� �� �� �� ��

�
���
���
���

����
����
����
����
����
����
����

����
����

Fig. 5. Maintenance Process Timings Bars Graph

37

On Table VI there are average timings and their proportions.
By considering the average time the participants of both groups
needed to complete the processes, the conventional technique
took approximately 97.64% longer than the model-based tool.

TABLE VI
AVERAGE TIMINGS

A. Tech. Avg. Sum of Avg. Percents
Reuse Study

Primary Conv. 16:13.44008 30:03.79341 66.7766%Secondary 13:50.35333
Primary Model 08:04.980525 14:57.441176 33.2234%Secondary 06:52.460651

Total 45:01.234586 100.0000%
Maintenance Study

Primary Conv. 06:57.498758 13:55.762733 39.5521%Secondary 06:58.263975
Primary Model 12:43.152626 21:17.305521 60.4479%Secondary 08:34.152895

Total 35:13.068254 100.0000%

F. Hypotheses Testing
In this section, we present statistical calculations to evaluate

the data of both studies. We applied Paired T-Tests for each
execution and another T-Test after removing eight outliers
for each study. The seconds spent were processed using the
statistic computation environment “R” [19]. Considering the
reuse study, the results of the T-Tests are shown on Table VII.
For the maintenance study, the same operation was executed
and the results of the T-Test are shown on Table VIII.
The first columns of these tables contain the type of T-

Test, the second columns indicate the source of the data,
the “Means” columns indicate the resultant mean, which is
the mean of the differences for an paired T-Test and one
mean for each set for the other T-Test, which represent the
conventional and the model-based tool means, respectively.
The “d.t.” columns stand for the degree of freedom; “t” and
“p” are variables considered in the hypothesis testing.
The Paired T-Test is used to compare the the differences

between two samples related to each participant, in this case,
the time difference of every participant is considered individ-
ually, and then, the means of the differences are calculated. In
the “Two-Sided” T-Tests, which are unpaired, the means are
calculated for the entire group, because a participant may be
an outlier in a specific technique, which breaks the pairs. It
is referred as two-sided because the two sets have the same
number of elements, since the same number of outliers were
removed from each group.

TABLE VII
REUSE STUDY T-TEST RESULTS

T-Test Data Means d.f. t p
Paired Primary 488.4596 15 5.841634 3.243855·10−05

Paired Secondary 417.8927 15 5.285366 9.156136·10−05

Two-Sided Both 771.4236 43.70626 6.977408 1.276575·10−08

409.4295

The “Chi-squared test” was applied on both studies in order
to detect the outliers that were removed when calculating the
unpaired T-Test, which is refered as “Two-sided”. The results
of the “Chi-squared test” for the reuse study are found on

TABLE VIII
MAINTENANCE STUDY T-TEST RESULTS

T-Test Data Means d.f. t p
Paired Primary -345.6539 15 -3.971923 0.001227479
Paired Secondary -95.88892 15 -1.191781 0.2518624

Two-Sided Both 431.3323 24.22097 -2.662684 0.0135614641.0024

Table IX and the results of the same test for the maintenance
study are found on Table X. The ‘M’ in the techniques column
indicates the use of our tool while ‘C’ indicates the conven-
tional technique, the group column indicates the number of
the group; the X2 indicates the result of an comparison to the
variance of the complete set and the position column indicates
their position on the set, i.e., highest or lowest. The outlier
column shows the timings in seconds that were considered
abnormal.

TABLE IX
CHI-SQUARED TEST FOR OUTLIER DETECTION APPLIED ON REUSE STUDY

Study T. G. X2 p position outlier

Primary C 1 5.104305 0.02386654 highest 2489.414342
2 2.930583 0.08691612 highest 1390.72776

M 1 4.091151 0.04310829 highest 1203.920754
2 2.228028 0.1355267 highest 482.570996

Secondary C 1 4.552248 0.03287556 highest 1698.301114
2 5.013908 0.02514448 highest 1682.391335

M 1 3.917559 0.04778423 highest 1029.073104
2 2.943313 0.08623369 lowest 179.467569

TABLE X
CHI-SQUARED TEST FOR OUTLIER DETECTION APPLIED ON

MAINTENANCE STUDY

Study T. G. X2 p position outlier

Primary C 1 2.350449 0.1252469 lowest 182.751342
2 2.152789 0.1423112 highest 458.576312

M 1 5.788559 0.0161308 highest 1952.875079
2 3.598538 0.05783041 highest 1283.533192

Secondary C 1 1.771974 0.183138 highest 1082.486509
2 4.338041 0.03726978 highest 493.115942

M 1 2.422232 0.1196244 highest 837.879299
2 4.87366 0.02726961 lowest 1554.176697

In order to achieve better visualization of the outliers, we
also provide two plots of the data sets. In Figures 6 and 7 there
are line graphs which may be used to visualize the dispersion
of the timing records. In these plots, the timings for each
technique are ordered independently, therefore, the participant
numbers in these plots are not related to their identification
codes.

Primary Secondary

� � � � � � � 	
 �� �� �� �� �� �� ��

�

���

����

����

����

����
����
����

� � � � � � � 	
 �� �� �� �� �� �� ��

�

���

����

����

����

����
����
����

Fig. 6. Reuse Process Timings Bars Graph

Considering the reuse study and according to the analysis
from Table VII, since all p-values are less than the margin

38

Primary Secondary
� � � � � � � 	
 �� �� �� �� �� �� ��

�

���

����

����

����

����
����
����

� � � � � � � 	
 �� �� �� �� �� �� ��

�

���

����

����

����

����
����
����

Fig. 7. Maintenance Process Timings Bars Graph

of error (0.01%), which corresponds to the established signif-
icance level of 99.99%, then, statistically, we can reject the
“H0r” hypothesis that states the techniques are equivalent.
Since every t-value is positive, we can accept the “Hpr”
hypothesis, which considers that the conventional technique
takes more time than our tool.
Considering the maintenance study and according to the

analysis from Table VIII, since all p-values are bigger than the
margin of error (0.01%), which corresponds to the established
significance level of 99.99%, then, statistically, we cannot
reject the “H0m” hypothesis that states the techniques are
equivalent. Therefore, statistically, we can assume that the
effort needed to edit a reuse code and a reuse model is
approximately equal.

G. Threats to Validity
Internal Validity:
• Experience Level of Participants: the varied participant
knowledge that could affect the collected data. To mit-
igate this threat, we divided the participants in two
balanced groups considering the experience level and
rebalanced the groups considering the preliminary results.
Also, the participants had prior experience on how to
reuse the CF conventionally. During the training, the
participants were trained on how to reuse the CF with
the model-based tool and then again on how to reuse it
conventionally, which could cause the participants to have
more experience with the conventional technique.

• Productivity under evaluation: there is a possibility that
this might influence the experiment results because stu-
dents often tend to think they are being evaluated by
experiment results. In order to mitigate this, we explained
to the students that no one was being evaluated and their
participation was considered anonymous.

• Facilities used during the study: different computers and
installations could affect the recorded timings. However,
the different groups used the same configuration, make,
model and operating system in equal numbers and the
participants were not allowed to change their machines
during in the same activity, which means that a participant
could not reuse a framework conventionally by using a
different computer that was used to reuse it with our tool.

Validity by Construction:
• Hypothesis expectations: the participants already knew
the researchers and knew that the model-based tool was

supposed to ease the reuse process, which reflects one
of our hypothesis. Both of these issues could affect
the collected data and cause the experiment to be less
impartial. In order to avoid impartiality, we enforced that
the participants had to keep a steady pace during the
whole study.

External Validity:
• Interaction between configuration and treatment: it is
possible that the reuse exercises are not accurate for
every reuse of a crosscutting framework for real world
applications. Only a single crosscutting framework was
considered and the base applications had the same com-
plexity. To mitigate this threat, the exercises were de-
signed considering applications based on the real world.

Conclusion Validity:
• Measure reliability: it refers to metrics used to measuring
the reuse effort. To mitigate this threat we have used only
the time taken which was captured by an information
system in order to allow greater precision;

• Low statistic power: the ability of a statistic test in reveal
reliable data. To mitigate we applied three T-Tests to
statistically analyze the experiment data.

V. RELATED WORK

The approach proposed by Cechticky et al. [20] allows
object-oriented application framework reuse by using a tool
called OBS Instantiation Environment. That tool supports
graphical models do define the settings of the expected ap-
plication to be generated. The model to code transformation
generates a new application that reuses the framework.
The proposal found in this paper differs from their approach

on the following topics: 1) their approach is restricted to
frameworks known during the development of the tool; 2)
it does not use aspect-orientation; 3) the reuse process is
applied on application frameworks, which are used to create
new applications.
Another approach was proposed by Oliveira et al. [21].

Their approach can be applied to a greater number of object
oriented frameworks. After the framework development, the
framework developer may use the approach to ease the reuse
by writing the cookbook in a formal language known as Reuse
Definition Language (RDL) which also can be used to generate
the source code. This process allows to select the variabilities
and resources during reuse, as long as the framework engineer
specifies the RDL code correctly.
These approaches were created to support the reuse during

the final development stages. Therefore, the approach proposed
in this paper differs from others by the supporting earlier
development phases. This allows the application engineer to
initiate the reuse process since the analysis phase while de-
veloping an application compatible to the reused frameworks.
Although the approach proposed by Cechticky et al. [20] is
specific for only one framework, its can be employed since the
design phase. The other related approach can be employed in
a higher number of frameworks, however it is used in a lower

39

abstraction level, and does not support the design phase. Other
difference is the generation of aspect-oriented code, which
improves code modularization.

VI. CONCLUSIONS
In this paper, a model-based process was presented, which

raises abstraction levels of CF reuse. It serves as a graphical
view that replaces textual cookbooks and is used to perform
the reuse in a model driven approach. From our proposed
model-based approach, a new reuse process was delineated,
which employs the forms during the development of a new
application, allowing engineers to start the reuse since earlier
software development phases and reduce the time to reuse a
CF. With this, application developers do not need to worry
about reuse coding issues nor how the framework was im-
plemented, allowing to focus on the reuse requirements in a
higher abstraction level.
Our approach was evaluated in two experiments that could

answer the questions of the study planning, which indicate
their conclusive success. The links for the gathered data can
be accessed on http://www2.dc.ufscar.br/˜valter/. The results
regarding the productivity of reuse process were promising.
However, the results of the maintenance study showed that
our technique has no disadvantages in maintenance effort.
Furthermore, we have identified some limitations related to

our research project. Once the models have been devised on
top of the Eclipse Modeling Project, they can not be used
in another environment. Furthermore, the code generator only
generates code for Java and AspectJ, therefore, only frame-
works developed in these languages are currently supported.
It is also important to point that our tool is part of a project

to develop an integrated development environment for CF,
which currently supports CF feature subset selection and a
CF repository service. It is important to note that our tool
also supports CFs that do not employ feature selection, in
these cases, the RRM and RMs would be exactly equal.
However, we have not yet evaluated how to deal with

coupling multiple CFs to a single base application. Despite
this functionality already being supported, some frameworks
may conflict with each other and lead to unwanted results.
The code generated is based on AspectJ and it was not

evaluated if it supports every CF without modifications. Al-
though not stated, we have also worked on selecting subsets
of features of the framework.
Long term future works regard: (i) carry out a experiment

using other CF, for verifying if the models proposed assist
both the reuse and to maintain a reuse code; (ii) execute a
experiment to verify whether the abstraction of the elements
related to the models are sufficiently ideal; (iii) evaluate the
standpoint of the domain engineers/frameworks, (iv) improve
the elements of the models, i.e., better them graphically
and (v) analyze the reusability of the abstract metamodel’s
metaclasses.

ACKNOWLEDGMENTS
The authors would like to thank CNPq for funding (Pro-

cesses 132996/2010-3 and 560241/2010-0) and for the Uni-

versal Project (Process Number 483106/2009-7) in which this
paper was created. Thiago Gottardi would also like to thank
FAPESP (Process 2011/04064-8).

REFERENCES
[1] R. France and B. Rumpe, “Model-driven development of complex

software: A research roadmap,” in 2007 Future of Software Engineering,
ser. FOSE 07. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 37–54.

[2] AspectJ Team, “The AspectJ(tm) programming guide,” 2003. [Online].
Available: http://www.eclipse.org/aspectj/doc/released/progguide/

[3] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns, 3rd ed. Addison-Wesley Professional, 2001.

[4] M. Fayad and D. C. Schmidt, “Object-oriented application frameworks,”
Commun. ACM, vol. 40, pp. 32–38, October 1997.

[5] M. Mortensen and S. Ghosh, “Creating pluggable and reusable non-
functional aspects in AspectC++,” in Proceedings of the Fifth AOSD
Workshop on Aspects, Components, and Patterns for Infrastructure
Software, 2006.

[6] V. Shah and V. Hill, “An aspect-oriented security framework: Lessons
learned,” in Proceedings of AOSDSEC’04 (AOSD Technology for
Application-Level Security). Workshop of the Aspect Oriented Software
Development Conference, Lancaster, UK, March, 23 2004.

[7] S. Soares, E. Laureano, and P. Borba, “Distribution and persistence as
aspects,” Software: Practice and Experience, vol. 33, no. 7, pp. 711–759,
2006.

[8] U. Kulesza, E. Alves, R. Garcia, C. J. P. D. Lucena, and P. Borba,
“Improving extensibility of object-oriented frameworks with aspect-
oriented programming,” in Proc. of the 9th Intl Conf. on Software Reuse
(ICSR’06), 2006, pp. 231–245.

[9] V. V. Camargo and P. C. Masiero, “Frameworks orientados a aspectos,”
in Anais Do 19o Simpósio Brasileiro De Engenharia De Software
(SBES’2005), Uberlândia-MG, Brasil, Outubro., 2005.

[10] M. Huang, C. Wang, and L. Zhang, “Towards a reusable and generic as-
pect library,” in Workshop of the Aspect Oriented Software Development
Conference at AOSDSEC’04, Lancaster, UK, March, 23 2004.

[11] I. Zanon, V. V. Camargo, and R. A. D. Penteado, “Reestructuring
an application framework with a persistence crosscutting framework,”
INFOCOMP, vol. 1, pp. 9–16, 2010.

[12] M. Bynens, D. Landuyt, E. Truyen, and W. Joosen, “Towards reusable
aspects: The mismatch problem,” in Workshop on Aspect, Components
and Patterns for Infrastructure Software (ACP4IS’10), 2010, pp. 17–20.

[13] D. Sakenou, K. Mehner, S. Herrmann, and H. Sudhof, “Patterns for
re-usable aspects in object teams,” in Net Object Days, Erfurt, 2006.

[14] C. Cunha, J. Sobral, and M. Monteiro, “Reusable aspect-oriented
implementations of concurrency patterns and mechanisms,” in Aspect-
Oriented Software Development Conference (AOSD’06), Bonn, Ger-
many, 2006.

[15] N. Soudarajan and R. Khatchadourian, “Specifying reusable aspects,” in
Asian Workshop on Aspect-Oriented and Modular Software Development
(AOAsia’09), 2009.

[16] V. V. Camargo, R. A. Ramos, and P. C. Masiero, “Implementação de
variabilidades em frameworks orientados a aspectos desenvolvidos em
AspectJ,” in Proc. of the I Brazilian Workshop on Aspect-Oriented
Software Development, WASP’2004. Brasilia, DF, Brazil: SBC, 2004.

[17] Eclipse Consortium, Graphical Modeling Framework, version
1.5.0, Graphical Modeling Project Std., 2011. [Online]. Available:
http://www.eclipse.org/modeling/gmp/

[18] R. S. Durelli, T. Gottardi, and V. V. Camargo, “Crossfire: An infrastruc-
ture for storing crosscutting framework families and supporting their
model-based reuse,” in CBSoft2012 - Tools 2012, September 2012.

[19] Free Software Foundation, Inc. , “R,” June 2012. [Online]. Available:
http://www.r-project.org/

[20] V. Cechticky, P. Chevalley, A. Pasetti, and W. Schaufelberger, “A
generative approach to framework instantiation,” in Proceedings of
the 2nd international conference on Generative programming and
component engineering, ser. GPCE ’03. New York, NY, USA:
Springer-Verlag New York, Inc., 2003, pp. 267–286. [Online].
Available: http://portal.acm.org/citation.cfm?id=954186.954203

[21] T. C. Oliveira, P. Alencar, and D. Cowan, “Reusetool-an extensible
tool support for object-oriented framework reuse,” J. Syst. Softw.,
vol. 84, no. 12, pp. 2234–2252, Dec. 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2011.06.030

40

