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Abstract

Dynamic adaptive streaming over HTTP (DASH) has become a promising solution for video delivery services over
the Internet in the last few years. Currently, several video content providers use the DASH solution to improve the
users’ quality of experience (QoE) by automatically switching video quality levels (VQLs) according to the network
status. However, the frequency of switching events between different VQLs during a video streaming session may
disturb the user’s visual attention and therefore affect the user’s QoE. As one of the first attempts to characterize
the impact of VQL switching on the user’s QoE, we carried out a series of subjective tests, which show that there is
a correlation between the user QoE and the frequency, type, and temporal location of the switching events. We
propose a novel parameter named switching degradation factor (SDF) to capture such correlation. A DASH
algorithm with SDF parameter is compared with the same algorithm without SDF. The results demonstrate that the
SDF parameter significantly improves the user’s QoE, especially when network conditions vary frequently.

Keywords: Video streaming; Adaptive streaming; DASH; Video quality; Subjective test; Quality of experience;
Switching degradation factor
1 Introduction
IP network uses the concept of best-effort delivery,
where the network does not guarantee the data arrival to
the end user at the right time and order, depending on the
network traffic load. However, many services, such as
video streaming, run over IP networks, where transport
layer protocols attempt to improve the IP network per-
formance and, consequently, the end users’ quality of
experience (QoE). One of these protocols is the widely
adopted Transmission Control Protocol (TCP) that
supports reliable end-to-end data delivery.
In the last years, video traffic has been increasing dramat-

ically because many video services over the Internet gained
popularity. The large number of wireless devices that use
video services via mobile networks is one of the major
contributors to the growth of video traffic. Currently,
most video streaming services run over HyperText Trans-
fer Protocol (HTTP) that uses TCP as the transport layer
* Correspondence: demostenes.zegarra@dcc.ufla.br
1Department of Computation Science, University of Lavras, Câmpus
Universitário, Caixa Postal 3037, CEP 37200-000, Lavras, Minas Gerais, Brazil
Full list of author information is available at the end of the article

© 2014 Rodríguez et al.; licensee Springer. This
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
protocol, which is not intercepted or blocked by firewalls
or network address translation (NAT), as is the case for
User Datagram Protocol (UDP). Moreover, HTTP-based
delivery provides reliability and deployment simplicity due
to HTTP and TCP protocols, which are widely imple-
mented [1].
Video quality assessment and, therefore, users’ QoE

evaluation is relevant due to the large number of video
services offered nowadays. Subjective test of video quality
assessment are conducted to determine the user’s satisfac-
tion based on which video services may be improved [2].
These tests are generally performed under laboratory con-
ditions. Nevertheless, in recent years, some studies [3,4]
show the possibility to perform image or video quality as-
sessment through remote assessors using the Internet.
In recent years, dynamic adaptive streaming over

HTTP (DASH) standard [5] has gained popularity. The
purpose of DASH is to improve the end user’s QoE
using a video streaming service. Several video content
providers adopted different DASH solutions introducing
client and server software, and the most sophisticated
consumer electronic devices are expected to support it
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[6]. A performance comparison of different adaptation
algorithms programmed in the most popular DASH
commercial solution is presented in [7]. It is worth not-
ing that the DASH solution uses a video signal quality
level determined at the users’ devices. Studies in other
areas are making similar efforts. Examples include the
3rd Generation Partnership Project (3GPP) named
minimization of drive test (MDT) [8]. The DASH solution
uses an adaptation control algorithm to determine the
most appropriate video segment to be transmitted accord-
ing to some network and/or application layer parameters,
which reflects the video signal quality to the user’s device.
As stated before, DASH intends to improve the users’

QoE because they receive the best VQL allowed by network
conditions. However, if the network condition changes
constantly, the DASH adaptation control algorithms will
switch between different VQLs. As a consequence, the
user may experience multiple changes in the video presen-
tation in a short time period, thereby affecting the user’s
QoE. In this research, each VQL is classified by its tem-
poral and spatial resolutions. Different VQL switching
types are considered depending on the video encoding
characteristics. Switching events between videos with dif-
ferent spatial or temporal resolutions have different im-
pacts on visual attention and user QoE. Hence, different
effects on the overall user’s QoE are also expected.
The main purpose of this work is to quantitatively deter-

mine how the VQL switching events affect the user’s QoE
in a DASH scenario. This fact stresses the relevance to
include, in the DASH algorithms, a decision parameter
we named switching degradation factor (SDF) that
changes with the VQL switching types, the frequency of
VQL switching events, and their temporal locations.
Subsequently, improved DASH algorithms are obtained
by performing VQL switchings depending on SDF values.
Furthermore, this concept can be extended to other bit
rate adaptation applications, such as scalable video coding
(SVC) [9].
The remainder of this paper is structured as follows:

Section 2 presents an overview of the DASH solution,
quality adaptation, and visual quality assessment methods.
Section 3 describes the quality degradation factors in VQL
switching events. Section 4 introduces the proposed SDF
parameter. Section 5 illustrates the test environment,
implementation, and the results, highlighting the import-
ance of considering the SDF parameter as a decision fac-
tor in the DASH algorithm. Finally, Section 6 draws the
conclusions.

2 Overview of DASH, quality adaptation, and
visual quality assessment methods
DASH is a new standard developed by 3GPP and MPEG
[4,5,10] aiming to encode video files using different en-
coder parameters. Different versions of the same video
are obtained and stored in a video server; in which
each video version represents a different VQL. In MPEG
DASH, the metadata is named media presentation de-
scription (MPD). In the DASH solution, the MPD and
media are delivered by the HTTP protocol. Each video
version stored in the server is logically divided into video
segments. A video segment can be represented as a small
video file with its own MPD in the file header. The MPD
maps the video segment position to the time of the
complete video. Thus, the client can access a specific
video segment. A general description of a DASH system is
shown in Figure 1, in which four versions of the same
video with different spatial resolutions are stored in the
video server (VQLA to VQLD). The video segments are
represented by the letter S, for instance, the first segment
of VQLA denoted by SA1. In Figure 1, a DASH control
algorithm is employed at the client side. This algorithm
uses network parameters as inputs, most commonly the
throughput connection, to determine the segment quality
level to be downloaded.
In the last 2 to 3 years, a number of adaptation control

algorithms have been proposed. These algorithms are typ-
ically based on parameters such as available bandwidth
[11,12], throughput [13-15], round-trip time (RTT), the
average download bit rate, the number and frequency of
pauses during a time interval [16,12] that are related with
buffering events [17], and the delay associated with user
interactivity [18]. In [13], an architecture for DASH in a
content distribution network (CDN) scenario is studied.
In [19,20], the user perception of adapting video quality
is studied. In [19], different test scenarios of a quality
upgrade are evaluated in order to determine the optimal
adaptation trajectory, but the user QoE degradation is
not quantitatively measured; thereby, the results cannot
be directly used in a DASH control algorithm. Also, the
temporal locations of VQL switching events are not
considered.
In the Internet world, smooth transmission of video

data has become one of the most challenging problems
[21]. If there is a sudden change in video quality during
a video streaming session, a common practice in DASH
quality adaptation, the visual QoE may be negatively
affected. In particular, when the visual system adapts to
a specific quality level at specific spatial and temporal
resolutions, sudden changes in the quality level may
trigger unwilling eye activities such as refocusing and
eye movement, which could be distractive to human
attention from the video content, resulting in unpleas-
ant QoE. Our preliminary subjective test presented in
Figure 2 also suggests that different types of VQLs may
have different impacts on visual QoE. Specifically, two
types of 1-min videos are shown to the subjects, one
contains switching events with different temporal resolu-
tions only and the other with different spatial resolutions



Figure 1 Illustration of a DASH system.
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only. There are two useful observations from Figure 2.
First, the negative effect on visual QoE, gauged using the
mean opinion score (MOS), increases with the frequency
of VQL switching. When the frequency is less than 1/16
per second, the effect is minimal, and when the frequency
is higher than 1/14 per second, significant drops in MOS
values are observed. Second, the negative impact of VQL
switching in spatial resolution is much stronger than that
in temporal resolution. These observations suggest that
to achieve optimal QoE, network quality adaptation
techniques should take into account both the frequency
and types of VQL switching events. Unfortunately, this
has not been well accounted for in state-of-the-art
DASH algorithms
Figure 2 User QoE versus the frequency of VQL switching events. Spa
Visual attention, context awareness, and assessment
of users’ expectations play an essential role in deter-
mining the user’s QoE. The assessment of QoE should
include objective human cognitive aspects and incorp-
orate some valid psychological subjective and social
approaches [22]; thus, the study is multi-disciplinary in
nature, incorporating psychology, cognitive science,
sociology, and information technology [23]. It is worth
noting that during the subjective test, the evaluators’
attention is also predominantly selective to the video
content being watched. Hence, the experimental test
environment needs to be isolated from external stimuli
such as visual or audible noise that could interfere with
the evaluators’ attention.
tial and temporal resolution switching.
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A number of standard subjective testing methodologies
recommended by ITU are described in ITU-R BT-500
[24] and ITU-T P.910 [25]. The methodologies in ITU-R
BT-500 include double-stimulus continuous quality
scale (DSCQS), double-stimulus impairment scale (DSIS),
single-stimulus continuous quality evaluation (SSCQE),
and simultaneous double stimulus for continuous evalu-
ation (SDSCE). The methodologies in ITU-T P.910 include
absolute category rating (ACR), degradation category rating
(DCR), absolute category rating with hidden reference
(ACR-H), and paired comparison (PC). In this work, we
adopt the ACR approach with a 5-point MOS scale rec-
ommended in ITU-T P.910, as shown in Table 1.

3 Quality degradation factors in VQL switching
In order to have a better understanding of the impact of
VQL switching on visual QoE, here, we elaborate the
key issues that have not been fully accounted for in the
current DASH quality adaptation control algorithms.

3.1 Frequency of VQL switching events
Considering the changes in network conditions and
buffer status, the DASH controller can react in two
ways, a switch up (SU) or a switch down (SD) of VQL.
The former happens when the bandwidth allows the
client to require a higher VQL from the server, and the
latter occurs when the bandwidth is not sufficient and
it is necessary to perform a downgrade in VQL to avoid
interruptions or delays in video transmission.
Figure 3 presents a simple illustrative two-VQL sce-

nario, named Scenario A, where VQLA and VQLB rep-
resent the high- and low-quality levels, respectively.
This scenario contains several VQL switching events
and no VQL switching before timestamp T0 is as-
sumed. There are eight time intervals (e.g., the first
time interval is from timestamp T0 to T1), each one
with t-second duration. Within each interval, the same
VQL is maintained, and after this interval, a VQL
switching event can occur. In DASH applications, this
time interval (t) represents a video segment length
that has only a VQL. In order to examine the fre-
quency of VQL switching events, we would need to
first define a sliding observation window that shifts
with time. For illustrative purpose only, here, we give
Table 1 ITU-T 5-point scale - ACR

Grading value Estimated quality Perceived impairment

5 Excellent Imperceptible

4 Good Perceptible but not annoying

3 Fair Slightly annoying

2 Poor Annoying

1 Bad Very annoying
an example by defining the size of the sliding window
to be

T ¼ 4t ð1Þ

We have chosen an observation window size of 4 t
because the total time range presented in Figure 3 is 8 t,
permitting a good visualization of the first two windows,
stressing that this value is only for clarification purposes.
Let NS and FS denote the number of VQL switching
events and their frequency within the sliding observation
window, respectively. FS and NS are related by

FS ¼ NS

T
ð2Þ

In addition to FS, the network and buffer status can be
either good (G), equal (E), or bad (B), and the reaction
of the DASH algorithm can be either SU, SD, or no
action. Table 2 describes the behavior of scenario A, where
the network and buffer status can be complemented with
other application layer parameters as inputs to the DASH
algorithm.
The current DASH algorithms only consider the

network and/or application layer parameters, without
taking into account the negative QoE effect caused by
VQL switching. As a result, VQL switching is triggered
at every timestamp, as can be seen in Table 2. To give
an example about how the parameter FS could be used
to avoid too frequent VQL switching events, we define
a simple improved algorithm that adds FS as a decision
factor (where a FS threshold of 1/2 is selected merely
to give an example), and the improved algorithm is
summarized in Table 3.
Figure 4 plots the case of scenario B when the improved

algorithm defined in Table 3 is applied. In addition, Table 4
elaborates the behaviors of the scenario. As expected, the
number of VQL switching events is significantly reduced
because the DASH algorithm is complemented by prohi-
biting any SU event as long as the FS parameter is above
the threshold 1/2.

3.2 Types of VQL switching events
In a DASH scenario, there are often more than two
versions of the same video available in the video server.
Therefore, there could be many more types of VQL
switching events, as opposed to only SD and SU in sce-
narios A and B.
Figure 5 depicts scenario C, in which there are five

VQLs and VQLA and VQLE represent the highest and
the lowest quality levels, respectively. Since VQL switching
can occur between any of the five VQLs, there are mul-
tiple possible types of switching events, each of which
could affect the user QoE in a different way. Therefore, it
is desirable to investigate how to quantify the impact of



Figure 3 Scenario A. VQL switching events using a DASH algorithm without considering quality degradation caused by VQL switching.
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each switching event type on the overall QoE and how to
embed such information in the design of DASH quality
adaptation algorithms.
3.3 Temporal location of VQL switching events
Another factor that may affect the user QoE is the tem-
poral locations of the VQL switching events. An example
is given in Figure 6, where in scenario D, the switching
events all occur at the beginning of the session, while
in scenario E, all switching events are near the end of
the session. Current DASH algorithms do not consider the
temporal location of the switching events and give the same
degradation weight to both scenarios. This may not be able
to precisely account for their actual impacts on the user
QoE, which may be affected by psychological factors such
as the memory effect.
Table 3 Algorithm 1: frequency of switching events as a
decision factor in DASH quality adaptation algorithm

Line Statement

1 Fs < = frequency of switching events

2 VQLn < = Current Video Quality Level
4 Quality degradation model for VQL switching
Preliminary subjective test results of video quality as-
sessment demonstrated that the users’ QoE is affected
by the three key quality degradation factors (frequency,
type, and temporal location of switching events) related
to VQL switching, as elaborated in the three scenarios
presented in the previous section. These factors have not
been well accounted for in the current DASH algo-
rithms. In this section, we propose a novel SDF, which
combines the aforementioned three factors. Parameters
in SDF are calibrated using subjective testing data. An
improved DASH algorithm is then proposed by incorp-
orating SDF as a decision factor.
Table 2 VQL switching events in scenario A using a DASH
algorithm without considering the frequency of
switching events

Parameter Time

T0 T1 T2 T3 T4 T5 T6 T7

Frequency of switching events (FS) 0 0 1/4 1/2 3/4 1 1 1

Network and buffer status E B G B G B G B

Current DASH algorithm output - SD SU SD SU SD SU SD
For illustration purpose, we will use a specific example
in our description of SDF, though the formulation of
SDF is applicable to the general scenarios. Assuming
there are six versions of the same video, namely VA, VB,
VC, VD, VE, and VF in which VA and VF represent the
highest and the lowest VQLs, respectively. We name a
VQL switching between two videos with different spatial
resolutions but the same temporal resolution a spatial
resolution switching (SRS), and a VQL switching between
different temporal resolutions but the same spatial reso-
lution a temporal resolution switching (TRS). Considering
the scenario ‘C’ presented in Figure 5, each VQL switching
type i can affect the overall user QoE in a different manner,

and we thus associate it with a different weight w Tð Þ
i that

quantifies its importance to the user QoE. Table 5 gives an
example of six VQL switching types used in our tests.
As presented in Figure 6, the switching events at dif-

ferent temporal locations (e.g., the beginning, middle,
and end part of the video) may have different impacts
on the overall user QoE; we divide the video into seg-
ments, each segment associated with a segmentation

index j and a weight w Sð Þ
j that indicates its importance

to the overall user QoE.
3 DASH_Out < = Output of DASH algorithm (SU, SD or
same video quality)

4 if (DASH_Out = SD) then

5 VQLn = VQLn-1

6 if (Fs <½ & DASH_Out = SU) then

7 VQLn = VQLn+1

8 Else

9 VQLn = VQLn

10 end if



Figure 4 Scenario B. An example of VQL switching events using DASH quality control considering parameter Fs.
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As depicted in Figures 3 and 4 that introduced the sce-
narios A and B, respectively, during a time period (T)
may occur some switching events (N) between different
VQLs and located in different instants in the temporal
domain.
With all these considerations, we can now define the

SDF as

SDF ¼ 1
T

Xn
j¼1

w Sð Þ
j

Xm
i¼1

w Tð Þ
i Nij

 !
ð3Þ

where the parameters are summarized as follows:

� m: number of VQL switching types
� n: number of temporal segments
� Nij: number of VQL switching events of type i

during temporal segment j
� w Tð Þ

i : weight factor associated with switching type i
� w Sð Þ

j : weight factor associated with temporal segment j
� T: duration of the time window being observed

For better understanding of SDF, it is useful to map it
to a new scale, so that it can be directly used to predict
how VQL switching events change the 5-point scale
MOS values. Motivated by previous works on the QoE
of multimedia service [26-28], we adopt an exponential
function for the mapping, which is given by

SDF
―― ¼ CeSDF ð4Þ

where C is a positive constant that adjusts the speed of
the exponential function.
Table 4 VQL switching events in scenario B using a DASH alg

Parameter

T0 T1 T2

Frequency of switching events (FS) 0 0 1/4

Network and buffer status E B G

DASH algorithm with FS - SD SU
It remains to determine the parameters in the SDF

model, including the weighting factors w Tð Þ
i and w Sð Þ

j in

(3) for each switching type and temporal segment, as
well as the constant C in (4). To do this, we carried out
two phases of subjective tests. In the first phase, K test
scenarios (specifically, K = 24 in our experiment, because
we considered six switching types in our tests, resulting
an average of four scenarios for each switching type)

were used to determine the w Tð Þ
i parameters only. Once

the w Tð Þ
i parameters are fixed, a second phase of test is

conducted to obtain the w Sð Þ
j parameters. The lengths of

the video used in phase 1 were 1 min. In each test sce-
nario, a different set of VQL switching events with dif-
ferent switching types were used.
In phase 1, there is only one temporal segment, i.e.,

n = 1 (though it could still contain multiple VQL
switching events). In the k-th scenario, the net impact
of VQL switching events on the overall user QoE or the

desired �SDF factor (denoted by �SDF Dð Þ
k ) would be the

difference between the mean of the MOS values of all
individual VQLs that are transmitted within the video
segment used in the k-th scenario (denoted by MOSmean

k ,
which is independent of VQL switching) and the MOS
value given to the whole segment (denoted by MOSk,
which is certainly affected by VQL switching, if any). For
this, each VQL needs to have an MOS score previously
defined, and from this information, only the MOS scores
of the VQLs transmitted are used to calculate the MO
Smean
k . Thus, we have
orithm considering the frequency of switching events

Time

T3 T4 T5 T6 T7

1/2 3/4 3/4 1/2 1/4

B G B G B

SD - - - -



Figure 5 Scenario C. An example of VQL switching events between five quality levels.
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SDF
―― Dð Þ

k ¼ MOSmean
k −MOSk ð5Þ

Our purpose here is to pick the optimal values for w Tð Þ
i

and C, such that the predicted SDF
――

value for the k-th sce-

nario in (4) is as close to the desired SDF
―― Dð Þ

k value in (5) as
possible. A convenient way to resolve this optimization
problem is to transform (4) into logarithmic domain (for
the case n = 1) and solve for a linear regression problem.
Specifically, for the k-th scenario, taking the logarithm at
both sides of (4), we have
Figure 6 Scenarios D and E. Examples of VQL switching events at differe
ln SDF
――

k
� � ¼ ln Cð Þ þ

Xm
i¼1

N kð Þ
i

T
w Tð Þ
i ð6Þ

Pooling this for all K scenarios, we desire to have

Qw Tð Þ ¼ b Tð Þ ð7Þ
where

Q ¼
1 q

1;1
⋯ q1;m

1 q2;1 ⋯ q2;m
⋮ ⋮ ⋱ ⋮
1 qK ;1 ⋯ qK ;m

2
664

3
775; qk;i ¼

N kð Þ
i

T
ð8Þ
nt temporal locations.



Table 5 List of VQLS and associated switching types

Video quality level (VQL) Video characteristics VQL switching event VQL switching type

VA (SR1, TR1) VA←→ VB TRS (VAB)

VB (SR1, TR2) VB←→ VC TRS and SRS (VBC)

VC (SR2, TR1) VB←→ VD SRS (VBD)

VD (SR2, TR2) VC←→ VD TRS (VCD)

VE (SR3, TR2) VA←→ VE TRS and SRS (VAE)

VF (SR3, TR1) VE←→ VF TRS (VAE)
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w Tð Þ ¼

ln Cð Þ
w Tð Þ
1

w Tð Þ
2
⋮

w Tð Þ
m

2
66664

3
77775; b Tð Þ ¼

ln SDF
―― Dð Þ

1

� �
ln SDF

―― Dð Þ
2

� �
⋮

ln SDF
―― Dð Þ

K

� �

2
666664

3
777775 ð9Þ

All unknowns are contained in vector w(T), which can
be obtained using a least square method, specifically, a
pseudo-inverse given by

w Tð Þ ¼ QTQ
� �−1

QTb Tð Þ ð10Þ

Thus, the values of the constant C and all w Tð Þ
i ’s are

obtained.

In the second phase, the w Sð Þ
j parameters are estimated

assuming that the values of C and w Tð Þ
i ’s are given (from

phase 1). Specifically, a series of K = 12 scenarios are
tested where each scenario contains three temporal seg-
ments (n = 3). The lengths of the video used in phase 2
were 3 min. In each test scenario, a different set of VQL
switching events with different switching types were
used. Similar to the case in phase 1, in the k-th scenario,
the net impact of VQL switching events on the overall

user QoE or the desired S factor (denoted by SDF
―― Dð Þ

k )
would be the difference between the mean of the MOS
values of all individual VQLs in all the temporal seg-
ments (denoted by MOSmean

k ) and the MOS value given
to the whole video (denoted by MOSk), such that

SDF
―― Dð Þ

k ¼ MOSmean
k −MOSk ð11Þ

The goal here is to find the optimal values for w Sð Þ
j for

the given w Tð Þ
i and C, so that the predicted �SDF value
Figure 7 Testbed used in the experiments.
for the k-th scenario in (4) is as close to the desired

value SDF
―― Dð Þ

k as possible. For the k-th scenario, taking
the logarithm at both sides of (4), we obtain

ln SDF
――

k
� � ¼ ln Cð Þ þ

Xn
j¼1

w Sð Þ
j

Xm
i¼1

w Tð Þ
i N kð Þ

ij

T

 !
ð12Þ

Pooling this for all K scenarios, we desire to have

Pw Sð Þ ¼ b Sð Þ ð13Þ
where

P ¼
p

1;1
⋯ ⋯ p1;n

p
2;1

⋱ ⋰ p2;n
⋮ ⋰ ⋱ ⋮

pK ;1 ⋯ ⋯ pK ;n

2
664

3
775; pk;j ¼

Xm
i¼1

w Tð Þ
i N kð Þ

ij

T
ð14Þ

w Sð Þ ¼
w Sð Þ
1

w Sð Þ
2
⋮

w Sð Þ
n

2
664

3
775; b Sð Þ ¼

ln SDF
―― Dð Þ

1 =C
� �

ln SDF
―― Dð Þ

2 =C
� �

⋮
ln SDF

―― Dð Þ
K =C

� �

2
666664

3
777775 ð15Þ

All unknowns are contained in vector w(S), which can
be obtained by a pseudo-inverse

w Sð Þ ¼ PTP
� �−1

PTb Sð Þ ð16Þ

With all the parameters w Tð Þ
i ’s, w Sð Þ

j ’s, and C deter-

mined, we can now use Equations 3 and 4 to compute
the SDF factors as well as the mapped �SDF values for
the given test scenarios, and �SDF can be subsequently
employed to predict the drop of MOS value caused
purely by VQL switching events.



Table 6 Characteristics of videos used as test material

Video quality
level (VQL)

Temporal
resolution (fps)

Spatial resolution

(width × height)

VA 25 854 × 480

VB 20 854 × 480

VC 25 640 × 360

VD 20 640 × 360

VE 20 320 × 180

VF 25 320 × 180
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It is worth noting that commercial applications of
video streaming services can offer a high number of
different spatial and temporal resolutions. In order for
the SDF parameter to be useful for real applications,
SDF needs to be agnostic to the different video resolu-
tions and consequently works with different switching
types.

Based on the w Tð Þ
i and w Sð Þ

j parameters obtained in

previous computation, we propose a model to generalize
the results to cover a broader range of switching events.
Figure 8 Flowchart of a DASH adaptation control algorithm that emp
In particular, we define a spatial resolution change
parameter

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max Wc;Wnð Þ max Hc;Hnð Þ
min Wc;Wnð Þ min Hc;Hnð Þ

s
ð17Þ

where (Wc, Hc) and (Wn, Hn) represent the widths and
heights of the video before and after switching, respectively.
Considering the results obtained by (10) and analyzing
different mathematical models, such as exponential and

polynomial functions, we find that w Tð Þ
i can be modeled

empirically by

w Tð Þ
i ¼ αþ β log2 1þ R− 1ð Þ=ηð Þ ð18Þ

where α = 2.69, β = 8.73, and η = 0.33 when R ≤ 1.33,
and α = 11.44, β = 1.89 and η = 1.34 when R > 1.33. In a

similar way, we find the values of w Sð Þ
j can be well fitted

by considering the results obtained by (16):

w Sð Þ
j ¼ κ þ λ log2 1þ nc − 1ð Þ= n− 1ð Þð Þ ð19Þ
loys the proposed SDF parameter.



Figure 9 Weighting factor w Tð Þ
i of different VQL switching types.
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where κ = 1.42, λ = −0.38, n is the total number of
temporal segments considered in the video, and nc is the

current temporal segment in which w Sð Þ
j is calculated.

Finally, the MOS value that characterizes the user QoE
can be predicted by incorporating �SDF into previous QoE
models that estimate MOS without taking into account
quality degradations due to VQL switching. For example,
the video streaming quality metric (VsQM) proposed in
[23] provides a model to predict MOS and is specifically
useful when pauses exist during video replay. Combining
VsQM and SDF, we obtain a model that predicts the over-
all MOS value by

MOS Pð Þ ¼ VsQM
―――

− SDF
―― ð20Þ
Figure 10 Weighting factor w Sð Þ
j of three segments. TS-B, TS-M, and TS-

the video, respectively.
where �VsQM and �SDF are the VsQM and SDF factors
after mapped to the scale that can be directly used to
predict MOS in a 5-point scale. This predicted MOS
value, denoted by MOS(P) can then be employed by DASH
algorithms for adaptive video streaming.
5 Implementation and testing
5.1 Testing environment and implementation
The testbed used in our experiment is shown in Figure 7,
which is isolated with no other processes running in the
same computers. A network emulator is implemented
based on the open-source tool NETem, which controls
the available bandwidth between the client and the
video server. The video server is installed with Linux
E are for the temporal segments at the beginning, middle, and end of



Figure 11 Subjective and objectively predicted MOS for different frequencies of VQL switching events.
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and Apache web server version 2.2.21. In addition, a
video player is developed using an Open Source Media
Framework (OSMF). The initial buffering level require-
ment is set to 6 s.
Using the information of the metadata MPD, the ap-

plication is able to know the spatial resolution of the
video sequences. This information is obtained from the
MPD xml code, specifically from the data contained in
the element named ‘Representation’ and its attributes
‘width’ and ‘height.’ Therefore, the ratio of spatial resolu-
tions between the current and next video segment can
be calculated using the width or height values.
In the first and second phases of this work, all test

videos were 1 or 3 min in length. In the validation phase,
videos were 9 and 21 min in length. These videos were
compressed using an H.264/AVC video encoder with
Figure 12 Subjective and objectively predicted MOS for different VQL
different encoding characteristics to obtain six VQLs, as
presented in Table 6. The videos are divided into 2-s
pieces and are stored in the video server with appropri-
ate identifications. The client sends an HTTP request
that contains the URL of a specific video identification,
which has been determined by a DASH algorithm run-
ning at the client side.
Using our testbed, drastic changes in available bandwidth

were emulated. Thus, several test scenarios were created,
in which different numbers of VQL switching events and
different switching types were inserted. In addition, the
temporal locations of VQL switching events vary between
different test scenarios.
A DASH control algorithm is implemented based on

OSMF in which the SDF parameter was included. The
flowchart is presented in Figure 8. In order to assess the
switching types.



Figure 13 Predicted MOS for different temporal segments. A, B, and C are for the initial, intermediate, and final temporal segments, respectively.
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impact of SDF in a DASH control algorithm, the same
test scenarios were evaluated using the same DASH
algorithm but without using SDF, and the two test cases
are compared, as described later.

5.2 Test results
A total of 78 subjects participated in the subjective test,
including 44 females and 34 males, aged between 18 and
49 years. None of them presented any sight problems or
experience in the quality assessment task. A 21.5-in.
LCD monitor was employed with the following charac-
teristics: 1,920 × 1,080 pixel resolution, widescreen ratio
of 16:9 and brightness of 250 cd/m2. The test environ-
ment had no reflecting ceiling walls or floors and either
any disturbing objects. The tests were conducted in
Figure 14 Performance comparison based on MOS values between D
14 weeks, and during this period, the same test room
was kept constant. All tests were performed individually
and a time limit was not enforced. An instruction ses-
sion was performed before the tests, in which the asses-
sors were shown sample videos and the experiment
process was explained. In the tests, an observation dis-
tance of 50 to 60 cm was considered, and assessors used
the scale presented in Table 1. Each video received at
least 15 scores by the assessors and the scores are aver-
aged to calculate the MOS value. With the test results, a
statistical analysis was performed and no observer was
identified as an outlier.
Figure 9 presents the results of the w Tð Þ

i values computed
using (10), and Figure 10 shows w Sð Þ

j values obtained by
(16), respectively.
ASH algorithms with and without considering SDF.



Table 7 Description of the switching events considering
their types and temporal distributions used test
scenarios

Scenario Temporal
segment

Switching type

V_AB V_BC V_BD V_CD V_AE V_EF

1 TS-B 5

TS-M 3

TS-E

2 TS-B

TS-M 5 1

TS-E

3 TS-B 1

TS-M 3 2

TS-E 4

4 TS-B 3

TS-M 4

TS-E 2

5 TS-B 3

TS-M 2 1

TS-E 3

First temporal segment (TS-B), second temporal segment (TS-M), and third
temporal segment (TS-E).
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Figure 11 extends Figure 2 by showing how the user’s
QoE decreases when the frequency of VQL switching
events is increased. Results of subjective MOS and the
predicted MOS(P) by (20) are presented. The Pearson
correlation coefficients for the cases of temporal and
spatial resolution are 0.92 and 0.98, respectively.
Figure 12 shows both the subjective MOS and the

predicted MOS(P) by (20) for the 24 scenarios considered
in the first phase. The Pearson correlation coefficient be-
tween subjective and objective MOS values is 0.96.
Figure 15 Performance comparison based on MOS value for video len
In order to demonstrate the impact of temporal loca-
tion, Figure 13 shows how the same impairments lo-
cated at different time instants degrade the user’s QoE.
Four scenarios are presented, each with three variations,
named A, B, and C, representing the initial, intermedi-
ate, and final temporal segments, respectively. Thus,
scenarios A’s have VQL switching events only in the ini-
tial temporal segment, and the same rule for scenarios B
and C.
From Figure 13, it can be observed that VQL

switching events in the first temporal segment have
the highest negative effect on the user QoE, and de-
pending on the test scenario, the QoE can be drastically
decreased.
5.3 Applications to DASH algorithms
Five scenarios were used to test a DASH algorithm with
and without employing the SDF parameter. In the case
that the SDF parameter is adopted, a threshold of 0.6 on
the SDF

――
value is used. Figure 14 shows the subjective

evaluation results. Depending on the test scenario, the
difference between using and not using the SDF param-
eter could vary dramatically. In order to clarify the im-
plementation of test scenarios, Table 7 presents the
number and type of switching events that happened in
each temporal segment during a video sequence, consid-
ering that the SDF parameter was not used in the DASH
algorithm. For instance, scenario 5 had the largest qual-
ity changes between VQLs, while scenario 1 was the less
affected.
In order to validate the generalized SDF parameter in

(18) and (19), additional subjective tests were conducted
for video lengths of 9 and 21 min. Four versions of the
same video were used, all of them with the same
gths of 9 and 21 min.
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temporal resolution of 25 fps but with different resolu-
tions of 1,136 × 640, 960 × 540, 480 × 234, and 320 × 200,
respectively. The video sequences used in the experimen-
tal tests were built using the same methodology presented
in Table 7. Figure 15 shows the results obtained, where
scenarios 1-A, 1-B, 2-A, and 2-B represents 9-min video
with moderate bandwidth change, 9-min video with
frequent bandwidth change, 21-min video with moder-
ate bandwidth change, and 21-min video with frequent
bandwidth change, respectively. In the case that the
SDF parameter is adopted, a threshold of 0.6 on the
SDF
――

value is used. These results are similar to those
presented in Figure 14.
From Figures 14 and 15, it can be observed that the

DASH algorithm that considers SDF substantially im-
proves the user’s QoE, especially in the scenarios where
the bandwidth varies frequently. Furthermore, the results
in Figure 15 demonstrate the generalization ability of the
proposed method to the case of long video lengths.

6 Conclusions
Existing DASH solutions do not take into account the
impact of VQL switching on the users’ QoE. In this
study, we make one of the first attempts to address this
problem through subjective testing, objective modeling,
as well as computer and network configurations to create
different scenarios that involved DASH algorithms for
adaptive streaming. The major contributions of our work
are summarized as follows: First, we find that frequent
VQL switching has strong impact on the users’ QoE for
its disturbance to users’ attention to the video content.
Second, we find that switchings in spatial and temporal
resolutions have significantly different impacts on the
QoE. Third, three features in VQL switching, i.e., switch-
ing frequency, switching type, and switching temporal lo-
cation, are identified as the key factors in characterizing
the impact of VQL switching on the users’ QoE. Fourth, a
SDF model is developed to account for the changes
caused by VQL switching on the users’ QoE. Fifth, a series
of subjective experiments are conducted to calibrate the
parameters in the SDF model as well as to test the quality
prediction performance of objective models on subjective
MOS. Sixth, the SDF model is embedded into DASH algo-
rithms and compared with the same algorithms without
considering the SDF factor. Validations by subjective test
show that the MOSs given by human observers are signifi-
cantly improved by incorporating SDF in DASH.

Competing interests
The authors declare that they have no competing interests.

Authors’ information
DZR received his B.S. degree in Electronic Engineering from the Pontifical
Catholic University of Peru and his M.S. degree (2009) and PhD in Electronic
Engineering (2013) from the Escola Politécnica of the University of São Paulo
(EPUSP). He studied Electronic Systems at USP, with solid knowledge in
Telecommunication Systems and Computer Science based on 13 years of
professional experience in important companies. His current interest includes
QoS and QoE in multimedia services, digital TV, and architect solutions in
Telecommunication Systems. He is currently a professor at the Computer
Science Department at Federal University of Lavras (UFLA), Minas Gerais,
Brazil.
ZW received his Ph.D. degree from the University of Texas at Austin (2001).
He is currently an associate professor at the Department of Electrical and
Computer Engineering, University of Waterloo, Canada. His research interests
include image/video processing, coding and quality assessment, multimedia
communications, computational vision, and biomedical signal processing. He
has more than 100 publications in these fields with more than 16,000
citations (Google Scholar). He was a recipient of the 2009 IEEE Signal
Processing Society Best Paper Award, 2009 Ontario Early Researcher Award,
and ICIP 2008 Best Student Paper Award as a senior author. He is a member
of the IEEE Multimedia Signal Processing Technical Committee (MMSP-TC)
and has been served now and in the past as an associate editor of IEEE
Transactions on Image Processing, IEEE Signal Processing Letters, and Pattern
Recognition.
RLR received her B.S. degree in Computer Science from UNIFEI, Brazil and
her M.S. degree from the University of São Paulo - USP (2009). She is a Ph.D.
student at Escola Politécnica of the University of Sao Paulo (EPUSP). Her
current research interest includes computer networks, quality of experience
of multimedia service, social networks, and recommendation systems.
GB was granted her Ph.D. in Electronic Engineering (1986) by the Escola
Politécnica of the University of São Paulo (EPUSP). Her current research
interests include computer networks and digital television focusing on the
aspects of distributed systems, distributed middleware, QoS mechanisms,
collaborative virtual environment, middleware for digital TV, interactive
digital TV, videoconferencing, modeling, and performance analysis of
networks, and applications in distance education.
Acknowledgements
The authors thank both the Department of Computer Science at Federal
University of Lavras and the Laboratory of Computer Architecture and Networks
(LARC) at Escola Politécnica - University of São Paulo for the motivation to
research in the quality of experience area in multimedia services.

Author details
1Department of Computation Science, University of Lavras, Câmpus
Universitário, Caixa Postal 3037, CEP 37200-000, Lavras, Minas Gerais, Brazil.
2Department of Electrical and Computer Engineering, University of Waterloo,
200 University Avenue West, Waterloo, Ontario, Canada. 3Department of
Computer Engineering at the School of Engineering, University of São Paulo,
Avenue Prof. Luciano Gualberto, Travessa 3, no. 380, CEP 05508-010 São
Paulo, Brazil.

Received: 29 April 2014 Accepted: 17 November 2014
Published: 8 December 2014
References
1. T Stockhammer, Dynamic adaptive streaming over HTTP - standards and

design principles, in Proc. ACM Conf. on Multimedia Systems (MM’11)
(San Jose, 2011), pp. 133–144

2. H-J Park, D-H Har, Subjective image quality assessment based on objective
image quality measurement factors. IEEE Trans. Consumer Electron.
57(3), 1176–1184 (2011)

3. Q Xu, Q Huang, Y Yao, Online crowdsourcing subjective image quality
assessment, in Proc. of 20th ACM International Conference on Multimedia
(MM’12) (Nara, 2012), pp. 359–368

4. F Ribeiro, D Florencio, V Nascimento, Crowdsourcing subjective image
quality evaluation, in Proc. of 18th IEEE International Conference on Image
Processing (ICIP) (Brussels, 2011), pp. 3097–3100

5. ISO, ISO/IEC IS 23009-1, Information Technology – Dynamic Adaptive
Streaming over HTTP (DASH) ISO (Geneva, 2012)

6. V Adzic, H Kalva, B Furht, Optimizing video encoding for adaptive streaming
over HTTP. IEEE Trans. on Consumer Electron. 58(2), 397–403 (2012)

7. S Akhshabi, A Begen, C Dovrolis, An experimental evaluation of rate-adaptation
algorithms in adaptive streaming over HTTP, in Proc. ACM Conf. on Multimedia
Systems (San Jose, 2011), p. 157



Rodríguez et al. EURASIP Journal on Wireless Communications and Networking 2014, 2014:216 Page 15 of 15
http://jwcn.eurasipjournals.com/content/2014/1/216
8. W Hapsari, A Umesh, M Iwamura, M Tomala, B Gyula, B Sebire, Minimization
of drive tests solution in 3GPP. IEEE Commun. Mag. 50(6), 28–36 (2012)

9. Y-M Hsiao, C-H Chen, J-F Lee, Designing and implementing a scalable
video-streaming system using an adaptive control scheme. IEEE Trans. on
Consumer Electron. 58(4), 1314–1322 (2012)

10. T Lohmar, T Einarsson, P Frojdh, F Gabin, M Kampmann, Dynamic adaptive
HTTP streaming of live content, in Proc. IEEE World of Wireless, Mobile and
Multimedia Networks (WoWMoM) (Lucca, 2011), pp. 1–8

11. C Liu, I Bouazizi, M Gabbouj, Rate adaptation for adaptive HTTP streaming,
in Proc. ACM Conf. on Multimedia Systems (San Jose, 2011), pp. 169–174

12. R Mok, E Chan, R Chang, Measuring the quality of experience of HTTP video
streaming, in Proc. of IFIP/IEEE International Symposium on Integrated
Network Management (IM) (Dublin, 2011), pp. 485–492

13. W Pu, Z Zou, C Ch, Dynamic adaptive streaming over HTTP from multiple
content distribution servers, in Proc. of IEEE Global Telecom. Conference
(Houston, 2011), pp. 1–5

14. LD Cicco, S Mascolo, V Palmisano, Feedback control for adaptive live video
streaming, in Proc. of ACM Conf. on Multimedia Systems (San Jose, 2011),
pp. 145–156

15. S Gouache, G Bichot, A Bsila, C Howson, Distributed & adaptive HTTP
streaming, in Proc. IEEE International Conference on Multimedia and Expo
(ICME) (Barcelona, 2011), pp. 1–6

16. T Porter, XH Peng, An objective approach to measuring video playback
quality in loss networks using TCP. IEEE Commun. Lett. 15(1), (2011)

17. K Evensen, D Kaspar, C Griwodz, P Halvorsen, A Hansen, P Engelstad,
Improving the performance of quality-adaptive video streaming over multiple
heterogeneous access networks, in Proc. of ACM Conf. on MM. Sys (San Jose,
2011), pp. 57–68

18. R Huysegems, B De-Vleeschauwer, K De-Schepper, C Hawinkel, T Wu, K
Laevens, W Van-Leekwijck, Session reconstruction for HTTP adaptive
streaming: laying the foundation for network-based QoE monitoring, in
Proc. IEEE 20th International Workshop on Quality of Service (IWQoS)
(Coimbra, 2012), pp. 1–9

19. N Cranley, P Perry, L Murphy, User perception of adapting video quality. Int.
Journal of Human-Computer Studies 64(8), 637–647 (2006)

20. N Feamster, D Bansal, H Balakrishnan, On the interactions between layered
quality adaptation and congestion control for streaming video, in Proc. 11th
International Packet Video Workshop (Kyongju, 2001)

21. J Kucerova, J Polec, D Tarcsiova, Video quality assessment using visual
attention approach for sign language. World Acad. Sci. Eng. Technol.
65, 194–199 (2012)

22. R Laghari, K Crespi, N Molina, B Palau, QoE aware service delivery in
distributed environment, in IEEE Workshops of International Conference on
Advanced Information Networking and Applications (Biopolis, 2011),
pp. 837–842

23. D Rodriguez, J Abrahão, D Begazo, R Lopes, G Bressan, Quality metric to
assess video streaming service over TCP considering temporal location of
pauses. IEEE Trans. on Consumer Electron. 58(3), 985–992 (2012)

24. International Telecommunication Union, ITU-R BT.500-11: Methodology for
the Subjective Assessment of the Quality of Television Pictures (Geneva, 2002)

25. International Telecommunication Union, ITU-T P.910: Subjective Video Quality
Assessment Methods for Multimedia Applications (Tech. Rec, Geneva, 2008)

26. T Hosfeld, S Biedermann, R Shatz, A Platzer, The memory effect and its
implications on Web QoE modeling, in Proc. of 23rd International Teletraffic
Congress (ITC) (San Francisco, 2011), pp. 103–110

27. D Rodriguez, R Lopes, E Costa, J Abrahão, G Bressan, Video quality
assessment in video streaming services considering user preference for
video content. IEEE Trans. on Consumer Electron. 60(3), 436–444 (2014)

28. S Aroussi, T Bouabana-Tebibel, A Mellouk, Empirical QoE/QoS correlation
model based on multiple parameters for VoD flows, in Proc. of Global
Communications Conference (GLOBECOM) (Anaheim, 2012), pp. 1963–1968

doi:10.1186/1687-1499-2014-216
Cite this article as: Rodríguez et al.: The impact of video-quality-level
switching on user quality of experience in dynamic adaptive streaming
over HTTP. EURASIP Journal on Wireless Communications and Networking
2014 2014:216.
Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	1 Introduction
	2 Overview of DASH, quality adaptation, and visual quality assessment methods
	3 Quality degradation factors in VQL switching
	3.1 Frequency of VQL switching events
	3.2 Types of VQL switching events
	3.3 Temporal location of VQL switching events

	4 Quality degradation model for VQL switching
	5 Implementation and testing
	5.1 Testing environment and implementation
	5.2 Test results
	5.3 Applications to DASH algorithms

	6 Conclusions
	Competing interests
	Authors’ information
	Acknowledgements
	Author details
	References

